Information
-
Patent Grant
-
6447412
-
Patent Number
6,447,412
-
Date Filed
Tuesday, April 18, 200024 years ago
-
Date Issued
Tuesday, September 10, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Piper Rudnick
- Perkins; Jefferson
-
CPC
-
US Classifications
Field of Search
US
- 473 524
- 473 537
- 473 545
- D21 729
- D21 730
-
International Classifications
-
Abstract
A sports racquet comprises a handle and a frame coupled to the handle. The frame includes an inner portion and an outer portion located substantially opposite the inner portion. The inner portion of the frame include a plurality of undulations that extend towards and away from a ball-hitting surface, the undulations reducing the unintended bunching and wrinkling of material that intermittently forms in the frame during the manufacturing process. The undulations can be varied by location, undulation length, undulation height, and frequency and can be used in racquets made from a variety of materials and methods.
Description
TECHNICAL FIELD
This invention relates generally to sports racquets. More particularly, this invention relates to a sports racquet with undulations in the interior surface of the frame for increasing the overall strength, durability and stiffness of the racquet.
BACKGROUND OF THE INVENTION
Racquets for sports such as tennis, racquetball, squash and badminton are well known in the art and by the public. Many currently existing racquets include a tubular frame made of a composite or other material which surrounds a string bed, with the string bed serving as the hitting surface for the racquet.
Although such racquets have many beneficial qualities, they also have drawbacks which this invention addresses. In the regions of the racquet frame in which the frame has a high degree of curvature, the material that exists on the outside of the frame will cover a greater distance than the material on the opposite or the inside of the frame. This can be seen in
FIG. 1
, wherein a standard racquetball racquet the length of the inner side of the racquet frame is significantly less than the length of the outer side of the racquet frame. This difference is most pronounced where the curvature of the racquet frame is the greatest. This difference in surface length causes the material on the inside of the frame to bunch or crease. This bunching or creasing, which is the unintended and random result of the manufacturing process, will cause wrinkles to form in materials on the inside of the frame, creating areas of weakness and undesired flexibility, as well as inconsistencies in strength and stiffness, in the frame. The creases, wrinkles or bunching that occurs in the inner side of the racquet can be seen in prior art
FIGS. 2-3
, which show a frame made out of laminations of fibrous material in a resin matrix, per conventional manufacture. As shown in these figures, creases, bunches or wrinkles
120
in the inner side
112
of a racquet frame
102
occur intermittently, causing various weak portions in the racquet frame. The resulting weaknesses, undesired flexibility, and inconsistencies in strength and stiffness, can affect the overall performance of the racquet and can also lead to a cracking or breaking of the racquet frame.
Therefore, it is desirable to develop a racquet frame that reduces or minimizes the incidence of bunches, creases and wrinkles formed on the inside of the racquet frame and proximate areas of curvature of the frame.
SUMMARY OF THE INVENTION
The invention provides for a sports racquet (such as ones used in squash, racquetball, badminton and tennis) including a handle and an elongated frame coupled to the handle. The frame includes a head portion, sometimes a shaft portion, and a throat portion, with the throat portion connecting the head portion to the shaft or handle. An inner side includes a plurality of undulations formed into the racquet that result in a varying frame cross section at different portions along the racquet frame. These undulations result in a longer inner side surface length, making the linear distance on the inner side of the frame more similar to the linear distance on the outer side of the frame for a particular frame segment. The undulations can be used continuously or intermittently inside the frame. A different number and variety of undulations can also be used. The undulations may be varied in frequency, height, length, depth, and shape. The present invention has application to racquets formed from any of a variety of materials including composites and metals.
It is therefore an advantage of the invention to provide a sports racquet that is formed so as to reduce or minimize the number of areas of weakness, undesired flexibility and inconsistencies in strength on the racquet frame.
It is as yet another advantage of the present invention to provide a sports racquet that has an increased overall strength in the racquet frame.
It is still another advantage of the present invention to provide a sports racquet that has a predictable level of strength and stiffness in the frame.
It is yet another advantage of the invention to provide a sports racquet wherein the frame has a more consistent weight and balance.
It is finally another advantage of the invention to provide a sports racquet that has an increased level of durability for a given amount of material and weight in the racquet frame.
Further advantages and features of the present invention will be apparent from the foregoing specification and claims once considered in connection with the accompanying drawings illustrating the preferred embodiment of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a plan view of a racquetball racquet according to the prior art.
FIG. 2
is a sectional side view of a portion of a sports racquet frame according to the prior art.
FIG. 3
is a side view of a cross section of the racquet frame taken substantially along line
3
—
3
of FIG.
2
.
FIG. 4
is a side view of a cross section of the racquet taken substantially along line
4
—
4
of FIG.
2
.
FIG. 5
is a plan view of a portion of a racquet frame according to one embodiment of the invention.
FIG. 6
is a cross-sectional view of the racquet taken substantially along line
6
—
6
of FIG.
5
.
FIG. 7
is a cross-sectional view of the racquet taken substantially along line
7
—
7
of FIG.
5
.
FIG. 8
is a view of a top portion of the racquet of
FIG. 5
, looking outward from the center of the frame.
FIG. 9
is a plan view of a portion of a racquet frame according to another embodiment of the invention.
FIG. 10
is a cross-sectional view of the racquet taken substantially along line
10
—
10
of FIG.
9
.
FIG. 11
is a cross-sectional view of the racquet taken substantially along line
11
—
11
of FIG.
9
.
FIG. 12
is a view of the racquet of
FIG. 9
, looking outward from the center of the frame.
FIG. 13
is a plan view of a portion of a racquet according to another embodiment of the invention.
FIG. 14
is a cross-sectional view taken substantially along line
14
—
14
of FIG.
13
.
FIG. 15
is a cross-sectional side view taken substantially along line
15
—
15
of FIG.
13
.
FIG. 16
is a view of the racquet of
FIG. 13
, looking outward from the center of the frame.
FIG. 17
is a plan view of a portion of a racquet according to another embodiment of invention.
FIG. 18
is a cross-sectional view taken substantially along line
18
—
18
of FIG.
17
.
FIG. 19
is a cross-sectional view taken substantially along line
19
—
19
of FIG.
17
.
FIG. 20
is a view of the racquet of
FIG. 17
, looking outward from the center of the frame.
FIG. 21
is a plan view of a portion of a racquet according to yet another embodiment of the invention.
FIG. 22
is a cross-sectional view taken substantially along line
22
—
22
of FIG.
21
.
FIG. 23
is a cross-sectional view taken substantially along line
23
—
23
of FIG.
21
.
FIG. 24
is a view of the racquet of
FIG. 21
, looking outward from the center of the frame.
FIG. 25
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 26
is a view looking at the interior surface of the racquet portion shown in FIG.
25
.
FIG. 27
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 28
is a view looking at the interior surface of the racquet portion shown in FIG.
27
.
FIG. 29
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 30
is a view looking at the interior surface of the racquet portion shown in FIG.
29
.
FIG. 31
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 32
is a view looking at the interior surface of the racquet portion shown in FIG.
31
.
FIG. 33
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 34
is a view looking at the interior surface of the racquet portion shown in FIG.
33
.
FIG. 35
is a plan view of a portion of a racquet frame according to still another embodiment of the invention.
FIG. 36
is a view looking at the interior surface of the racquet portion shown in FIG.
35
.
FIG. 37
is a plan view of a portion of a racquet according to a preferred embodiment of the invention.
FIG. 38
is a view looking at the interior surface of the racquet portion shown in FIG.
37
.
FIG. 39
is a plan view of a racquet frame portion according to an alternate embodiment of the invention, wherein the undulation length, height, and frequency are altered within a single racquet portion.
FIG. 40
is a view of the racquet portion shown in
FIG. 39
, looking at the interior surface of the racquet frame.
FIG. 41
is a plan view of a portion of a racquet with undulations in the handle region.
FIG. 42
is a block diagram of an exemplary racquet molding process according to the invention.
FIG. 43
is a plan view of a shafted racquet frame incorporating the invention.
FIG. 44
is a plan view of a second shafted racquet frame incorporating the invention, the frame having a throat piece.
FIG. 45
is a plan view of a nonshafted racquet frame incorporating the invention.
DETAILED DESCRIPTION OF THE INVENTION
A sports racquet, shown generally at
100
in
FIG. 1
, includes a frame
102
and a handle
104
coupled to the frame
102
. The racquet frame
102
includes a throat portion
106
and a head portion
108
. The head portion
108
is peripheral to the hitting area
110
in which a string bed (not shown) is installed for hitting a ball (not shown). The racquet
100
can have many different shapes, with the shape depending upon the sport for which the racquet is used. For example, the racquet
100
shown in
FIG. 1
would generally be intended for racquetball. A tennis racquet or badminton racquet may have a shaft (not shown) connecting the handle to the frame, and such a racquet may also have a differently shaped head
108
.
As shown in
FIG. 3
, the outer side
114
of the racquet frame
102
includes a channel
115
located generally in the center of the outer side
114
. The channel
115
is used for the placement of the strings used in the string bed that is connected to the racquet frame
102
. A plastic retaining piece (not shown) may be inserted into the channel
115
to protect the strings and to prevent the strings from abrading and breaking over time.
As can be seen in
FIGS. 2 and 3
according to the prior art, a racquet
100
often develops creases, wrinkles or bunches
120
of fibrous plies of material along the inner side
112
of the racquet frame
102
during manufacture. This is due to the distance along the inside of the racquet frame
102
being less than the distance on the outside of the frame
102
, resulting in some excess material on the inside of the frame. The excess material collects in certain regions, forming ceases or wrinkles
120
along the inside side
112
of the frame
102
. This material can even collect along the upper or lower sides
116
or
118
which connect the inner side
112
to the outer side
114
. Some regions of the racquet frame
102
will develop creases or wrinkles
120
while other regions will not. It is difficult to predict where the creases or wrinkles
120
will occur. These ceases or wrinkles
120
may or may not correspond to the holes
124
through which the strings are connected to the frame
102
, and the creases or wrinkles may or may not be evenly spaced through the frame
102
. In general, the greater degree of curvature, the greater the number and severity of creases or wrinkles will occur.
FIG. 4
shows a cross section of a prior art racquet taken at a point where wrinkles or creases have not accumulated. This is the desired condition throughout the frame, but does not occur uniformly in prior art racquets.
As shown in
FIGS. 5-8
, the occurrence of creases, wrinkles or bunches is reduced or minimized through the molding of undulations
130
into the inner side
112
of the racquet frame
102
.
FIG. 5
shows a plan view of a portion of the racquet frame
102
. For the purposes of this discussion, the undulations
130
are measured by their distance from a reference line
140
that runs through the racquet frame
102
. Each of the undulations
130
has an undulation peak
132
and an undulation valley
134
. In the illustrated embodiment, the undulation peaks
132
and undulation valleys
134
relative to the reference line
140
alternate in the racquet frame
102
. Upper and lower sides
116
and
118
connect the inner and outer sides
112
and
114
to each other. The presence of undulations
130
add to the surface length along interior center line
133
(FIG.
5
), making it more similar in length to exterior center line
135
than would otherwise exist.
As shown in
FIG. 8
, the holes
124
through which the racquet strings are threaded can align with the undulations
130
. For example, in
FIG. 8
each of the holes
124
line up with a respective undulation peak
132
of the racquet frame
102
. It is also possible, however, for the holes to line up with the undulation valleys
134
or not to line up exactly with either the undulation peaks or valleys
132
or
134
.
In the embodiment shown in
FIGS. 5-8
, the difference in height between undulation peaks
132
the undulation valleys
134
of the racquet frame
102
is fairly modest. This design element can be adjusted, however, to make for a greater difference between the undulation peaks and valleys
132
and
134
respectively. Furthermore, the distance between consecutive peaks or valleys in the undulations can also be adjusted in the design. For example, in
FIG. 5
the lateral distance between undulation peaks
132
is of a set amount that can either be shortened or extended. It is also possible for the distance between consecutive undulation peaks
132
to be irregular.
Preferably, in order to reduce unintended creasing, bunching or wrinkling in the racquet, undulations
130
are molded into the racquet
100
at those locations where there is a substantial amount of curvature in the frame
102
. For example, that portion of the frame
102
located in a particular quadrant of the racquet
100
would have at least one and a half undulations
130
in that quadrant, with an undulation defined as that portion of the racquet from one undulation peak
132
to the next undulation peak
132
. For this purpose, “quadrant” is defined as any portion of the frame member that subtends an arc of ninety degrees relative to the center of the racquet frame
102
.
FIGS. 9-12
show an alternative embodiment of the invention, wherein the undulations are much longer than the undulations in the embodiment shown in FIG.
5
. By comparing
FIGS. 5-8
with
FIGS. 9-12
, it is apparent that it is possible to adjust the undulation length while keeping the height of the undulation peaks and valleys
132
and
134
relative to the reference line
140
at the same distance or vice versa.
FIGS. 13-24
show other embodiments of the invention. These embodiments represent a number of different ways in which the undulation height or undulation length can be varied in order to change the contours of the frame.
FIGS. 25-36
show several different embodiments of the invention showing the many different varieties of racquet frames
102
that can be formed using different types of undulations. For example, the undulations
130
in
FIG. 26
extend across the inner side
112
from the upper side
116
to the lower side
118
of the racquet frame
102
. As shown in
FIG. 28
, however, the undulations
130
do not have to extend from the upper side
116
to the lower side
118
. This makes the undulations
130
appear more like dimples in the racquet frame
102
. Furthermore, as shown in
FIG. 28
, it is also possible to have undulations or dimples
130
of varying depths relative to the reference line
140
of racquet frame
102
. For example in
FIGS. 27-28
the deepest portions
144
of the undulations
130
are substantially equidistant from the upper and lower sides
116
and
118
. Outside of the deepest point
144
is a secondary region
142
that is more shallow than the deepest point
144
but still deeper than regions outside of the undulations
130
.
As shown in another embodiment of the invention in
FIGS. 29 and 30
, it is also possible to have undulations
130
of varying widths. For example, in
FIG. 30
the distance from the left edge
150
of the undulation
130
to the right edge
152
of the undulation
130
varies from the upper side
116
to the lower side
118
of the frame. This is in contrast to the frame shown in
FIGS. 33 and 34
where each undulation
130
has a substantially constant width. A particularly preferred embodiment of the invention is shown in
FIGS. 37 and 38
. The “dimple” embodiments shown in
FIGS. 27-32
and
37
-
38
take into account that as one proceeds downwardly or upwardly from the string bed plane, many frame member cross sections will have a tendency to curve away. As one proceeds to the topmost or bottommost sides
116
or
118
, therefore, the side length increases, becoming more like the external side length
114
of the frame member. The amount of undulation or dimpling therefore may need to be less to obtain the same amount of wrinkle or crease correction.
It is also possible for the undulations
130
to have other shapes. For example in
FIG. 32
the undulations
130
are more oval in shape and run substantially parallel to the upper and lower sides
116
and
118
respectively. Using these types of undulations
130
it is possible to have the holes
124
for the string bed located within the undulations
130
. Furthermore, as shown in
FIGS. 33 and 34
it is possible to have some holes
124
located in the undulations
130
while other holes
124
located outside of the undulations
130
.
In addition to the foregoing, it is possible to have many different types of undulation orientations in the same racquet
100
while still practicing the invention. For example, it is possible to alter the undulation length or undulation height. Furthermore, it is also possible to have undulations
130
of various shapes. Additionally any of these variables could be altered depending upon particular concerns such as the curvature at a particular point of the racquet head
108
. For example, in
FIG. 1
the head portion
108
substantially opposite the handle
104
has very little curvature and may not require many undulations
130
in order to reduce or minimize any undesired creasing, wrinkling or bunching of material. The left and right sides or “corners” of the racquet head
108
are much more curved, however, potentially requiring more undulations
130
in order to reduce creasing, bunching and wrinkling in those regions and the throat portion if desired.
It is also possible to use different types and styles of undulations
130
in the same racquet. For example, it may be desirable to have oval shaped undulations
130
, as shown in
FIG. 32
, in some portions of the frame
102
while having more uniformly shaped undulations
130
, as shown in
FIG. 26
, in other regions. Also, it may be desirable to have the undulations taper to different degrees, either from racquet to racquet or in the same racquet itself. As shown in detail in
FIGS. 39 and 40
, it is even possible to alter each of these variables in a single racquet portion.
Although it is often desirable to have undulations
130
formed on the inner side
112
of the head portion
106
of the frame
102
, it is possible to include undulations
130
on other portions of the racquet
100
, so long as that particular portion of the racquet curves around a particular center point. For example, the portion
160
of the racquet that connects the frame
102
to the handle
104
curves about a center point
162
that is located outside of the racquet
100
, as shown in FIG.
41
. With the portion
160
curving about the exterior center point
162
, any bunching or wrinkling that occurs is likely to be more pronounced on the outer portion
114
of the racquet
100
than on the inner portion
112
. It is therefore possible to include undulations
130
on the outer portion
114
of the racquet
100
in this case. As is the case with undulations
130
located in other regions of the racquet
100
, the undulation height, length, frequency, and other variables can also be modified in light of certain manufacturing and performance considerations.
The present invention has application to both shafted and nonshafted sports racquets.
FIGS. 43 and 44
are plan views of shafted sports racquets, of the kind which may be used in tennis, squash or badminton. In racquet
320
shown in
FIG. 43
, undulations
322
are formed substantially throughout the entire inner surface
324
of the frame
325
, while a few undulations
326
are formed on an outer surface
328
of the frame in the region of frame
325
's curved junction with shaft
330
. Because there are no relatively sharp “corners” in a head portion of frame
325
, the undulations
322
are more evenly distributed to more evenly provide their function of increasing the length of the frame
325
's interior surface.
In
FIG. 44
, a shafted racquet
332
has a throat piece
334
.
Undulations
336
are formed in the interior surface of the throat piece
334
to reduce creasing or wrinkling in that area. Undulations
322
and
326
are employed elsewhere as in racquet
320
.
FIG. 45
shows a nonshafted racquet
340
having undulations
342
distributed throughout the circumference of the internal surface of its frame
344
.
It is possible for the racquet frame
102
to be made of several different materials. In a preferred embodiment of the invention, a material such as keviar, boron, carbon, fiberglass, aramid, metal fibers, ceramics or graphite may be especially useful, not only for improving the overall functionality of the racquet but also for forming the undulations during the manufacturing process. It is possible, however, for other materials such as aluminum to be used while still taking advantage of the wrinkle-reducing undulation concept.
Composite sports racquets according to the invention may be manufactured according to the following exemplary process as described in FIG.
42
. An elongate, flexible mandrel is first inserted into a similarly elongate and flexible, relatively gas-impermeable and heat-resistant bag made from materials known in the art, shown at
200
. Several laminations of material are added to the outside of the bag surface at
202
. These pieces of material may and usually do differ one from another in size, shape, composition and fiber orientation. Preferably, they are preimpregnated with resin.
Once the material has been wrapped to the bag surface, the mandrel is removed from an open end of the bag, shown at
204
. The bag, including the laminations of material (collectively known as a “layup”), is bent into a shape that approximates the future frame member, shown at
206
, and is inserted into one-half of a mold, shown at
208
. It is this bending step that creates the wrinkles or bunching in the material. But in the present invention, and unlike in prior processes, the mold is constructed to have undulations in its surface which are the negative of the undulations to be formed in the surface of the frame member. The bag is sealed at one end at step
210
. An upper half of the mold is fixed to the lower half of the mold to enclose the layup, shown at
212
.
A source of pressurized gas is used to inflate the bag to a high pressure such as 100 to 300 pounds per square inch, as shown in
214
. This forces the laminations of material against the mold walls. The laminations of the material will be forced against the mold undulations (at those locations where undulations are to be formed), and in being forced to this position many of the wrinkles in the laminations will diminish or disappear. The closed and inflated mold is then subjected to heat sufficient to cause the impregnated resin to flow, bonding the laminated materials together and forming the frame member, shown at
216
. After cooling the mold, shown at
218
, the member is removed and finished by removing flash, painting, etc, shown at
220
.
Other manufacturing processes may be used to obtain the same result, i.e., undulations formed on an inner side of one or more curved portions of the frame. For example, instead of inflation, the mold sides may be displaced inwardly from an initial outward position by springs to impress the undulations into the layup. The laminations of the layup may be drawn outwardly to conform to the mold's negative undulations by applying a partial vacuum to the mold. A layup with a bag may be used in which the bag holds ammonia, with heating of the mold causing the ammonia to expand the bag. Foam may be used as a bag expansion agent. Finally, similar techniques can be employed without a bag.
While preferred embodiments have been shown and described, it is understood that changes and modifications can be made to the invention without departing from the invention's broader aspects. For example, the undulation length, undulation height, undulation shape and undulation frequency can be altered in numerous respects while still taking advantage of the inventions broader aspects. Also of note is the fact that the undulations can be placed at virtually any location on one side of the frame. Thus it is apparent that alternative embodiments are available to those of skill in the art therefore the present invention is not limited to the described and illustrated embodiment, but only by the scope and spirit of the independent and dependent claims.
Claims
- 1. A sports racquet, comprising:a handle; a frame formed from a fibrous material and coupled to the handle, the frame disposed peripherally of a string bed having: an inner portion of the frame disposed proximate to the string bed and an outer portion located substantially opposite the inner portion to be remote from the string bed, the inner portion of the frame including a plurality of undulations that extend towards and away from the string bed, no corresponding undulations being formed on the outer portion of the frame.
- 2. The sports racquet of claim 1, wherein the frame is a composite.
- 3. The sports racquet of claim 1, wherein the undulations are spaced substantially equidistantly from each other along the inner portion of the frame.
- 4. The sports racquet of claim 1, wherein the undulations are included substantially in the head portion of the frame.
- 5. The sports racquet of claim 1, wherein the racquet is a shafted racquet.
- 6. The sports racquet of claim 3, wherein the maximum distance between the inner and outer portions of the frame at one cross-section is of substantially the same magnitude at corresponding points in each undulation.
- 7. The sports racquet of claim 1, wherein the maximum distance between the inner and outer portions at a specific cross-section varies between adjacent undulations.
- 8. The sports racquet of claim 1, wherein the minimum distance between the inner and outer portions of a specific cross-section varies between adjacent undulations.
- 9. The sports racquet of claim 1, wherein a distance between the maximum and minimum distances between the inner and outer portions at a specific cross-section varies between adjacent undulations.
- 10. A racquet, comprising:a frame formed from a fibrous material and having an interior surface and an exterior surface; and a string bed residing substantially in a plane; wherein the frame intersects the string bed plane at an exterior locus and an interior locus, the exterior locus forming a smooth arc shape, and wherein the interior locus defines a plurality of undulations such that an interior linear distance formed at the intersection of the inner surface and the plane is more similar to an exterior linear distance formed at the intersection of the exterior surface and the plane than would be the case without the undulations being present.
- 11. The racquet of claim 10, wherein the interior locus defines a plurality of evenly spaced undulations through the inner surface of the frame.
- 12. The racquet of claim 11 wherein the radius of curvature of one undulation is substantially identical to the radius of curvature of each other undulation.
- 13. A racquet comprising:a handle; an endless frame of a fibrous material coupled to the handle and formed around a center, the frame divided into four quadrants each subtending an arc of ninety degrees as measured from the center, wherein at least one quadrant of the frame comprises at least one and one-half undulations on an inside surface of the frame, no corresponding undulations being formed on an outside surface of the frame quadrant opposite the undulations on the inside surface.
- 14. The sports racquet of claim 1, wherein the outer portion of the frame adjacent the handle includes a plurality of undulations that extend towards and away from the string bed, no corresponding undulations being formed on the inner portion of the frame.
US Referenced Citations (52)
Foreign Referenced Citations (6)
Number |
Date |
Country |
538523 |
Apr 1993 |
EP |
2056863 |
Feb 1981 |
GB |
2262892 |
Jul 1983 |
GB |
2198959 |
Jun 1988 |
GB |
2203653 |
Oct 1988 |
GB |
9400203 |
Jan 1994 |
WO |