Sports shoes and methods for manufacturing and recycling of sports shoes

Information

  • Patent Grant
  • 10952489
  • Patent Number
    10,952,489
  • Date Filed
    Monday, September 24, 2018
    6 years ago
  • Date Issued
    Tuesday, March 23, 2021
    3 years ago
Abstract
A sports shoe includes an upper wherein a majority by weight of the upper is made from a thermoplastic base material and a sole wherein a majority by weight of the sole is made from the same thermoplastic base material. The sole and the upper are individually fabricated and joined to each other. The thermoplastic base material includes at least one of the following materials: thermoplastic polyurethane TPU, polyamide PA, polyethylene terephthalate PET, or polybutylene terephthalate PBT.
Description
FIELD OF THE INVENTION

The present invention relates to shoes, in particular sports shoes, and methods for manufacturing and recycling of shoes.


BACKGROUND

Shoes, in particular sports shoes, generally comprise a sole and an upper made from multiple components. Multiple components are generally required for a sole and an upper to provide the shoe with various desired properties such as cushioning, moisture management, traction, abrasion resistance etc. To this end, the various components of a shoe are typically manufactured from different materials. The components are then attached to each other, for example by adhesives and/or by stitching.


The production of the various components of a shoe and their respective materials requires a considerable amount of energy (e.g. electricity, heat, etc.) which leads to greenhouse gas emissions. Moreover, after a shoe's lifetime, e.g. when the shoe is worn out and can no longer be used, considerable efforts are needed to safely dispose of the shoe. In this context, special attention has to be paid to the various individual materials present within the shoe to optimize the disposal of the shoe. Again, energy is needed to decompose the materials and further greenhouse gases are emitted. On the other hand, the majority of worn out shoes still ends up in a landfill or in an incineration facility as waste. Numerous approaches are known to limit the amount of energy consumption and greenhouse gas emission during the life cycle of a shoe.


US 2009/0119023 A1 discloses a grading system for evaluating and ranking consumer products based on their ecological and/or environmental impact which is applicable for footwear. However, a mere ranking or evaluating falls short of providing shoes with reduced resource consumption and greenhouse gas emission during their life cycle.


US 2012/0233883 A1 discloses processes for fabricating an upper for a shoe in which scraps are obtained. Material scraps may be collected and resized and the resized scrap may be distributed to create a recovered material layer. The layer may be subjected to heat and/or pressure to create a pliable composite panel. The composite panel may be used to create an upper shell. US 2014/0066530 A1 discloses a method for recycling scrap ethylene-vinyl acetate (EVA) foam. A blend containing virgin EVA resin and scrap EVA foam, as well as a crosslinking agent and a blowing agent for the EVA resin is foamed and crosslinked. The blend further contains a compatibilizer, which is hydrogenated petroleum resin. The methods of US 2012/0233883 A1 and US 2014/0066530 A1 are based on the idea to re-use scraps, whereby pre-consumer waste (industrial waste) is used back in the production process. However, these methods do not go beyond addressing a possible re-use of waste during production of a shoe.


US 2014/0197253 A1 discloses a method for processing multiple polymer component articles for recycling. Polymer components of multi-component shoes may be separated. Therein, the differences in embrittlement and glass transition temperature of different polymer components are exploited by cryogenically freezing the prepared shoe and impacting it such that one polymer component is pulverized without substantially fracturing the remaining portion of the shoe. While this method addresses the recycling of multiple polymer component articles, it is a very complex and costly process that requires cryogenics.


DE 20 2012 005 735 U1 relates to a cycling shoe. The cycling shoe comprises an outer shoe, which comprises an upper and a sole, which may be fixedly attached to each other. For this particular cycling shoe, the outer shoe consists of a single material, in which case the upper and sole comprise a single layer only. Thermoplastic or thermosetting elastomers such as polyurethane, in particular thermoplastic polyurethane, may be used, possibly with fiber-reinforcement. The outer shoe may be releasably connected with an inner shoe. The inner shoe may also comprise a sole and an upper. It may consist of EVA.


EP 2 233 021 A2 relates to a protective sock for use in swimming pools or spas. The sock is of the type which are formed by two materials differentiated in the sole and the vamp. The sole is made of waterproof textile comprising polyamide between 60 and 75%, and polyurethane between 40 and 25%. The vamp comprises teflonized lycra.


U.S. Pat. No. 9,010,157 B1 relates to an article of footwear including a monofilament knit element with peripheral knit portions. DE 10 2013 208 170 A1 relates to sole for a shoe comprising a midsole and an outsole.


It has also become known in the field that shoes may be fabricated from bio-degradable material. Such shoes may naturally decompose within several months. However, the materials used in these shoes are not suitable for sports shoes and particularly do not meet the requirements for high-quality and high-performance shoes.


It may therefore be considered as a problem of the present invention to provide an improved approach for limiting the amount of resource consumption and greenhouse gas emission during the life cycle of shoes.


SUMMARY

The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various embodiments of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.


According to certain embodiments of the present invention, a sports shoe comprises: an upper wherein a majority by weight of the upper is made from a thermoplastic base material; a sole, wherein a majority by weight of the sole is made from the same thermoplastic base material; wherein the sole and the upper are individually fabricated and joined to each other; and wherein the thermoplastic base material comprises at least one of the following materials: thermoplastic polyurethane (TPU), polyamide (PA), polyethylene terephthalate (PET), or polybutylene terephthalate (PBT).


In some embodiments, the thermoplastic base material is adapted to be recycled in a joint recycling process for the upper and the sole so that a recycled material from the sports shoe serves as a base material for the manufacture of a further product.


In certain embodiments, the further product comprises a further shoe and the further shoe comprises an upper and a sole that each comprise the recycled material. The further product, in some embodiments, comprises a ball, apparel, protective equipment, rackets, or clubs.


In some embodiments, the thermoplastic base material is selected from the group consisting of expanded TPU, polyester-based TPU, and polyether-based TPU.


In certain embodiments, the upper comprises a yarn comprising the thermoplastic base material. The upper, in some embodiments, includes a textile material, which comprises a yarn comprising the thermoplastic base material.


The sole, in some embodiments, comprises a foam comprising the thermoplastic base material. In certain embodiments, the sole comprises foamed pellets comprising the thermoplastic base material.


In some embodiments, the sole comprises a midsole comprising the thermoplastic base material or an outsole comprising the thermoplastic base material. The sole, in certain embodiments, comprises a midsole and an outsole such that the midsole and the outsole each comprise the thermoplastic base material.


In certain embodiments, at least a portion of the sole comprising the thermoplastic base material is adapted to provide a different grade of a physical property than at least a portion of the upper comprising the thermoplastic base material.


In some embodiments, the upper comprises different zones, wherein the different zones provide different grades of a physical property.


In certain embodiments, the upper comprises a reinforcing element. The reinforcing element, in some embodiments, comprises the thermoplastic base material. In some embodiments, the reinforcing element comprises a heel counter.


The thermoplastic base material, in certain embodiments, comprises material recycled from a sole or an upper of another shoe.


In some embodiments, the sports shoe further comprises a marker configured to store information for at least one of: a number of times the base material of the sports shoe has already been used in previous shoe, sales history for the sports shoe or a particular user, or remaining life of the sports shoe. The marker, in certain embodiments, comprises at least one of a Radio-Frequency Identification (RFID) tag, an Infrared (IR) marker, or a Near Infrared (NIR) marker. In certain embodiments, the marker is integrated in at least one yarn of the upper.


According to certain embodiments of the present invention, a method for manufacturing a sports shoe comprises: providing a thermoplastic base material; fabricating an upper, wherein a majority by weight of the upper is fabricated from the thermoplastic base material; fabricating a sole, wherein a majority by weight of the sole is fabricated from the same thermoplastic base material; wherein the sole and the upper are individually fabricated; and joining the sole and the upper to each other; wherein the thermoplastic base material comprises at least one of the following materials: thermoplastic polyurethane TPU, polyamide PA, polyethylene terephthalate PET, or polybutylene terephthalate PBT.


In some embodiments, providing the thermoplastic base material comprises recycling a sole or an upper of another shoe.


According to certain embodiments of the present invention, a method for recovering a base material from a sports shoe comprises: providing a sports shoe that comprises: an upper wherein a majority by weight of the upper is made from a thermoplastic base material; a sole, wherein a majority by weight of the sole is made from the same thermoplastic base material; wherein the sole and the upper are individually fabricated and joined to each other; and wherein the thermoplastic base material comprises at least one of the following materials: thermoplastic polyurethane TPU, polyamide PA, polyethylene terephthalate PET, or polybutylene terephthalate PBT; and jointly processing the upper and the sole of the sports shoe such that the thermoplastic base material is recovered from the sports shoe and can serve as a base material for the manufacture of a sports equipment product.





BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed description, embodiments of the invention are described referring to the following figures:



FIG. 1 is a side view of a shoe, according to certain embodiments of the present invention.



FIG. 2 is a side view of a shoe, according to certain embodiments of the present invention.



FIGS. 3A and 3B are top and bottom views, respectively, of an insole board of the shoe of FIG. 2.





BRIEF DESCRIPTION

This problem is at least partly solved by a shoe, in particular a sports shoe, according to claim 1. In some embodiments, the shoe comprises an upper, wherein a majority by weight of the upper is made from a thermoplastic base material. Moreover, the shoe comprises a sole, wherein a majority by weight of the sole is made from the same thermoplastic base material. The sole and the upper are individually fabricated and joined to each other. The thermoplastic base material may be a thermoplastic polyurethane (TPU), a polyamide (PA), a polyethylene terephthalate (PET) and/or a polybutylene terephthalate (PBT). However, also other materials may be used.


By providing shoes with a sole and an upper which—by majority or even entirely—consist of the same base material, the base material may be easily recovered from the shoe, which significantly reduces the effort needed for separating and/or sorting different shoe components. For example, the entire shoe may be treated in a single recycling step. The shoes according to the present invention may greatly simplify the recycling of used shoes, especially when the entire shoe is made from a single material. Moreover, the recovered base material may then be re-used both for the sole and the upper of a new shoe such that both parts may essentially be fabricated from the same recycled material. Using the same base material in an upper and a sole and at the same time providing a high-quality shoe is enabled by the idea that various physical implementations (e.g. yarn, foil, foam, pellets etc.) of one and the same chemical base material (e.g. thermoplastic polyurethane) may be used to provide the various different properties that are needed to provide high-quality shoes (e.g. cushioning, fit, moisture management, traction, abrasion resistance, good comfort and feel). Especially the use of TPU for all parts of the shoe enables the production a high performance shoe designed for athletes.


Generally, the components, parts, elements, etc., of the shoes disclosed herein may be joined permanently. In some embodiments, a shoe may not comprise any removable parts. Alternatively, some or all of said components parts, elements, etc., may be releasably joined.


Using the same base material in an upper and a sole allows for the benefit of using compatible materials which may be easily bonded, for example by applying energy, for example by heat. As an example, infrared (IR) heating could be used to melt the surfaces of two or more components such that, e.g. by pressing the melted surfaces on each other, the two or more components may be bonded. A bonding could also be achieved for example by a chemical bonding between the molecules.


Furthermore, using the same base material for the upper and the sole facilitates the joining of the two components, which may be achieved even without involving any adhesives, for example by applying energy, for example by heat, to melt the surfaces, as stated above.


Thus, an economically viable, at least partly closed material cycle may be created for many generations of shoes since the same base material may be recovered and re-used in a number of generations of shoes. For each new generation of shoes made from the same—recycled—material, the energy and greenhouse gas emissions for producing and safely disposing the material can thus be saved. As a result, compared to conventional shoes, not only energy and greenhouse gases required to decompose a shoe after its life cycle may be saved. What is more, also the energy required to produce the base material for a new shoe may be saved since the base material of the old shoe can simply be re-used. Even after accounting the additional energy to recycle and remanufacture a shoe from recovered thermoplastic material, the environmental footprint of the recycled shoe will be much lower than a similar conventional shoe which uses virgin thermoplastic material.


An at least partly closed material cycle means that, in certain embodiments, the re-used base material will be blended with new material. For example, the percentage of the new material may amount to 10-50%, or 15-20%, e.g. to ensure consistent resulting material properties.


Moreover, the use of a single base material for upper and sole of a shoe allows for a more cost-efficient sourcing of the base material and a more streamlined handling of the base material during manufacture. Thus additional cost benefits may be provided.


In certain embodiments, portions of the sole and the upper may be fabricated in a joint manufacturing step. The expression ‘fabricating the sole and the upper individually’ is intended to encompass soles and uppers wherein at least a portion of the sole and at least a portion of the upper that comprise the thermoplastic base material are fabricated separately. As a result, different physical properties may be provided for the sole and the upper despite using the same base material. In other examples, the entire sole and the entire upper may be fabricated separately.


In some examples, the sole and/or the upper comprise, by weight, more than 50%, more than 75%, or more than 95% of the same base material. In other examples, the sole and/or the upper comprise the same base material.


The thermoplastic base material of the shoe may be adapted to be recycled in a joint recycling process for the upper and the sole so that it can serve as a base material for the manufacture of a further upper and/or sole. In other words, a disassembly of the shoe may not be required. The entire shoe may be subjected to a joint recycling process to recover the base material. The recycled material could serve as a base material for the same kind of shoe or sports shoe product or for another shoe product. In principle the recycled material could serve as a base material for the manufacture of any other sporting goods products.


As mentioned, the thermoplastic base material of the shoe may be selected from one of the following materials: TPU, PA, PET and/or PBT. In certain embodiments, the thermoplastic base material is selected from one of the following materials: TPU, PA6, PA66, PA11, PA1010, PA612, PA610, PA1012, PA410, PA12 and/or polyether block amide (PEBA).


In some embodiments, the thermoplastic base material may be also selected from one of the following materials: expanded TPU, polyester-based TPU and/or polyether-based TPU. These materials have turned out to be suitable for use both in a sole and in an upper of a shoe. For example, by using TPU, a sole may provide good cushioning properties (e.g. using expanded TPU) and at the same time the upper may provide a good wearing comfort (e.g. using yarns made from TPU). The thermoplastic base material may then be recovered from the shoe after its life cycle in a simple recycling step and then reused for a new generation of shoes.


The upper of the shoe may comprise a yarn comprising the thermoplastic base material. The upper may be made of a textile material or include a textile material, which comprises a yarn comprising the thermoplastic base material. The textile material could be a knit textile, e.g. a warp knit and/or a weft knit. For example the weft knit could be flat knitted and/or circular knitted. For example the warp knit may be an engineered knit. Besides knit textiles, woven, non-woven, braided and/or other yarn-based fabric uppers may be provided which allow the provision of high quality uppers with a good wearing comfort. For example, a TPU yarn allows providing such uppers. The fabric component of the upper may be provided with a Shore-D hardness of 44-84, 54-74, or 62-66.


The sole of the shoe may comprise a foam which comprises the thermoplastic base material. By including material such as foams, good cushioning properties may be provided. For example, TPU foams may be used for this purpose. These also exhibit a good durability.


The sole of the shoe may comprise foamed pellets comprising the thermoplastic base material. For example, expanded TPU pellets may be used in this regard which provide excellent cushioning properties and longevity. For example, the materials described in DE 10 2012 206 094 and/or EP 2 649 896 may be used.


The thermoplastic base material of the sole may be injection molded, e.g. using injected TPU. Hence, the sole may be provided in a simple fabrication step. Other molding methods could be compression molding or steam molding. Especially a steaming process may be used when the sole of the shoe comprises foamed pellets comprising the thermoplastic base material, e.g. expanded TPU pellets. The steam could further be used to melt the surface of the thermoplastic base materials of the outsole as well as the thermoplastic base material of the upper and make it bond to each other.


The sole of the shoe may comprise a midsole comprising the thermoplastic base material. Based on the configuration of a separate midsole, particularly optimized cushioning properties may be provided. The midsole may comprise a foam which comprises the thermoplastic base material, e.g. TPU foam or expanded TPU pellets as described above.


The sole of the shoe may further comprise an outsole comprising the thermoplastic base material. By using an additional outsole, the sole may be provided with good traction and abrasion resistance. The midsole and the additional outsole may thus each be optimized for their respective purpose.


The midsole may be provided with a Shore-A hardness of 60-100, 70-90, or 78-82. The outsole may comprise a Shore-A hardness of 40-80, 50-70, or 58-62.


The thermoplastic base material of the outsole may be injection molded, e.g. using injected TPU. Hence, the outsole may be provided in a simple fabrication step. For example, it may be directly injected onto the midsole. Alternatively, a separately fabricated outsole may be joined to the midsole e.g. based on the configuration of an adhesive comprising the base material, e.g. an adhesive based on TPU, or simply by applying energy, for example heat, as mentioned above.


At least a portion of the sole comprising the thermoplastic base material may be adapted to provide a different grade of an intrinsic physical property (e.g. hardness, density) than at least a portion of the upper comprising the thermoplastic base material. For example, certain portions of the upper may be adapted to be softer and/or less dense and/or more flexible than certain portions of the sole. This may be achieved e.g. by using TPU which is spun into a yarn for the upper and/or using expanded TPU and/or injection molded TPU for the sole. It is understood, that a majority by weight of the mentioned portions may be made from the thermoplastic base material.


The sole, in particular in case of a sole for a soccer shoe, may comprise at least one layer. At least one of the layers may be made from the same base material. The layers may nevertheless differ from each other. For example, at least one of the layers may have a different stiffness and/or hardness than at least one other layer. For example, an outer layer could be softer than an inner layer or vice versa. The different properties may be achieved by different geometric structures of the layers. Thereby the flexibility of the sole may be individually adjusted. The aspects described in the preceding paragraph with respect to a portion of the sole and a portion of the upper may equally apply to two different portions of the sole, e.g. to two different layers of the sole.


Additionally or alternatively, the sole, in particular in case of a sole for a soccer shoe, may comprise at least one profile element, e.g. stud. The at least one profile element may comprise or may be made from the thermoplastic base material.


The upper may comprise different zones, wherein the different zones provide different grades of an intrinsic physical property. For example two or more zones may be provided. Each such zone may comprise the thermoplastic base material, and a majority by weight of each zone may be made from the thermoplastic base material. In certain embodiments, the upper is produced by different elements, e.g. heel counter, vamp and/or toe cap, which are joined together to form the upper. Each of the individual elements may comprise certain intrinsic physical properties.


The thermoplastic base material of the shoe, e.g. of the upper and/or the sole may comprise material recycled from a sole and/or an upper of another shoe. Hence, an at least partly closed material-cycle may be provided. The base material used in the upper and the sole of a shoe may be jointly recycled and fully re-used in the fabrication of a new shoe. Hence, energy for disposing of the “old” base material and energy for producing “new” base material may be saved.


In some examples, the upper may comprise a heel counter and/or a reinforcing element comprising the thermoplastic base material, or consisting of the thermoplastic base material. For example, a lateral and/or a medial reinforcing element may be provided. The heel counter and/or the reinforcing element may help providing the shoe with stability as needed without compromising the ability to recycle the shoe.


For example, the upper may encompass a forefoot portion, a midfoot portion and/or a rearfoot portion of the foot of a user, and a heel counter and/or a reinforcing element may be provided which selectively stabilizes the upper in at least one of said portions. For example, the upper may comprise at least one fabric component comprising the thermoplastic base material, and a heel counter and/or a reinforcing element comprising the thermoplastic base material may be arranged in between the at least one fabric component and/or arranged on the at least one fabric component. Additionally or alternatively, a heel counter and/or a reinforcing element may be combined with at least one non-fabric component, as explained with reference to the fabric components. The heel counter and/or the reinforcing element may be permanently joined to the upper, in particular to the at least one fabric and/or non-fabric component. The heel counter and/or the reinforcing element may be provided at an outer face of the upper, in particular of the at least one fabric and/or non-fabric components. They may be stitched, glued (e.g. via a TPU hotmelt), or otherwise bonded or attached to the upper or at least one of its fabric or non-fabric components, e.g. as described herein. At least one heel counter and/or reinforcing elements may also be attached to the sole and extend from the sole to the upper. At least one heel counter and/or reinforcing elements may be provided using, e.g., any of the TPU materials as described herein as thermoplastic base material. At least one heel counter and/or reinforcing elements may be jointly fabricated.


At least one reinforcing element(s) may for example extend in a lateral and/or medial midfoot region and/or a lateral and/or medial heel region of the upper, in order to selectively increase the stability of the upper, there. In some examples, at least one reinforcing element(s) extend(s) from a lateral and/or medial heel region to a lateral and/or medial midfoot region. Additionally or alternatively, at least one reinforcement element may be attached in principle everywhere on the upper, for example in a toe region and/or an instep region of the upper. Thus, the fit of the shoe and the properties of the shoe (e.g., stiffness, grip, abrasion resistance) may be individually adjusted.


At least one heel counter(s) may for example extend in a heel region, in a lateral rearfoot region, in a medial rearfoot region, in a medial midfoot region, and/or in a lateral midfoot region. For example, a first heel counter may extend from a rear heel region to a lateral heel region and/or to a lateral midfoot region. A second heel counter may extend from a rear heel region to a medial heel region and/or to a medial midfoot region.


As the shoe, the upper and/or the sole, or any of the components of the shoe, the at least one reinforcing element and/or heel counter, may comprise, by weight, more than 50%, more than 75%, or more than 95% of the base material. In other examples, the at least one reinforcing element and/or heel counter may, just as any other component of the shoe, comprise the base material.


In some examples, laces may be provided which comprise the thermoplastic base material. For example, they may comprise a yarn comprising the thermoplastic base material, as described herein. In some examples, the laces may comprise the (yarn comprising the) thermoplastic base material. Laces may be permanently or releasably joined with the shoe. By using laces which comprise the thermoplastic base material, these may be recycled jointly with the shoe, without having to remove the laces from the shoe prior to recycling and to dispose of the laces separately.


Another aspect of the present invention relates to a method for manufacturing a shoe, in particular a sports shoe. The method comprises the steps of providing a thermoplastic base material and fabricating an upper, wherein a majority by weight of the upper is fabricated from the thermoplastic base material. Moreover, the method comprises the step of fabricating a sole, wherein a majority by weight of the sole is fabricated from the same thermoplastic base material. The sole and the upper are individually fabricated. The method further comprises the step of joining the sole and the upper to each other. The thermoplastic base material may be selected from one of the following materials: a TPU, a PA, a PET and/or a PBT. However, also other materials, as mentioned above, may be used.


This method allows for manufacturing a shoe as described herein with the same base material used in the sole and the upper. The method thus allows for manufacturing shoes with an at least partly closed material cycle, as described above.


The step of providing the base material may comprise the step of recycling a sole and/or an upper of another shoe. The other shoe may be a shoe according to the examples described herein wherein the base material used in the upper and the sole of that shoe is re-used.


A further aspect of the present invention relates to a method for recovering a base material from a shoe, in particular a sports shoe. The method comprises the following steps: A shoe as described herein is provided. The upper and the sole of the shoe are jointly processed such that the thermoplastic base material is recovered from the shoe and that it can then serve as a base material for the manufacture of a further sport equipment product, for example a further upper and/or sole.


The methods according to the invention should be seen as a platform technology. Any sporting goods product could theoretically be built from this platform. In certain embodiments, the recovered thermoplastic base material, for example from a shoe, serves as a base material for the manufacture of any other sporting goods products, for example for manufacturing balls, apparel, protective equipment, rackets, clubs and the like. In certain embodiments, the thermoplastic base materials of any sporting goods product, for example balls, apparel, protective equipment, rackets, clubs and the like may be recovered and re-used.


A further aspect of the present invention relates to a business model. A pair of shoes as described herein may be offered to a customer. After use of the shoe by the customer, e.g. after the life-cycle of the shoe, the manufacturer of the shoe may take back the shoe. For example, take-back stations may be provided in retail stores, and/or the customer may send back used shoes by mail. The manufacturer may recover the base material from the upper and the sole of the returned shoes and use it to produce a new pair of shoes comprising the recycled base material. In certain embodiments, the recycled base material is used for any sporting goods other than sports shoes, for example balls, apparel or other sports equipment, e.g. as mentioned above. According to various examples, vouchers and/or discounts for a new pair of shoes may be used as an incentive for the customer to return the shoes to the manufacturer. Also, a leasing model could be used, wherein the customer is charged with a (e.g. monthly) leasing rate and upon return of a used pair of shoes is provided with a new pair. The frequency at which a new pair of shoes is provided to the customer in a leasing model may depend on the type of shoes and/or may be a function of the leasing rate. For example, running shoes could be replaced at a frequency of at least one month and the frequency could increase if a higher leasing rate is paid. For football shoes, for example a replacement once a year (e.g. for every new season) could be appropriate. Another possibility is to use a subscription model in which a customer may get a replacement whenever a new model of a certain type of shoe is released.


A further business model according to the invention could be that customers buy their new sports equipment good, for example a pair of shoes as described herein, directly at the place where they want to do sports. For example, in some embodiments, vending machines or stores are located directly at the place where customers would like to participate in sports or activities such that the vending machines or stores contain or offer different kinds of shoes according to the invention. Thus, when a customer spontaneously decides to have a run, for example during walking through a park, the customer can have a pair of shoes according to the invention from the vending machine. In some embodiments, the customer has to pay a deposit for the pair of shoes. After running, the customer may return the used shoe to the vending machine or to a take-back station. In certain embodiments, the costumer gets back the deposit partly or alternatively the costumer gets a discount for another sport equipment good from the same manufacturer. The manufacturer may collect the used shoes and recovers the base material from the upper and the sole of the returned shoes and use it to produce a new pair of shoes comprising the recycled base material. In certain embodiments, the recycled base material is used for any sporting goods other than sports shoes, for example balls, apparel or other sporting equipment, e.g. as already mentioned. The shoes according to the present invention may simplify the recycling of the used shoes, especially when the whole shoe is made from a single material.


According to a further aspect, a marker, e.g. a Radio-Frequency Identification (RFID) tag or an Infrared (IR) marker, e.g. a Near Infrared (NIR) marker, could be incorporated into each new shoe or pair of shoes with a sole and an upper which comprises base material recovered from another shoe. The marker may indicate the number of times the base material of this pair of shoes has already been used in previous pairs of shoes. Thus, the customer could directly see how many life-cycles of a shoe the base material has already been able to support. Moreover, the marker could also indicate further information such as the customer's lease/subscription level. This would allow a full automation of the return and replacement handling at the manufacturer. Moreover, the marker could be used for alerting the customer when the shoes are worn out and/or when a new pair of shoes is available. Further, at least one IR marker could be incorporated into the material of the shoe to make the material identifiable among a multitude of other materials. For example, in some embodiments, IR markers are integrated in at least one yarn of the upper. Also, the various grades of the same base material that may be used in a shoe may thus easily be identified.


It should be noted that various aspects of the present invention may also be useful in sports goods other than sports shoes.


DETAILED DESCRIPTION

The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.


It is noted that in the following, only some embodiments of the present invention may be described in detail. The person skilled in the art readily recognizes that the specific details described with reference to these specific embodiments may be altered, developed further, combined in a different manner and that certain aspects of the specific embodiments described in the following may also be omitted. Moreover, it is noted that various aspects described in the subsequent detailed description may be combined with aspects described in the above summary section.



FIG. 1 shows a shoe 100 according to an example of the present invention. The shoe 100 comprises a sole 110 and an upper 120 with various components.


Sole 110 comprises a midsole 111 and an outsole 112. Midsole 111 comprises expanded TPU to provide cushioning, for example as described in DE 10 2012 206 094 and/or EP 2 649 896. For example, the expanded TPU may be provided in the form of pellets and may then be pressed into its desired shape by using steam. The midsole 111 may be provided with a Shore-A hardness of 60-100, 70-90, or 78-82, e.g. using TPU with 80A, for example ELASTOLLAN® 1180 A TPU. Outsole 112 may be injected onto the midsole 111. Outsole 112 may comprise TPU with a Shore-A hardness of 40-80, 50-70, or 58-62, e.g. using TPU with 60A, for example ELASTOLLAN® 1160 A TPU. Outsole 112 may be adapted to provide the sole with increased abrasion resistance and traction. In some examples, outsole 112 may be provided with at least one profile element which may be fabricated separately and joined with outsole 112 and/or which may be fabricated integrally with outsole 112.


Shoe 100 moreover comprises an optional torsion bar 113. Torsion bar 113 may be injected onto midsole 111 and/or outsole 112. Torsion bar 113 may comprise a TPU with a Shore-A hardness of 75-100, 85-98, or 93-97, e.g. using TPU with 95A, for example ELASTOLLAN® 1195 A TPU. Torsion bar 113 may be adapted to increase the bending and torsion stiffness of sole 110 such that an improved wearing comfort is provided, particularly in the sensitive region of the arch of the foot.


Upper 120 of shoe 100 comprises an optional heel counter 124. Heel counter 124 may comprise a TPU with a Shore-A hardness of 75-100, 85-98, or 93-97, e.g. using TPU with 95A, for example ELASTOLLAN® 1195 A TPU. Heel counter 124 may be injection molded in a separate fabrication step. Heel counter 124 may serve to provide increased stability to upper 120.


Upper 120 may comprise a fabric component 121 and optionally a reinforcing element 122 which both may comprise TPU fabric. Fabric component 121 comprises a TPU yarn. It may be knitted, woven, non-woven and/or braided fabric. For example, flat-knitting and/or 3D-knitting may be used to provide fabric component 121. For example, fabric component 121 may be weft-knitted and/or warp-knitted. Moreover, fabric component 121 may be present in a substantial portion of upper 120 or even throughout the entire upper 120 of shoe 100. For example, fabric component 121 may be arranged in a forefoot region, a lateral and/or a medial region and/or a heel region of the upper 120. Venting holes may be present in fabric component 121. Fabric component 121 may be provided with a Shore-D hardness of 44-84, 54-74, or 62-66, e.g. using TPU with 64D, for example ELASTOLLAN® 1164 D TPU, and/or a Shore-A hardness of 75-100, 85-98, or 93-97.


Reinforcing element 122 may comprise a non-woven TPU fabric. Reinforcing element 122 may be arranged such that it comprises the shape of a line running from the lower heel region of upper 120 across the lateral and/or medial regions of the shoe towards an instep portion of upper 120 and/or around a tongue/lace region of upper 120. Reinforcing element 122 may be provided with a similar Shore-D hardness as fabric component 121, e.g. using TPU with 64D, for example ELASTOLLAN® 1164 D TPU. However, reinforcing element 122 may have a higher tensile strength than fabric component 121 such that reinforcing element 122 may strengthen upper 120 of shoe 100. Additionally or alternatively, paddings and/or an insole cover may be provided which comprise a non-woven TPU fabric. In other examples, larger portions of the upper may comprise a non-woven element. However, some examples may not comprise any non-woven element.


Moreover, upper 120 of shoe 100 may comprise at least one patch of a film material, especially a TPU foil 123. The TPU foil may for example be provided with a Shore-A hardness of 75-100, 85-98, or 93-97 and/or a Shore-D hardness of 40-80, 50-70, or 58-62, e.g. using TPU with 95A, for example ELASTOLLAN® 1195 A TPU and/or TPU with 60D, for example ELASTOLLAN® 1160 D TPU. The TPU foil 123 may be arranged around a seam of upper 120. TPU foil 123 may be provided to reinforce upper 120. As desired, also other areas of upper 120 of shoe 100 may be provided with film materials, especially a TPU foil 123. In some examples, essentially the entire upper is coated with TPU foil.


Fabric component 121, reinforcing element 122, TPU foil 123 and heel counter 124 of upper 120 may be stitched to each other using a TPU yarn. Additionally or alternatively, a TPU bonding agent, for example a hot-melt TPU bonding agent, may be used. For example, heel counter 124 may be joined to upper 120 by a hot-melt TPU bonding agent. The bonding agent could e.g. be any TPU hot melt of an ether-base and/or an ester-based TPU hot melt. As a further option, infrared (IR) welding may be used in addition or alternatively to join the various elements of upper 120. Similarly, upper 120 of shoe 100 may be joined to sole 110 of shoe 100 by a TPU bonding agent 150, by stitching and/or by infrared welding, as described.


Based on the configuration of the various components 111-113, 150, 121-124, a shoe is provided which comprises a sole 110 and an upper 120, wherein a majority by weight of the upper 120 and of the sole 110 is made from a thermoplastic base material, namely TPU. Sole 110, upper 120 and the entire shoe 100 even comprise a single thermoplastic base material, namely TPU. Sole 110 and upper 120 are individually fabricated and joined to each other, as mentioned above. Sole 110 and upper 120 may thus be permanently joined. By using different physical implementations of the same chemical base material (e.g. TPU), the sole may be provided with good abrasion resistance, durability, traction and abrasion. At the same time, the upper may be provided with stability and softness such as to provide a nice wearing comfort.


It should be noted that also other thermoplastic materials, such as e.g. a PA, PET and/or PBT may be used as thermoplastic base material. Moreover, also material blends may be used as a common base material for the sole and the upper, as long as these provide suitable properties and may be jointly recycled.



FIG. 2 shows a further example for a shoe 20 according to the present invention. Shoe 20 comprises an inner sock 26. The inner sock 26 may comprise foamed TPU. The foamed TPU may be adapted to provide a soft feel and a good wearing comfort. The inner sock 26 may be arranged within a skeleton 27 and is adapted to fully encompass the foot of a user of shoe 20. In other examples the inner sock 26 may be adapted to only partly encompass the foot, e.g. a toe region may remain free from the inner sock 26. In certain embodiments, the inner sock 26 includes or is made of a textile material, which comprises a yarn comprising the thermoplastic base material. For example the textile material could be a knit, a woven fabric, a non-woven fabric, and/or another yarn-based fabric.


Skeleton 27 may comprise a heel counter and a sole plate as well as a series of optional straps around the instep region of shoe 20. The heel counter and the sole plate of skeleton 27 may comprise injection molded TPU. The injection molded TPU may be provided with a hardness as described above with reference to the injection molded TPU of shoe 100. The straps of skeleton 27 may comprise TPU foil and/or TPU fabric as explained above with reference to shoe 100. The straps may serve to secure the inner sock 26 within skeleton 27 and/or to provide shoe 20 with increased stability and strength.


Skeleton 27 may also comprise optional profile elements 21, such as studs which are adapted to penetrate the ground to improve traction when shoe 20 is used in outdoor environments. Additionally or alternatively, profile elements 21 may be provided by a sock element 28, as explained further below.


Sock element 28 may be arranged around skeleton 27. Sock element 28 may be provided in order to render shoe 20 water-resistant or water-proof. Moreover, desired friction properties for contacting a sports ball, e.g. a football, may be provided by a sock element 28. Sock element 28 may be adapted to essentially encompass the entire inner sock 26 and/or the entire skeleton 27. Sock element 27 may comprise a loop or a similar element at its top rear portion which facilitates arranging sock element 28 around skeleton 27 by the user of shoe 20. In some examples, sock element 28 may be adapted to encompass the foot of the user but not the ankle of the user. Alternatively, sock element 28 may only encompass a forefoot region of shoe 20 but not a heel region of shoe 20. Sock element 28 may comprise a TPU foil, for example as described with reference to shoe 100 above. The TPU foil could e.g. provide the shoe with water resistance, improved handfeel, certain traction properties, reinforcement and/or visual (design) purposes.


Sock element 28 may be arranged such that it encompasses the profile elements 21 provided by skeleton 27. Such profile elements 21 may be completely covered by sock element 28 and/or sock element 28 may comprise openings such that some or all profile elements 21 may extend through sock element 28. Additionally or alternatively, profile elements 21 may also be provided on sock element 28. These may for example be injection molded on sock element 28. Injected TPU as described above with reference to shoe 100 may be used for that matter.


Shoe 20 may comprise an optional insole board 22 which may be arranged within skeleton 27 or within the inner sock 26. A top and bottom view of an example insole board 22 are shown in FIGS. 3A and 3B, respectively. The insole board may comprise injection molded TPU as described for injection molded TPU with reference to shoe 100. The shape of insole board 22 may be adapted to the anatomy of the foot of a user. Moreover, insole board 22 may comprise a reinforcing element below the arch of the foot such that shoe 20 is provided with the required stability in this region of the foot by insole board 22.


Similarly as explained with reference to shoe 100, based on the configuration of its various components, shoe 20 comprises a sole and an upper, wherein a majority by weight of the upper and of the sole are made from the same thermoplastic base material, namely TPU. The example shoe 20 even comprises the one and the same thermoplastic base material TPU. Moreover, the elements 26, 27 and 28 as well as 22 which constitute the sole and the upper of shoe 20 and may all comprise TPU are individually fabricated and joined to each other, as mentioned above. The components may be joined permanently. Alternatively, some or all of said components may be releasably joined.


In particular, inner sock 26, skeleton 27, sock element 28 and/or insole board may be joined permanently.


It should be noted that various aspects of the present invention may also be useful in sporting goods other than sports shoes, for example balls, apparel or other sports equipment.


In the following, further examples are described to facilitate the understanding of the invention:


Example 1

Shoe, in particular sports shoe, comprising:


an upper (120), wherein a majority by weight of the upper is made from a thermoplastic base material;


a sole (110), wherein a majority by weight of the sole is made from the same thermoplastic base material;


wherein the sole (110) and the upper (120) are individually fabricated and joined to each other; and


wherein the thermoplastic base material is selected from one of the following materials: thermoplastic polyurethane TPU, polyamide PA, polyethylene terephthalate PET, or polybutylene terephthalate PBT.


Example 2

Shoe according to Example 1, wherein the thermoplastic base material is adapted to be recycled in a joint recycling process for the upper (120) and the sole (110) so that it can serve as a base material for the manufacture of a further upper and/or sole.


Example 3

Shoe according to Example 1 or Example 2, wherein the thermoplastic base material is a PA selected from one of the following materials: PA6, PA66, PA11, PA1010, PA612, PA610, PA1012, PA410, PA12 or polyether block amide PEBA.


Example 4

Shoe according to one of Example 1 or Example 2, wherein the thermoplastic base material is selected from one of the following materials: expanded TPU, polyester-based TPU or polyether-based TPU.


Example 5

Shoe according to one of Examples 1-4, wherein the upper (120) comprises a yarn comprising the thermoplastic base material.


Example 6

Shoe according to one of Examples 1-5, wherein the upper includes a textile material, which comprises a yarn comprising the thermoplastic base material.


Example 7

Shoe according to Example 6, wherein the textile material is a knit, woven, non-woven, or braided material.


Example 8

Shoe according to Example 6 or Example 7, wherein the textile material is a warp knit or a weft knit.


Example 9

Shoe according to one of Examples 1-8, wherein the sole (110) comprises a foam comprising the thermoplastic base material.


Example 10

Shoe according to one of Examples 1-9, wherein the sole (110) comprises foamed pellets comprising the thermoplastic base material.


Example 11

Shoe according to one of Examples 1-10, wherein the sole (110) comprises a midsole (111) comprising the thermoplastic base material.


Example 12

Shoe according to Example 11, wherein the sole (110) further comprises an outsole (112) comprising the thermoplastic base material.


Example 13

Shoe according to Example 12, wherein the thermoplastic base material of the outsole (112) is injection molded.


Example 14

Shoe according to one of Examples 1-13, wherein at least a portion (111, 112, 113) of the sole (110) comprising the thermoplastic base material is adapted to provide a different grade of an intrinsic physical property than at least a portion (121, 122, 123, 124) of the upper (120) comprising the thermoplastic base material.


Example 15

Shoe according to one of Examples 1-14, wherein the upper comprises different zones, wherein the different zones provide different grades of an intrinsic physical property.


Example 16

Shoe according to one of Examples 1-15, wherein the upper comprises a heel counter and/or a reinforcing element.


Example 17

Shoe according to one of Examples 1-16, wherein the thermoplastic base material comprises material recycled from a sole and/or an upper of another shoe.


Example 18

Method for manufacturing a shoe, in particular a sports shoe, the method comprising:


providing a thermoplastic base material;


fabricating an upper, wherein a majority by weight of the upper is fabricated from the thermoplastic base material;


fabricating a sole, wherein a majority by weight of the sole is fabricated from the same thermoplastic base material;


wherein the sole and the upper are individually fabricated; and


joining the sole and the upper to each other;


wherein the thermoplastic base material is selected from one of the following materials: thermoplastic polyurethane TPU, polyamide PA, polyethylene terephthalate PET, or polybutylene terephthalate PBT.


Example 19

Method according to Example 18, wherein the step of providing the base material comprises recycling a sole and/or an upper of another shoe.


Example 20

Method according to Example 19, wherein the other shoe is a shoe according to one of Examples 1-17.


Example 21

Method for recovering a base material from a shoe, in particular a sports shoe, the method comprising:


providing a shoe according to one of Examples 1-17;


jointly processing the upper and the sole of the shoe such that the thermoplastic base material is recovered from the shoe and can serve as a base material for the manufacture of a sports equipment product, in particular a sole and/or an upper.


Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.

Claims
  • 1. A method for manufacturing a sports shoe, the method comprising: fabricating an upper with at least one fabric component, a majority by weight of the upper comprising a thermoplastic base material;fabricating a sole, a majority by weight of the sole comprising the thermoplastic base material; andfabricating a heel counter, wherein the heel counter comprises the thermoplastic base material;wherein fabricating the heel counter comprises forming an aperture in the heel counter;wherein the sole and the upper are fabricated separately; andjoining the sole and the upper to each other, wherein: the at least one fabric component comprises a Shore-D hardness of 54-74;the sole comprises a midsole and an outsole; wherein the outsole is injected onto the midsole;the outsole comprises a Shore-A hardness of 50-70;the thermoplastic base material comprises at least one of thermoplastic polyurethane, polyamide, polyethylene terephthalate, or polybutylene terephthalate; andthe thermoplastic base material comprises recycled material.
  • 2. The method of claim 1, wherein the recycled material comprises 50% to 90% of the thermoplastic base material.
  • 3. The method of claim 1, wherein the sole of the sports shoe comprises expanded foamed pellets comprising the thermoplastic base material.
  • 4. The method of claim 1, wherein the at least one fabric component comprises at least one of weft-knitted fabric, warp-knitted fabric, woven fabric, non-woven fabric, or braided fabric.
  • 5. The method of claim 1, wherein the at least one fabric component comprises yarn comprising the thermoplastic base material.
  • 6. The method of claim 1, wherein joining the sole and the upper to each other comprises steam molding the sports shoe to melt (i) a surface of the thermoplastic base material of the sole and (ii) a surface of the thermoplastic base material of the upper such that the sole and upper bond to each other without adhesive.
  • 7. The method of claim 1, wherein: the midsole comprises expanded foamed pellets and the outsole comprises the thermoplastic base material.
  • 8. The method of claim 1, wherein the midsole and the outsole are fabricated separately, the method further comprising: at least partially melting a surface of the thermoplastic base material of the midsole; at least partially melting a surface of the thermoplastic base material of the outsole; and bonding the at least partially melted surfaces of the midsole and the outsole to each other without adhesive.
  • 9. The method of claim 1, further comprising forming at least one profile element extending from a lower surface of the sole, wherein the at least one profile element comprises the thermoplastic base material.
  • 10. The method of claim 1, further comprising: stitching the heel counter to an outer surface of the upper using a yarn comprising the thermoplastic base material.
  • 11. The method of claim 1, wherein the aperture is entirely located on a lateral side of the sports shoe.
  • 12. The method of claim 1, further comprising fabricating an inner sock, wherein the inner sock comprises the thermoplastic base material.
  • 13. The method of claim 1, wherein the upper comprises an ankle opening, the method further comprising arranging a film around the ankle opening, wherein the film comprises the thermoplastic base material.
Priority Claims (1)
Number Date Country Kind
102015206900.1 Apr 2015 DE national
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 15/130,012, filed Apr. 15, 2016, entitled Sports Shoes and Methods for Manufacturing and Recycling of Sports Shoes (“the '012 application”), which is related to and claims priority benefits from German Patent Application No. DE 10 2015 206 900.1, filed on Apr. 16, 2015, entitled Shoes, in particular sports shoes, and methods for manufacturing and recycling of shoes (“the ‘900.1 application”). The ‘012 and ‘900.1 applications are each hereby incorporated herein in their entirety by this reference.

US Referenced Citations (290)
Number Name Date Kind
D64898 Gunlock Jun 1924 S
2131756 Roberts Oct 1939 A
2968106 Joiner et al. Jan 1961 A
3186013 Glassman et al. Jun 1965 A
3586003 Baker Jun 1971 A
D237323 Inohara Oct 1975 S
4132016 Vaccari Jan 1979 A
4364189 Bates Dec 1982 A
4413431 Cavanagh Nov 1983 A
4481727 Stubblefield et al. Nov 1984 A
4524529 Schaefer Jun 1985 A
4546559 Dassler et al. Oct 1985 A
4624062 Autry Nov 1986 A
4642911 Talarico et al. Feb 1987 A
4658515 Oatman et al. Apr 1987 A
4667423 Autry et al. May 1987 A
D296262 Brown et al. Jun 1988 S
4754561 Dufour Jul 1988 A
D302898 Greenberg Aug 1989 S
RE33066 Stubblefield Sep 1989 E
4864739 Maestri Sep 1989 A
4922631 Anderie May 1990 A
4970807 Anderie Nov 1990 A
4980445 van Der wal et al. Dec 1990 A
5025573 Giese et al. Jun 1991 A
D329731 Adcock et al. Sep 1992 S
5150490 Busch Sep 1992 A
D333556 Purdom Mar 1993 S
D337650 Thomas, III et al. Jul 1993 S
D340797 Pallera et al. Nov 1993 S
5283963 Lerner Feb 1994 A
5308420 Yang et al. May 1994 A
5319866 Foley et al. Jun 1994 A
D350016 Passke et al. Aug 1994 S
D350222 Hase Sep 1994 S
5381607 Sussmann Jan 1995 A
D356438 Opie et al. Mar 1995 S
5549743 Pearce Aug 1996 A
D375619 Backus et al. Nov 1996 S
5617650 Grim Apr 1997 A
5692319 Parker et al. Dec 1997 A
5709954 Lyden et al. Jan 1998 A
D389991 Elliott Feb 1998 S
D390349 Murai et al. Feb 1998 S
D393340 Doxey Apr 1998 S
5743027 Barma Apr 1998 A
D395337 Greene Jun 1998 S
D408618 Wilborn et al. Apr 1999 S
D408971 Birkenstock May 1999 S
D413010 Birkenstock Aug 1999 S
5932336 Petrovic et al. Aug 1999 A
D414920 Cahill Oct 1999 S
D415610 Cahill Oct 1999 S
D415876 Cahill Nov 1999 S
5996252 Cougar Dec 1999 A
6014821 Yaw Jan 2000 A
6029376 Cass Feb 2000 A
6041521 Wong Mar 2000 A
D422400 Brady et al. Apr 2000 S
D423199 Cahill Apr 2000 S
6108943 Hudson Aug 2000 A
D431346 Birkenstock Oct 2000 S
6237251 Litchfield May 2001 B1
D460852 Daudier Jul 2002 S
6516540 Seydel et al. Feb 2003 B2
6702469 Taniguchi et al. Mar 2004 B1
D490222 Burg et al. May 2004 S
D490230 Mervar May 2004 S
D492099 McClaskie Jun 2004 S
6782640 West et al. Aug 2004 B2
6796056 Swigart Sep 2004 B2
D498901 Hawker et al. Nov 2004 S
6849667 Haseyama et al. Feb 2005 B2
6874257 Erickson Apr 2005 B2
6910288 Dua Jun 2005 B2
6925734 Schaeffer et al. Aug 2005 B1
6948263 Covatch Sep 2005 B2
6957504 Morris Oct 2005 B2
D517302 Ardissono Mar 2006 S
7073277 Erb et al. Jul 2006 B2
7086179 Dojan et al. Aug 2006 B2
7143529 Robinson et al. Dec 2006 B2
D538518 Della Valle Mar 2007 S
7202284 Limerkens et al. Apr 2007 B1
D554848 Marston Nov 2007 S
D560883 McClaskie Feb 2008 S
D561433 McClaskie Feb 2008 S
D561438 Belley Feb 2008 S
D561986 Home et al. Feb 2008 S
D570581 Moretti Jun 2008 S
D571085 McClaskie Jun 2008 S
D572462 Hatfield et al. Jul 2008 S
7421805 Geer Sep 2008 B2
D586090 Turner et al. Feb 2009 S
D589690 Truelsen Apr 2009 S
D594187 Hickman Jun 2009 S
D596384 Andersen et al. Jul 2009 S
D601333 McClaskie Oct 2009 S
D606733 McClaskie Dec 2009 S
D607190 McClaskie Jan 2010 S
D611233 Della Valle et al. Mar 2010 S
7673397 Jarvis Mar 2010 B2
D616183 Skaja May 2010 S
D617540 McClaskie Jun 2010 S
D618891 McClaskie Jul 2010 S
D631646 Müller Feb 2011 S
D633286 Skaja Mar 2011 S
D633287 Skaja Mar 2011 S
D634918 Katz et al. Mar 2011 S
D636156 Della Valle et al. Apr 2011 S
D636569 McMillan Apr 2011 S
D636571 Avar Apr 2011 S
7941941 Hazenberg et al. May 2011 B2
D641142 Lindseth et al. Jul 2011 S
D644827 Lee Sep 2011 S
D645649 McClaskie Sep 2011 S
D648105 Schlageter et al. Nov 2011 S
D650159 Avar Dec 2011 S
8082684 Munns Dec 2011 B2
D655488 Blakeslee Mar 2012 S
D659364 Jolicoeur May 2012 S
8186081 Wilson, III May 2012 B2
D680725 Avar et al. Apr 2013 S
D680726 Propét Apr 2013 S
D683116 Petrie May 2013 S
8438757 Roser May 2013 B2
8479412 Peyton et al. Jul 2013 B2
8490297 Guerra Jul 2013 B2
D693553 McClaskie Nov 2013 S
D695501 Yehudah Dec 2013 S
D698137 Carr Jan 2014 S
D707934 Petrie Jul 2014 S
D709680 Herath Jul 2014 S
8834770 Nakano et al. Sep 2014 B2
D721478 Avent et al. Jan 2015 S
9010157 Podhajny et al. Apr 2015 B1
D739129 Del Biondi Sep 2015 S
D739131 Del Biondi Sep 2015 S
D740003 Herath Oct 2015 S
D740004 Hoellmueller et al. Oct 2015 S
9212270 Künkel et al. Dec 2015 B2
D758056 Herath et al. Jun 2016 S
D776410 Herath et al. Jan 2017 S
D783264 Hoellmueller et al. Apr 2017 S
9610746 Wardlaw et al. Apr 2017 B2
9713357 Denison Jul 2017 B2
9737114 Beye Aug 2017 B2
9781970 Wardlaw Oct 2017 B2
9781974 Reinhardt Oct 2017 B2
9788598 Reinhardt Oct 2017 B2
9788606 Reinhardt Oct 2017 B2
9820528 Reinhardt et al. Nov 2017 B2
9833039 Smaldone Dec 2017 B2
9849645 Wardlaw et al. Dec 2017 B2
10259183 Wardlaw et al. Apr 2019 B2
20030131501 Erickson et al. Jul 2003 A1
20030158275 McClelland et al. Aug 2003 A1
20030172548 Fuerst Sep 2003 A1
20030208925 Pan Nov 2003 A1
20040032042 Chi Feb 2004 A1
20040138318 McClelland et al. Jul 2004 A1
20040211088 Volkart Oct 2004 A1
20050065270 Knoerr et al. Mar 2005 A1
20050108898 Jeppesen et al. May 2005 A1
20050150132 Iannacone Jul 2005 A1
20050241181 Cheng Nov 2005 A1
20060010717 Finkelstein Jan 2006 A1
20060026863 Liu Feb 2006 A1
20060083912 Park et al. Apr 2006 A1
20060125134 Lin et al. Jun 2006 A1
20060134351 Greene et al. Jun 2006 A1
20060156579 Hoffer et al. Jul 2006 A1
20060235095 Leberfinger et al. Oct 2006 A1
20060283046 Mason Dec 2006 A1
20070193070 Bertagna et al. Aug 2007 A1
20070199213 Campbell et al. Aug 2007 A1
20070295451 Willis Dec 2007 A1
20080005856 Hung Jan 2008 A1
20080052965 Sato et al. Mar 2008 A1
20080060221 Hottinger et al. Mar 2008 A1
20080244932 Nau et al. Oct 2008 A1
20080250666 Votolato Oct 2008 A1
20090013558 Hazenberg et al. Jan 2009 A1
20090025260 Nakano Jan 2009 A1
20090113758 Nishiwaki et al. May 2009 A1
20090119023 Zimmer et al. May 2009 A1
20090235557 Christensen et al. Sep 2009 A1
20090277047 Moretti Nov 2009 A1
20090320330 Borel et al. Dec 2009 A1
20100005602 Wu Jan 2010 A1
20100063778 Schrock et al. Mar 2010 A1
20100122472 Wilson, III et al. May 2010 A1
20100154257 Bosomworth et al. Jun 2010 A1
20100199520 Dua Aug 2010 A1
20100218397 Nishiwaki et al. Sep 2010 A1
20100222442 Prissok Sep 2010 A1
20100242309 McCann Sep 2010 A1
20100287788 Spanks et al. Nov 2010 A1
20100287795 Van Niekerk Nov 2010 A1
20100293811 Truelsen Nov 2010 A1
20100293814 Skaja Nov 2010 A1
20100325921 Wu Dec 2010 A1
20110047720 Maranan et al. Mar 2011 A1
20110067272 Lin Mar 2011 A1
20110232135 Dean Sep 2011 A1
20110252668 Chen Oct 2011 A1
20110283560 Portzline Nov 2011 A1
20110302805 Vito Dec 2011 A1
20120005920 Alvear et al. Jan 2012 A1
20120047770 Dean et al. Mar 2012 A1
20120059075 Prissok et al. Mar 2012 A1
20120060389 Mille Mar 2012 A1
20120144698 McDowell Jun 2012 A1
20120144702 Wu Jun 2012 A1
20120177777 Brown et al. Jul 2012 A1
20120233877 Swigart Sep 2012 A1
20120233883 Spencer et al. Sep 2012 A1
20120235322 Greene et al. Sep 2012 A1
20120266490 Atwal et al. Oct 2012 A1
20130150468 Füssi et al. Jun 2013 A1
20130232815 Meythaler Sep 2013 A1
20130255103 Dua Oct 2013 A1
20130266792 Nohara et al. Oct 2013 A1
20130269215 Smirman Oct 2013 A1
20130291409 Reinhardt Nov 2013 A1
20130312284 Berend Nov 2013 A1
20140017450 Baghdadi et al. Jan 2014 A1
20140033573 Wills Feb 2014 A1
20140066530 Shen et al. Mar 2014 A1
20140075787 Cartagena Mar 2014 A1
20140137965 Truitt et al. May 2014 A1
20140197253 Lofts et al. Jul 2014 A1
20140215851 Solsona Aug 2014 A1
20140223673 Wardlaw Aug 2014 A1
20140223776 Wardlaw Aug 2014 A1
20140223777 Whiteman Aug 2014 A1
20140223783 Wardlaw Aug 2014 A1
20140227505 Schiller et al. Aug 2014 A1
20140237858 Adami Aug 2014 A1
20140283410 Marvin Sep 2014 A1
20140310986 Tamm Oct 2014 A1
20140366403 Reinhardt et al. Dec 2014 A1
20140366404 Reinhardt et al. Dec 2014 A1
20140366405 Reinhardt et al. Dec 2014 A1
20140373392 Cullen Dec 2014 A1
20150082668 Nakaya et al. Mar 2015 A1
20150089841 Smaldone Apr 2015 A1
20150143716 Long May 2015 A1
20150166270 Buscher et al. Jun 2015 A1
20150174808 Rudolph et al. Jun 2015 A1
20150197617 Prissok et al. Jul 2015 A1
20150201707 Bruce Jul 2015 A1
20150223552 Love Aug 2015 A1
20150237823 Schmitt et al. Aug 2015 A1
20150344661 Spies Dec 2015 A1
20150351493 Ashcroft et al. Dec 2015 A1
20160037859 Smith Feb 2016 A1
20160044992 Reinhardt et al. Feb 2016 A1
20160046751 Spies et al. Feb 2016 A1
20160081418 Amos et al. Mar 2016 A1
20160093199 Whitney et al. Mar 2016 A1
20160095377 Tamm Apr 2016 A1
20160121524 Däschlein et al. May 2016 A1
20160128426 Reinhardt et al. May 2016 A1
20160227876 Le et al. Aug 2016 A1
20160244583 Keppeler Aug 2016 A1
20160244584 Keppeler Aug 2016 A1
20160244587 Gutmann et al. Aug 2016 A1
20160278481 Le Sep 2016 A1
20160295955 Wardlaw et al. Oct 2016 A1
20160302508 Kormann et al. Oct 2016 A1
20160346627 Le et al. Dec 2016 A1
20170119102 McDowell May 2017 A1
20170173910 Wardlaw et al. Jun 2017 A1
20170253710 Smith et al. Sep 2017 A1
20170259474 Holmes et al. Sep 2017 A1
20170340067 Dyckmans et al. Nov 2017 A1
20170341325 Le et al. Nov 2017 A1
20170341326 Holmes et al. Nov 2017 A1
20170341327 Le et al. Nov 2017 A1
20180000197 Wardlaw et al. Jan 2018 A1
20180035755 Reinhardt et al. Feb 2018 A1
20180110293 Lebo Apr 2018 A1
20180154598 Kurtz et al. Jun 2018 A1
20180206591 Whiteman et al. Jul 2018 A1
20180235310 Wardlaw et al. Aug 2018 A1
20180290349 Kirupanantham et al. Oct 2018 A1
20180303198 Reinhardt et al. Oct 2018 A1
20190200699 Ghiotti Jul 2019 A1
20190291371 Wardlaw et al. Sep 2019 A1
Foreign Referenced Citations (120)
Number Date Country
1034662 Aug 1989 CN
1036128 Oct 1989 CN
2511160 Sep 2002 CN
2796454 Jul 2006 CN
2888936 Apr 2007 CN
101107113 Jan 2008 CN
101190049 Jun 2008 CN
201223028 Apr 2009 CN
101484035 Jul 2009 CN
101611950 Dec 2009 CN
202233324 May 2012 CN
202635746 Jan 2013 CN
202907958 May 2013 CN
103371564 Oct 2013 CN
203692653 Jul 2014 CN
203828180 Sep 2014 CN
3605662 Jun 1987 DE
4236081 Apr 1994 DE
29718491 Feb 1998 DE
19652690 Jun 1998 DE
19950121 Dec 2000 DE
10010182 Sep 2001 DE
10244433 Dec 2005 DE
10244435 Feb 2006 DE
102004063803 Jul 2006 DE
102005050411 Apr 2007 DE
202008017042 Apr 2009 DE
102008020890 Oct 2009 DE
102009004386 Jul 2010 DE
202010008893 Jan 2011 DE
202010015777 Jan 2011 DE
112009001291 Apr 2011 DE
102010052783 May 2012 DE
202012005735 Aug 2012 DE
102011108744 Jan 2013 DE
102012206094 Oct 2013 DE
102013202353 Aug 2014 DE
102013208170 Nov 2014 DE
001286116-0001 Jul 2011 EM
001286116-0002 Jul 2011 EM
001286116-0003 Jul 2011 EM
001286116-0004 Jul 2011 EM
001286116-0005 Jul 2011 EM
001286116-0006 Jul 2011 EM
0165353 Dec 1985 EP
752216 Jan 1997 EP
873061 Oct 1998 EP
1197159 Apr 2002 EP
1424105 Jun 2004 EP
1197159 Sep 2004 EP
1854620 Nov 2007 EP
1872924 Jan 2008 EP
2110037 Oct 2009 EP
2233021 Sep 2010 EP
2250917 Nov 2010 EP
2316293 May 2011 EP
2342986 Jul 2011 EP
2446768 May 2012 EP
2649896 Oct 2013 EP
2540184 Jul 2014 EP
2792261 Oct 2014 EP
2848144 Mar 2015 EP
2939558 Nov 2015 EP
3067100 Sep 2016 EP
1073997 Jun 2011 ES
2683432 May 1993 FR
2258801 Feb 1993 GB
01274705 Dec 1989 JP
04502780 May 1992 JP
6046483 Jun 1994 JP
10152575 Nov 1996 JP
H08-323890 Dec 1996 JP
H09-150467 Jun 1997 JP
2000197503 Jul 2000 JP
2002-272506 Sep 2002 JP
2002361749 Dec 2002 JP
2003-145610 May 2003 JP
2005218543 Aug 2005 JP
2006-192723 Jul 2006 JP
2007-504295 Mar 2007 JP
2007516109 Jun 2007 JP
2008073548 Apr 2008 JP
2008543401 Dec 2008 JP
2012-062615 Mar 2012 JP
2012-512698 Jun 2012 JP
2014-210179 Nov 2014 JP
1020110049293 May 2011 KR
201012407 Apr 2010 TW
8906501 Jul 1989 WO
1994020568 Sep 1994 WO
2002008322 Jan 2002 WO
2005023920 Mar 2005 WO
2005026243 Mar 2005 WO
2005038706 Apr 2005 WO
2005066250 Jul 2005 WO
2006015440 Feb 2006 WO
2006027671 Mar 2006 WO
2006034807 Apr 2006 WO
2006090221 Aug 2006 WO
2007082838 Jul 2007 WO
2008047538 Apr 2008 WO
2008087078 Jul 2008 WO
2009039555 Apr 2009 WO
2009095935 Aug 2009 WO
2010010010 Jan 2010 WO
2010037028 Apr 2010 WO
2010045144 Apr 2010 WO
2010080182 Jul 2010 WO
2010090923 Aug 2010 WO
2010136398 Dec 2010 WO
2011035236 Mar 2011 WO
2011134996 Nov 2011 WO
2012065926 May 2012 WO
2013013784 Jan 2013 WO
2013169351 Nov 2013 WO
2013168256 Dec 2013 WO
2014046940 Mar 2014 WO
2015052265 Apr 2015 WO
2015052267 Apr 2015 WO
2015075546 May 2015 WO
Non-Patent Literature Citations (59)
Entry
Office Action, Japanese Patent Application No. 2016-084549, dated Jul. 21, 2020, 8 pages.
U.S. Appl. No. 15/130,012, filed Apr. 15, 2016, Kormann et al.
German Patent Application No. 102015206900.1, Office Action, dated Feb. 8, 2016, 7 pages (No English translation available. A summary of the Office Action is provided in the Transmittal Letter submitted herewith).
Amesöder et al., The right turn (part 1)—Determination of Characteristic values for assembly injection molding, Journal of Plastics Technology, Apr. 2008, pp. 1-8 (English translation of Abstract provided).
Baur et al., Saechtling Kunststoff Taschenbuc, Hanser Verlag, 31 Ausgabe, Oct. 2013, 18 pages.
Venable LLP, Letter, dated Jan. 14, 2016, 6 pages.
“https://www.britannica.com/print/article/463684”, Aug. 17, 2016, 15 pgs.
European Search Report, European Patent Application No. 16165059.3, dated Sep. 20, 2016, 7 pgs.
“Colour and Additive Preparations for Extruded Polyolefin Foams”, Gabriel-Chemie Group, available at www.gabriel-chemie.com/downloads/folder/PE%20foams_en.pdf, last accessed on Jan. 17, 2017, 20 pages.
“http://www.dow.com/polyethylene/na/en/fab/foaming.htm”, Dec. 7, 2011, 1 page.
Nauta , “Stabilisation of Low Density, Closed Cell Polyethylene Foam”, University of Twente, Netherlands, 2000, 148 pages.
Third Party Submission, U.S. Appl. No. 14/981,168, Nov. 14, 2016, 44 pages.
U.S. Appl. No. 15/703,031, Unpublished (filed Sep. 13, 2017).
U.S. Appl. No. 15/724,318, Unpublished (filed Oct. 4, 2017).
U.S. Appl. No. 15/581,112, Unpublished (filed Apr. 28, 2017).
U.S. Appl. No. 29/591,016, Unpublished (filed Jan. 16, 2017).
U.S. Appl. No. 29/592,935, Unpublished (filed Feb. 3, 2017).
U.S. Appl. No. 29/592,946, Unpublished (filed Feb. 3, 2017).
U.S. Appl. No. 29/594,228, Unpublished (filed Feb. 16, 2017).
U.S. Appl. No. 29/594,358, Unpublished (filed Feb. 17, 2017).
U.S. Appl. No. 29/595,852, Unpublished (filed Mar. 2, 2017).
U.S. Appl. No. 29/595,857, Unpublished (filed Mar. 2, 2017).
U.S. Appl. No. 29/595,859, Unpublished (filed Mar. 2, 2017).
U.S. Appl. No. 29/614,532, Unpublished (filed Aug. 21, 2017).
U.S. Appl. No. 29/614,545, Unpublished (filed Aug. 21, 2017).
Azo Materials , ““BASF Develops Expanded Thermoplastic Polyurethane”, available http://www.azom.com/news.aspxNewsID=37360”, Jul. 2, 2013, 4 pages.
Office Action , Chinese Application No. 201610232841.4, dated Jun. 19, 2017.
U.S. Appl. No. 62/137,139, filed Mar. 23, 2015, Unpublished.
U.S. Appl. No. 29/664,097, filed Sep. 21, 2018, Unpublished.
U.S. Appl. No. 16/680,852, filed Nov. 12, 2019, Unpublished.
U.S. Appl. No. 29/663,342, filed Sep. 13, 2018, Unpublished.
U.S. Appl. No. 29/691,166, filed May 14, 2019, Unpublished.
U.S. Appl. No. 29/643,233, filed Apr. 5, 2018 , Unpublished.
U.S. Appl. No. 29/641,371, filed Mar. 21, 2018, Unpublished.
U.S. Appl. No. 29/663,029, filed Sep. 11, 2018, Unpublished.
U.S. Appl. No. 29/641,256, filed Mar. 20, 2018, Unpublished.
U.S. Appl. No. 29/641,223, filed Mar. 20, 2018, Unpublished.
U.S. Appl. No. 29/697,489, filed Jul. 9, 2019, Unpublished.
U.S. Appl. No. 29/691,854, filed May 20, 2019, Unpublished.
U.S. Appl. No. 29/694,634, filed Jun. 12, 2019, Unpublished.
U.S. Appl. No. 29/719,889, filed Jan. 8, 2020, Unpublished.
U.S. Appl. No. 29/679,962, filed Feb. 12, 2019, Unpublished.
U.S. Appl. No. 29/693,455, filed Jun. 3, 2019, Unpublished.
U.S. Appl. No. 16/465,485, filed May 30, 2019, Unpublished.
U.S. Appl. No. 29/706,274, filed Sep. 19, 2019, Unpublished.
U.S. Appl. No. 29/721,029, filed Jan. 17, 2020, Unpublished.
European Extended Search Report, European Patent Application No. 19150407.5, dated Apr. 9, 2019, 9 pages.
U.S. Appl. No. 15/130,012, “Advisory Action”, dated Aug. 29, 2018, 7 pages.
U.S. Appl. No. 15/130,012, “Final Office Action”, dated May 24, 2018, 26 pages.
U.S. Appl. No. 15/130,012, “Non-Final Office Action”, dated Jan. 26, 2018, 18 pages.
U.S. Appl. No. 15/130,012, “Restriction Requirement”, dated Oct. 13, 2017, 10 pages.
Office Action, Chinese Patent Application No. 201610232841.4, dated Jun. 19, 2017, 17 pages.
Office Action, Japanese Patent Application No. 2016-078622, dated May 8, 2018, 8 pages.
Office Action, Japanese Patent Application No. 2016-078622, dated Jan. 22, 2019, 6 pages.
Office Action, Japanese Patent Application No. 2016-078622, dated Jul. 16, 2019, 6 pages.
Notice of Opposition, European Patent Application No. 16165059.3, dated Oct. 9, 2019, 44 pages.
Wikipedia, Thermoplastic Polyurethane, 4 pages, Admitted Prior Art.
Office Action, German Patent Application No. 102015206900.1, dated Apr. 23, 2019, 12 pages.
Office Action, Japanese Patent Application No. 2016-078622, dated Nov. 24, 2020, 11 pages.
Related Publications (1)
Number Date Country
20190021435 A1 Jan 2019 US
Divisions (1)
Number Date Country
Parent 15130012 Apr 2016 US
Child 16139797 US