The present invention relates to sports racquets, for example tennis, squash, badminton, and racquetball racquets. Such racquets have a head portion containing an interwoven string bed, a handle, and a shaft portion connecting the head portion to the handle.
In conventional racquets, holes for anchoring the ends of the strings are formed in the frame by drilling small string holes in the frame after the racquet is molded. Generally, each string hole accommodates a single string. Plastic grommet pegs, which are formed on a grommet strip that extends along the outside surface of the frame, extend through the string holes to protect the strings from the sharp edges of the drilled holes.
Co-owned PCT application WO 2004/075996 discloses a sports racquet in which some adjacent pairs of small string holes along the sides, tip, and throat bridge of the racquet are replaced by enlarged string holes, the opposite ends of which each accommodates one string (referred to herein as “port string holes”). Preferably the frame is formed of a double tube of carbon fiber-reinforced composite material (a so-called graphite frame), in which the enlarged string holes are molded into as the racquet as the racquet is pressure molded. As a result of using two tubes, each forming one-half of the enlarged string hole, the string holes can have rounded edges and do not require the use of grommet pegs or strips. Also, in the regions between string holes, the adjoining walls of the two tubes are bonded together to form an internal stiffening wall lying in the plane of the string bed. The result is a racquet which has improved torsional stiffness and lighter weight.
The playing characteristics of a graphite sports racquet can be changed in various ways, such as by changing the geometric shape of the frame, the materials used, the number and fiber orientation of the various plies of composites used at each racquet location, or the frame's overall weight, balance, stiffness, and polar and mass moments of inertia. While racquet designers currently have substantial latitude in designing the various playing characteristics of a racquet, it would be desirable to allow for even greater flexibility in the ability to design a new racquet's playing characteristics.
A racquet according to the present invention includes a frame which is formed from a plurality of frame sections. In one embodiment, the opposite sides of the head and the tip are each formed by a separate frame section. Each frame includes a plurality of string port holes, formed either in the frame, e.g., as disclosed in WO 2004/075996, or formed in insert members. The upper and lower corners of the head are separate members and contain conventional string holes designed to receive either a single string or a pair of strings. Preferably, the lower frame corners are joined to shaft members and a handle portion of the frame as a unitary lower frame piece.
The corner sections may be formed of a material which is different from the side sections and the tip sections. Also, the upper corner sections and the lower frame piece may have a construction which is different from the frame constructions in the side sections and the tip sections. Most preferably, the upper corners are formed of a single hollow graphite tube, and the lower frame piece is formed by a pair of single hollow graphite tubes, whereas the side sections and tip section are formed of a pair of graphite tubes molded so that the facing walls of the tubes define the string port holes.
If the tip section is to use conventional string holes, the tip section and upper corners may be formed as a single, continuous piece of graphite tubing.
The various racquet sections may be formed individually and then joined together, or molded together in a modification of known inflation molding techniques. In a conventional inflation molding process, an inflatable bladder is disposed inside a prepreg tube of uncured composite material. The tube, which is flexible at this stage, is placed inside a mold which, when closed, is shaped as a racquet frame. The bladder is then inflated, such that the tube assumes the shape of the mold, while the mold is heated to cure the epoxy resin.
According to one method of the invention, a plurality of prepreg sections are formed. In the sections that will become the lower frame section, and the upper corners, the prepreg section is a single tube. In the sections that will become the side sections and tip section, a double tube is provided. A pair of inflatable bladders extend through each of the single tubes, and one bladder extends through each of the double tubes. The prepreg tube may be wrapped with additional prepreg sheets to connect the various sections prior to being placed in the mold.
Within the mold, a plurality of mold elements, whose outside surfaces are shaped to form string port holes, are positioned between the double tubes at the desired locations. Molding is then carried out in the conventional way. After the frame has been removed from the mold, the mold elements are removed.
Alternatively, the various frame sections can be formed separately and then joined together. The sections can be produced in separate molds. Each element is designed to be joined together with a suitable connection. These connections will permit and assure the assembly of a plurality of elements which will form the frame of the racquet. A mold will be used as reference in order to grant the correct positioning of the elements and the connection to the frame contour. The elements, properly fitted together, will be joined by a mechanical junction (obtained by particular geometries of the elements) or by an epossidic glue.
The string port holes can have any suitable shape, such as elliptical, circular, polygonal, rounded, convex, concave, or irregular. The use of enlarged string holes allows the overall weight of the racquet to be reduced and makes stringing easier.
Other features and advantages of the invention will become apparent from the following description of preferred embodiments, taken in conjunction with the drawings.
As shown in
In the process of
The corner section 16 contains a single tube of composite material. A pair of bladders 34, 36 are disposed inside the corner section 16. As shown, the bladders 34, 36 meet along a common wall 38 when inflated.
The side section 14 includes a pair of tubes 40, 42. Bladder 34 extends inside of tube 40, whereas bladder 36 extends inside of tube 42. When the tubes 40, 42 are inflated by the bladders 34, 36, they meet along a common wall 44 and fuse together to form an interior wall.
As shown in
The prepreg tubes which will form the various sections of the frame may be preformed by wrapping sheets of prepreg on a common mandrel over the bladders. Preferably, sheets of prepreg are wrapped over the joints 46 between adjoining sections so that the sections bond together during molding.
Alternatively, the various sections of the frame may be formed individually and then subsequently joined using a suitable joint. For example,
In the above process, string port holes 24 are molded into the racquet frame. String holes in the corners may be drilled in a conventional fashion. As described in PCT application WO 2004/075996, the string port holes 24 on one side of the frame are offset relative to the string port holes 24 on the other side of the frame (the same is true for the tip section and throat bridge) to accommodate stringing. Thus, a string which enters one string port hole bears against the upper wall of the string port hole, wraps around the outside of the frame, and bears against the lower wall of the string port hole immediately above it. After crossing the string bed, the string bears against the upper wall of the opposing (offset) port string hole, wraps around the outside of the frame, and bears against the lower wall of the port hole immediately above.
In the example above, the various sections of the frame are made from carbon fiber-reinforced composite. The type of composite used may vary from section-to-section or be the same. Also, the sections can be made of different materials, such as a combination of composite material, metal such as aluminum, nanomaterials, plastics, or wood.
As used herein, the term “sides” refers generally to the regions of the racquet head between the upper and lower corners, and the “tip” refers generally to the region of the head between the upper corners. However, since these terms are not terms of art, “sides” and “tip,” as used herein, can include any portion of the sides or tip, or even include a portion of persons might consider to be the corners.
The foregoing represent preferred embodiments of the invention. Variations and modifications will be apparent to persons skilled in the art, without departing from the inventive concepts disclosed herein. For example, if desired the tip section can employ conventional string holes rather than string port holes, in which case the tip section and upper corners can be formed from a single, continuous prepreg tube. In another example, the tip section is made of a double tube aluminum profile, the sides are made of a single carbon fiber tube, with ports formed as described herein. Such modifications and variations are intended to be within the scope of the invention, as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
05111444 | Nov 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
59313 | Hill | Oct 1866 | A |
729639 | McCoy | Jun 1903 | A |
1025478 | Murphy | May 1912 | A |
1530427 | Simon | Mar 1925 | A |
2033722 | MacFarland | Mar 1936 | A |
2321771 | Rumelin | Jun 1943 | A |
3377066 | Trowbridge | Apr 1968 | A |
3392986 | Hayes | Jul 1968 | A |
4086115 | Sweet | Apr 1978 | A |
4124208 | Burns | Nov 1978 | A |
4264389 | Staub | Apr 1981 | A |
4358113 | McKinnon | Nov 1982 | A |
4600193 | Merritt | Jul 1986 | A |
4795153 | Thomas | Jan 1989 | A |
4931247 | Yeh | Jun 1990 | A |
5082279 | Hull | Jan 1992 | A |
5097870 | Williams | Mar 1992 | A |
5153798 | Ruigrok | Oct 1992 | A |
5179255 | Yeh | Jan 1993 | A |
5249846 | Martin | Oct 1993 | A |
5285008 | Sas-Jaworsky | Feb 1994 | A |
5297791 | Negishi | Mar 1994 | A |
5301940 | Seki | Apr 1994 | A |
5303916 | Rodgers | Apr 1994 | A |
5312102 | Stennett | May 1994 | A |
5419553 | Rodgers | May 1995 | A |
5614305 | Paine | Mar 1997 | A |
5636836 | Carroll | Jun 1997 | A |
5746955 | Calapp | May 1998 | A |
5766104 | Albarelli | Jun 1998 | A |
5865696 | Calapp | Feb 1999 | A |
5879250 | Tahtinen | Mar 1999 | A |
5975645 | Sargent | Nov 1999 | A |
6012996 | Lo | Jan 2000 | A |
6042493 | Chauvin | Mar 2000 | A |
6071203 | Janes et al. | Jun 2000 | A |
6086161 | Luttgeharm | Jul 2000 | A |
6113508 | Locarno | Sep 2000 | A |
6129962 | Quigley | Oct 2000 | A |
6241633 | Conroy | Jun 2001 | B1 |
6383101 | Eggiman | May 2002 | B2 |
6485382 | Chen | Nov 2002 | B1 |
6589125 | Tsai | Jul 2003 | B1 |
6638187 | Tsai | Oct 2003 | B1 |
6663517 | Buiatti | Dec 2003 | B2 |
6723012 | Sutherland | Apr 2004 | B1 |
6761653 | Higginbotham | Jul 2004 | B1 |
6764419 | Giannetti | Jul 2004 | B1 |
6776735 | Belanger | Aug 2004 | B1 |
6800239 | Davis | Oct 2004 | B2 |
6808464 | Nguyen | Oct 2004 | B1 |
6866598 | Giannetti | Mar 2005 | B2 |
6872156 | Ogawa | Mar 2005 | B2 |
7014580 | Forsythe | Mar 2006 | B2 |
7077768 | Filippini | Jul 2006 | B2 |
7207907 | Guenther | Apr 2007 | B2 |
7309299 | Pezzato | Dec 2007 | B2 |
7396303 | Gazzara | Jul 2008 | B2 |
20030104152 | Sommer | Jun 2003 | A1 |
20030162613 | Davis | Aug 2003 | A1 |
20040048683 | Burrows | Mar 2004 | A1 |
20040198538 | Goldsmith | Oct 2004 | A1 |
20040198539 | Sutherland | Oct 2004 | A1 |
20050062337 | Meggiolan | Mar 2005 | A1 |
20050153799 | Rigoli | Jul 2005 | A1 |
20050164814 | Tucker | Jul 2005 | A1 |
20050221924 | Sutherland | Oct 2005 | A1 |
20050266940 | Filippini | Dec 2005 | A1 |
20060122013 | Dodge | Jun 2006 | A1 |
20060247077 | Deetz | Nov 2006 | A1 |
20070123376 | Gazzara et al. | May 2007 | A1 |
20070135245 | Gazzara et al. | Jun 2007 | A1 |
20070200422 | Davis | Aug 2007 | A1 |
20070222178 | Davis | Sep 2007 | A1 |
20070238560 | Gazzara | Oct 2007 | A1 |
20070270253 | Davis | Nov 2007 | A1 |
20070275799 | Davis | Nov 2007 | A1 |
20070293344 | Davis | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2154370 | Mar 1997 | CA |
2231908 | Sep 1999 | CA |
4415509 | Nov 1995 | DE |
1097730 | May 2001 | EP |
1859838 | Nov 2007 | EP |
1859839 | Nov 2007 | EP |
53038431 | Apr 1978 | JP |
02255164 | Oct 1990 | JP |
05015624 | Jan 1993 | JP |
09117968 | May 1997 | JP |
11276652 | Oct 1999 | JP |
2000042155 | Feb 2000 | JP |
WO 8403447 | Sep 1984 | WO |
WO 9426361 | Nov 1994 | WO |
WO 0009219 | Feb 2000 | WO |
WO 0126752 | Apr 2001 | WO |
WO 03076176 | Sep 2003 | WO |
WO2004075996 | Sep 2004 | WO |
WO 2004075996 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070123376 A1 | May 2007 | US |