Sports racket with undulations in frame interior surface

Information

  • Patent Grant
  • 6958104
  • Patent Number
    6,958,104
  • Date Filed
    Tuesday, August 20, 2002
    22 years ago
  • Date Issued
    Tuesday, October 25, 2005
    19 years ago
Abstract
A sports racquet comprises a handle and a frame coupled to the handle. The frame includes an inner portion and an outer portion located substantially opposite the inner portion. The inner portion of the frame include a plurality of undulations that extend towards and away from a ball-hitting surface, the undulations reducing the unintended bunching and wrinkling of material that intermittently forms in the frame during the manufacturing process. The undulations can be varied by location, undulation length, undulation height, and frequency and can be used in racquets made from a variety of materials and methods.
Description
TECHNICAL FIELD

This invention relates generally to sports racquets. More particularly, this invention relates to a sports racquet with undulations in the interior surface of the frame for increasing the overall strength, durability and stiffness of the racquet.


BACKGROUND OF THE INVENTION

Racquets for sports such as tennis, racquetball, squash and badminton are well known in the art and by the public. Many currently existing racquets include a tubular frame made of a composite or other material which surrounds a string bed, with the string bed serving as the hitting surface for the racquet.


Although such racquets have many beneficial qualities, they also have drawbacks which this invention addresses. In the regions of the racquet frame in which the frame has a high degree of curvature, the material that exists on the outside of the frame will cover a greater distance than the material on the opposite or the inside of the frame. This can be seen in FIG. 1, wherein a standard racquetball racquet the length of the inner side of the racquet frame is significantly less than the length of the outer side of the racquet frame. This difference is most pronounced where the curvature of the racquet fame is the greatest. This difference in surface length causes the material on the inside of the frame to bunch or crease. This bunching or creasing, which is the unintended and random result of the manufacturing process, will cause wrinkles to form in materials on the inside of the frame, creating areas of weakness and undesired flexibility, as well as inconsistencies in strength and stiffness, in the frame. The creases, wrinkles or bunching that occurs in the inner side of the racquet can be seen in prior art FIGS. 2–3, which show a frame made out of laminations of fibrous material in a resin matrix, per conventional manufacture. As shown in these figures, creases, bunches or wrinkles 120 in the inner side 112 of a racquet frame 102 occur intermittently, causing various weak portions in the racquet frame. The resulting weaknesses, undesired flexibility, and inconsistencies in strength and stiffness, can affect the overall performance of the racquet and can also lead to a cracking or breaking of the racquet frame.


Therefore, it is desirable to develop a racquet frame that reduces or minimizes the incidence of bunches, creases and wrinkles formed on the inside of the racquet frame and proximate areas of curvature of the frame.


SUMMARY OF THE INVENTION

The invention provides for a sports racquet (such as ones used in squash, racquetball, badminton and tennis) including a handle and an elongated frame coupled to the handle. The frame includes a head portion, sometimes a shaft portion, and a throat portion, with the throat portion connecting the head portion to the shaft or handle. An inner side includes a plurality of undulations formed into the racquet that result in a varying frame cross section at different portions along the racquet frame, while not having corresponding undulations on the outer side. These undulations result in a longer inner side surface length, making the linear distance on the inner side of the frame more similar to the linear distance on the outer side of the frame for a particular frame segment. The undulations can be used continuously or intermittently inside the frame. A different number and variety of undulations can also be used. The undulations may be varied in frequency, height, length, depth, and shape. The present invention has application to racquets formed from any of a variety of materials including composites and metals.


It is therefore an advantage of the invention to provide a sports racquet that is formed so as to reduce or minimize the number of areas of weakness, undesired flexibility and inconsistencies in strength on the racquet frame.


It is as yet another advantage of the present invention to provide a sports racquet that has an increased overall strength in the racquet frame.


It is still another advantage of the present invention to provide a sports racquet that has a predictable level of strength and stiffness in the frame.


It is yet another advantage of the invention to provide a sports racquet wherein the frame has a more consistent weight and balance.


It is finally another advantage of the invention to provide a sports racquet that has an increased level of durability for a given amount of material and weight in the racquet frame.


Further advantages and features of the present invention will be apparent from the foregoing specification and claims once considered in connection with the accompanying drawings illustrating the preferred embodiment of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a racquetball racquet according to the prior art.



FIG. 2 is a sectional side view of a portion of a sports racquet frame according to the prior art.



FIG. 3 is a side view of a cross section of the racquet frame taken substantially along line 33 of FIG. 2.



FIG. 4 is a side view of a cross section of the racquet taken substantially along line 44 of FIG. 2.



FIG. 5 is a plan view of a portion of a racquet frame according to one embodiment of the invention.



FIG. 6 is a cross-sectional view of the racquet taken substantially along line 66 of FIG. 5.



FIG. 7 is a cross-sectional view of the racquet taken substantially along line 77 of FIG. 5.



FIG. 8 is a view of a top portion of the racquet of FIG. 5, looking outward from the center of the frame.



FIG. 9 is a plan view of a portion of a racquet frame according to another embodiment of the invention.



FIG. 10 is a cross-sectional view of the racquet taken substantially along line 1010 of FIG. 9.



FIG. 11 is a cross-sectional view of the racquet taken substantially along line 1111 of FIG. 9.



FIG. 12 is a view of the racquet of FIG. 9, looking outward from the center of the frame.



FIG. 13 is a plan view of a portion of a racquet according to another embodiment of the invention.



FIG. 14 is a cross-sectional view taken substantially along line 1414 of FIG. 13.



FIG. 15 is a cross-sectional side view taken substantially along line 1515 of FIG. 13.



FIG. 16 is a view of the racquet of FIG. 13, looking outward from the center of the frame.



FIG. 17 is a plan view of a portion of a racquet according to another embodiment of invention.



FIG. 18 is a cross-sectional view taken substantially alone line 1818 of FIG. 17.



FIG. 19 is a cross-sectional view taken substantially along line 1919 of FIG. 17.



FIG. 20 is a view of the racquet of FIG. 17, looking outward from the center of the frame.



FIG. 21 is a plan view of a portion of a racquet according to yet another embodiment of the invention.



FIG. 22 is a cross-sectional view taken substantially along line 2222 of FIG. 21.



FIG. 23 is a cross-sectional view taken substantially along line 2323 of FIG. 21.



FIG. 24 is a view of the racquet of FIG. 21, looking outward from the center of the frame.



FIG. 25 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 26 is a view looking at the interior surface of the racquet portion shown in FIG. 25.



FIG. 27 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 28 is a view looking at the interior surface of the racquet portion shown in FIG. 27.



FIG. 29 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 30 is a view looking at the interior surface of the racquet portion shown in FIG. 29.



FIG. 31 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 32 is a view looking at the interior surface of the racquet portion shown in FIG. 31.



FIG. 33 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 34 is a view looking at the interior surface of the racquet portion shown in FIG. 33.



FIG. 35 is a plan view of a portion of a racquet frame according to still another embodiment of the invention.



FIG. 36 is a view looking at the interior surface of the racquet portion shown in FIG. 35.



FIG. 37 is a plan view of a portion of a racquet according to a preferred embodiment of the invention.



FIG. 38 is a view looking at the interior surface of the racquet portion shown in FIG. 37.



FIG. 39 is a plan view of a racquet frame portion according to an alternate embodiment of the invention, wherein the undulation length, height, and frequency are altered within a single racquet portion.



FIG. 40 is a view of the racquet portion shown in FIG. 39, looking at the interior surface of the racquet frame.



FIG. 41 is a plan view of a portion of a racquet with undulations in the handle region.



FIG. 42 is a block diagram of an exemplary racquet molding process according to the invention.



FIG. 43 is a plan view of a shafted racquet frame incorporating the invention.



FIG. 44 is a plan view of a second shafted racquet frame incorporating the invention, the frame having a throat piece.



FIG. 45 is a plan view of a nonshafted racquet frame incorporating the invention.





DETAILED DESCRIPTION OF THE INVENTION

A sports racquet, shown generally at 100 in FIG. 1, includes a frame 102 and a handle 104 coupled to the frame 102. The racquet frame 102 includes a throat portion 106 and a head portion 108. The head portion 108 is peripheral to the hitting area 110 in which a string bed (not shown) is installed for hitting a ball (not shown). The racquet 100 can have many different shapes, with the shape depending upon the sport for which the racquet is used. For example, the racquet 100 shown in FIG. 1 would generally be intended for racquetball. A tennis racquet or badminton racquet may have a shaft (not shown) connecting the handle to the frame, and such a racquet may also have a differently shaped head 108.


As shown in FIG. 3, the outer side 114 of the racquet frame 102 includes a channel 115 located generally in the center of the outer side 114. The channel 115 is used for the placement of the strings used in the string bed that is connected to the racquet frame 102. A plastic retaining piece (not shown) may be inserted into the channel 115 to protect the strings and to prevent the strings from abrading and breaking over time.


As can be seen in FIGS. 2 and 3 according to the prior art, a racquet 100 often develops creases, wrinkles or bunches 120 of fibrous plies of material along the inner side 112 of the racquet frame 102 during manufacture. This is due to the distance along the inside of the racquet frame 102 being less than the distance on the outside of the frame 102, resulting in some excess material on the inside of the frame. The excess material collects in certain regions, forming creases or wrinkles 120 along the inside side 112 of the frame 102. This material can even collect along the upper or lower sides 116 or 118 which connect the inner side 112 to the outer side 114. Some regions of the racquet frame 102 will develop creases or wrinkles 120 while other regions will not. It is difficult to predict where the creases or wrinkles 120 will occur. These creases or wrinkles 120 may or may not correspond to the holes 124 through which the strings are connected to the frame 102, and the creases or wrinkles may or may not be evenly spaced through the frame 102. In general, the greater degree of curvature, the greater the number and severity of creases or wrinkles will occur. FIG. 4 shows a cross section of a prior art racquet taken at a point where wrinkles or creases have not accumulated. This is the desired condition throughout the frame, but does not occur uniformly in prior art racquets.


As shown in FIGS. 5–8, the occurrence of creases, wrinkles or bunches is reduced or minimized through the molding of undulations 130 into the inner side 112 of the racquet frame 102. FIG. 5 shows a plan view of a portion of the racquet frame 102 without corresponding undulations on the outer side 114. For the purposes of this discussion, the undulations 130 are measured by their distance from a reference line 140 that runs through the racquet frame 102. Each of the undulations 130 has an undulation peak 132 and an undulation valley 134. In the illustrated embodiment, the undulation peaks 132 and undulation valleys 134 relative to the reference line 140 alternate in the racquet frame 102. Upper and lower sides 116 and 118 connect the inner and outer sides 112 and 114 to each other. The presence of undulations 130 add to the surface length along interior center line 133 (FIG. 5), making it more similar in length to exterior center line 135 than would otherwise exist.


As shown in FIG. 8, the holes 124 through which the racquet strings are threaded can align with the undulations 130. For example, in FIG. 8 each of the holes 124 line up with a respective undulation peak 132 of the racquet frame 102. It is also possible, however, for the holes to line up with the undulation valleys 134 or not to line up exactly with either the undulation peaks or valleys 132 or 134.


In the embodiment shown in FIGS. 5–8, the difference in height between undulation peaks 132 and the undulation valleys 134 of the racquet frame 102 is fairly modest. This design element can be adjusted, however, to make for a greater difference between the undulation peaks and valleys 132 and 134 respectively. Furthermore, the distance between consecutive peaks or valleys in the undulations can also be adjusted in the design. For example, in FIG. 5 the lateral distance between undulation peaks 132 is of a set amount that can either be shortened or extended. It is also possible for the distance between consecutive undulation peaks 132 to be irregular.


Preferably, in order to reduce unintended creasing, bunching or wrinkling in the racquet, undulations 130 are molded into the racquet 100 at those locations where there is a substantial amount of curvature in the frame 102. For example, that portion of the frame 102 located in a particular quadrant of the racquet 100 would have at least one and a half undulations 130 in that quadrant, with an undulation defined as that portion of the racquet from one undulation peak 132 to the next undulation peak 132. For this purpose, “quadrant” is defined as any portion of the frame member that subtends an arc of ninety degrees relative to the center of the racquet frame 102.



FIGS. 9–12 show an alternative embodiment of the invention, wherein the undulations are much longer than the undulations in the embodiment shown in FIG. 5. By comparing FIGS. 5–8 with FIGS. 9–12, it is apparent that it is possible to adjust the undulation length while keeping the height of the undulation peaks and valleys 132 and 134 relative to the reference line 140 at the same distance or vice versa.



FIGS. 13–24 show other embodiments of the invention. These embodiments represent a number of different ways in which the undulation height or undulation length can be varied in order to change the contours of the frame.



FIGS. 25–36 show several different embodiments of the invention showing the many different varieties of racquet frames 102 that can be formed using different types of undulations. For example, the undulations 130 in FIG. 26 extend across the inner side 112 from the upper side 116 to the lower side 118 of the racquet frame 102. As shown in FIG. 28, however, the undulations 130 do not have to extend from the upper side 116 to the lower side 118. This makes the undulations 130 appear more like dimples in the racquet frame 102. Furthermore, as shown in FIG. 28, it is also possible to have undulations or dimples 130 of varying depths relative to the reference line 140 of racquet frame 102. For example in FIGS. 27-28 the deepest portions 144 of the undulations 130 are substantially equidistant from the upper and lower sides 116 and 118. Outside of the deepest point 144 is a secondary region 142 that is more shallow than the deepest point 144 but still deeper than regions outside of the undulations 130.


As shown in another embodiment of the invention in FIGS. 29 and 30, it is also possible to have undulations 130 of varying widths. For example, in FIG. 30 the distance from the left edge 150 of the undulation 130 to the right edge 152 of the undulation 130 varies from the upper side 116 to the lower side 118 of the frame. This is in contrast to the frame shown in FIGS. 33 and 34 where each undulation 130 has a substantially constant width. A particularly preferred embodiment of the invention is shown in FIGS. 37 and 38. The “dimple” embodiments shown in FIGS. 27–32 and 3738 take into account that as one proceeds downwardly or upwardly from the string bed plane, many frame member cross sections will have a tendency to curve away. As one proceeds to the topmost or bottommost sides 116 or 118, therefore, the side length increases, becoming more like the external side length 114 of the frame member. The amount of undulation or dimpling therefore may need to be less to obtain the same amount of wrinkle or crease correction.


It is also possible for the undulations 130 to have other shapes. For example in FIG. 32 the undulations 130 are more oval in shape and run substantially parallel to the upper and lower sides 116 and 118 respectively. Using these types of undulations 130 it is possible to have the holes 124 for the string bed located within the undulations 130. Furthermore, as shown in FIGS. 33 and 34 it is possible to have some holes 124 located in the undulations 130 while other holes 124 located outside of the undulations 130.


In addition to the foregoing, it is possible to have many different types of undulation orientations in the same racquet 100 while still practicing the invention. For example, it is possible to alter the undulation length or undulation height. Furthermore, it is also possible to have undulations 130 of various shapes. Additionally any of these variables could be altered depending upon particular concerns such as the curvature at a particular point of the racquet head 108. For example, in FIG. 1 the head portion 108 substantially opposite the handle 104 has very little curvature and may not require many undulations 130 in order to reduce or minimize any undesired creasing, wrinkling or bunching of material. The left and right sides or “corners” of the racquet head 108 are much more curved, however, potentially requiring more undulations 130 in order to reduce creasing, bunching and wrinkling in those regions and the throat portion if desired.


It is also possible to use different types and styles of undulations 130 in the same racquet. For example, it may be desirable to have oval shaped undulations 130, as shown in FIG. 32, in some portions of the frame 102 while having more uniformly shaped undulations 130, as shown in FIG. 26, in other regions. Also, it may be desirable to have the undulations taper to different degrees, either from racquet to racquet or in the same racquet itself. As shown in detail in FIGS. 39 and 40, it is even possible to alter each of these variables in a single racquet portion.


Although it is often desirable to have undulations 130 formed on the inner side 112 of the head portion 106 of the frame 102, it is possible to include undulations 130 on other portions of the racquet 100, so long as that particular portion of the racquet curves around a particular center point. For example, the portion 160 of the racquet that connects the frame 102 to the handle 104 curves about a center point 162 that is located outside of the racquet 100, as shown in FIG. 41. With the portion 160 curving about the exterior center point 162, any bunching or wrinkling that occurs is likely to be more pronounced on the outer portion 114 of the racquet 100 than on the inner portion 112. It is therefore possible to include undulations 130 on the outer portion 114 of the racquet 100 instead of the inner portion in this case. As is the case with undulations 130 located in other regions of the racquet 100, the undulation height, length, frequency, and other variables can also be modified in light of certain manufacturing and performance considerations.


The present invention has application to both shafted and nonshafted sports racquets. FIGS. 43 and 44 are plan views of shafted sports racquets, of the kind which may be used in tennis, squash or badminton. In racquet 320 shown in FIG. 43, undulations 322 are formed substantially throughout the entire inner surface 324 of the frame 325, while a few undulations 326 are formed on an outer surface 328 of the frame in the region of frame 325's curved junction with shaft 330. Because there are no relatively sharp “corners” in a head portion of frame 325, the undulations 322 are more evenly distributed to more evenly provide their function of increasing the length of the frame 325's interior surface.


In FIG. 44, a shafted racquet 332 has a throat piece 334. Undulations 336 are formed in the interior surface of the throat piece 334 to reduce creasing or wrinkling in that area. Undulations 322 and 326 are employed elsewhere as in racquet 320.



FIG. 45 shows a nonshafted racquet 340 having undulations 342 distributed throughout the circumference of the internal surface of its frame 344.


It is possible for the racquet frame 102 to be made of several different materials. In a preferred embodiment of the invention, a material such as kevlar, boron, carbon, fiberglass, aramid, metal fibers, ceramics or graphite may be especially useful, not only for improving the overall functionality of the racquet but also for forming the undulations during the manufacturing process. It is possible, however, for other materials such as aluminum to be used while still taking advantage of the wrinkle-reducing undulation concept.


Composite sports racquets according to the invention may be manufactured according to the following exemplary process as described in FIG. 42. An elongate, flexible mandrel is first inserted into a similarly elongate and flexible, relatively gas-impermeable and heat-resistant bag made from materials known in the art, shown at 200. Several laminations of material are added to the outside of the bag surface at 202. These pieces of material may and usually do differ one from another in size, shape, composition and fiber orientation. Preferably, they are preimpregnated with resin.


Once the material has been wrapped to the bag surface, the mandrel is removed from an open end of the bag, shown at 204. The bag, including the laminations of material (collectively known as a “layup”), is bent into a shape that approximates the future frame member, shown at 206, and is inserted into one-half of a mold, shown at 208. It is this bending step that creates the wrinkles or bunching in the material. But in the present invention, and unlike in prior processes, the mold is constructed to have undulations in its surface which are negative of the undulations to be formed in the surface of the frame member. The bag is sealed at one end at step 210. An upper half of the mold is fixed to the lower half of the mold to enclose the layup, shown at 212.


A source of pressurized gas is used to inflate the bag to a high pressure such as 100 to 300 pounds per square inch, as shown in 214. This forces the laminations of material against the mold walls. The laminations of the material will be forced against the mold undulations (at those locations where undulations are to be formed), and in being forced to this position many of the wrinkles in the laminations will diminish or disappear. The closed and inflated mold is then subjected to heat sufficient to cause the impregnated resin to flow, bonding the laminated materials together and forming the frame member, shown at 216. After cooling the mold, shown at 218, the member is removed and finished by removing flash, painting, etc. shown at 220.


Other manufacturing processes may be used to obtain the same result, i.e., undulations formed on an inner side of one or more curved portions of the frame. For example, instead of inflation, the mold sides may be displaced inwardly from an initial outward position by springs to impress the undulations into the layup. The laminations of the layup may be drawn outwardly to conform to the mold's negative undulations by applying a partial vacuum to the mold. A layup with a bag may be used in which the bag holds ammonia, with heating of the mold causing the ammonia to expand the bag. Foam may be used as a bag expansion agent. Finally, similar techniques can be employed without a bag.


While preferred embodiments have been shown and described, it is understood that changes and modifications can be made to the invention without departing from the invention's broader aspects. For example, the undulation length, undulation height, undulation shape and undulation frequency can be altered in numerous respects while still taking advantage of the inventions broader aspects. Also of note is the fact that the undulations can be placed at virtually any location on one side of the frame. Thus it is apparent that alternative embodiments are available to those of skill in the art therefore the present invention is not limited to the described and illustrated embodiment, but only by the scope and spirit of the independent and dependent claims.

Claims
  • 1. A method for forming a tubular racquet frame from laminations of composite material, comprising the steps of: providing a frame mold having an elongated cavity with at least one curve or bend, a segment of the cavity at the curve or bend having a radially interior linear distance proximate a center of curvature therefor and a radially exterior linear distance remote from the center of curvature;forming undulations in the radially interior linear distance so that the surface area of an inner face of the mold cavity adjacent the radially interior linear distance more closely matches a surface area of an outer face of the mold cavity adjacent the radially exterior linear distance;forming a hollow tube of a plurality of laminations of flat, flexible material;placing the tube in the mold cavity; andconforming the tube to the inner face of the mold cavity as well as the outer face of the mold cavity such that the increase in surface area of the inner face caused by the presence of undulations in the interior linear distance of the mold cavity will reduce wrinkling in the laminations in the material which otherwise would be caused by a mismatch in the surface area of the inner and outer faces of the cavity at the curve or bend.
  • 2. The method of claim 1, wherein said step of conforming comprises the step of inflating a bladder inside of the tube so as to conform the laminations to the inner and outer faces of the cavity.
  • 3. The method of claim 1, and further comprising the step of impregnating the laminations with a resin.
  • 4. The method of claim 1, and further comprising, after said step of conforming, the step of applying heat to the tube in the mold to form the frame.
CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional application of application Ser. No. 09/552,342, filed Apr. 18, 2000, now U.S. Pat. No. 6,447,412.

US Referenced Citations (56)
Number Name Date Kind
1422993 Larned Jul 1922 A
1451836 Larned Apr 1923 A
1539019 Nikonow May 1925 A
1541828 Larned May 1925 A
1588139 Penney Jun 1926 A
1750727 Norton Mar 1930 A
2282195 Compte May 1942 A
2626804 Robinson Jan 1953 A
3086777 LaCoste Apr 1963 A
3265401 Spier Aug 1966 A
3568290 Carlton Mar 1971 A
3647211 Doessel et al. Mar 1972 A
3727295 Gildemeister Apr 1973 A
3810620 Decker, III et al. May 1974 A
3814423 Shockley et al. Jun 1974 A
3833219 Dean Sep 1974 A
3912268 Robinson Oct 1975 A
3947029 Gallagher Mar 1976 A
3949988 Staufer Apr 1976 A
3986716 Taussig et al. Oct 1976 A
3993308 Jenks Nov 1976 A
4005862 Portz et al. Feb 1977 A
4061520 Cecka et al. Dec 1977 A
4066260 Rodgers, Jr. Jan 1978 A
4102533 Ida Jul 1978 A
4165071 Frolow Aug 1979 A
4177990 Kajiwara Dec 1979 A
4185822 Li Jan 1980 A
4205844 Gombas Jun 1980 A
4280699 Drake Jul 1981 A
4365806 Reid et al. Dec 1982 A
4591165 Sines et al. May 1986 A
4664380 Kuebler May 1987 A
4725059 Du Gardin et al. Feb 1988 A
4747598 Curtis May 1988 A
4768786 Kuebler Sep 1988 A
4772021 Maynard Sep 1988 A
4793958 Mott Dec 1988 A
4911444 Yoneeyama Mar 1990 A
4919438 Yoneeyama Apr 1990 A
4935185 Mott Jun 1990 A
5009422 Soong Apr 1991 A
5037098 Davis Aug 1991 A
5082266 Lo Jan 1992 A
5183265 Umlauft et al. Feb 1993 A
5197731 Svoma et al. Mar 1993 A
5299801 Sol et al. Apr 1994 A
5306004 Soong Apr 1994 A
5306005 Lacoste et al. Apr 1994 A
5310180 Wu May 1994 A
5312115 Wu May 1994 A
5342045 Feeney Aug 1994 A
5386991 Rochette Feb 1995 A
5462274 Takatsuka Oct 1995 A
5538243 Yamamoto et al. Jul 1996 A
5573242 Yoo Nov 1996 A
Foreign Referenced Citations (10)
Number Date Country
3408175 Sep 1985 DE
538523 Apr 1993 EP
0 671 186 Sep 1995 EP
0 676 222 Oct 1995 EP
2056863 Feb 1981 GB
2262892 Jul 1983 GB
2198959 Jun 1988 GB
2203653 Oct 1988 GB
07-223271 Aug 1995 JP
9400203 Jan 1994 WO
Divisions (1)
Number Date Country
Parent 09552342 Apr 2000 US
Child 10224010 US