Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Physiological monitoring systems often measure a patient's physiological parameters, such as oxygen saturation, respiration rate, and pulse rate, and output these parameters on a display. When a parameter exceeds a threshold, an alarm can be triggered to request aid from a clinician. Alarms can be audible or visual.
The present disclosure describes example medical devices for performing spot check measurements, among other features. In general, the spot check measurements can involve applying a sensor or sensors to a patient, obtaining measurements, automatically sending the measurements to the patient's electronic chart, and/or optionally outputting some or all measurements audibly. Spot check measurements can be performed automatically in response to a sensor being removed or upon a button press—which can free clinicians to focus on patients. Automatically saving measurements to patients' charts instead of entering measurements manually can permit clinicians to focus on patients' needs. Further, audibly outputting parameter measurements can free clinicians to focus on patients rather than looking at measurements on a display.
In addition to or instead of calculating spot checks, a medical device can calculate an early warning score (EWS). The EWS can represent an aggregation of vital signs and/or clinical observations and may represent the potential degree of patient deterioration. The EWS may be a sum of contributor scores for each of a plurality of physiological parameters (such as oxygen saturation, respiration rate, pulse rate, level of consciousness, temperature, blood pressure, or others). Each of the contributor scores and the EWS itself may be grouped together in a single area of the display, instead of being spread about the display as in some currently-available devices. A trend graph of EWS scores over time may also be displayed instead of or together with the contributor scores.
For purposes of summarizing the disclosure, certain aspects, advantages, and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment. Thus, the features described herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
The features disclosed herein can be described below with reference to the drawings. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate examples of the inventions described herein and not to limit the scope thereof.
The present disclosure describes example medical devices with a display that can output (1) an early warning score and/or (2) spot check measurements.
An early warning score (EWS) can represent an aggregation of vital signs and/or clinical observations and may represent the potential degree of patient deterioration. The EWS may be a convenient aid to clinical assessment and may facilitate rapid response to patient deterioration. The EWS may be a sum of contributor scores for each of a plurality of physiological parameters (such as oxygen saturation, respiration rate, pulse rate, level of consciousness, temperature, blood pressure, or others). For example, the medical device can compute a contributor score for each physiological parameter measured based on predefined ranges, or user-configurable ranges.
Each of the contributor scores and the EWS itself may be grouped together in a single area of the display, instead of being spread about the display as in some currently-available devices. That way, a clinician can more easily see the contributor scores together with the EWS in a single area on the display, speeding up visual recognition of the patient's condition. As a result, the clinician may more readily apprehend the nature of the patient's condition and more quickly provide life-saving care when needed. The medical device can also output a user interface that enables a clinician to define a list of one or more actions to be taken if an EWS has a certain value. These actions can be based on hospital policies. Later, when the medical device is monitoring a patient and a certain EWS is reached, the medical device can output the list of one or more actions to instruct a clinician to perform those actions (for example, to perform certain lifesaving actions to protect the patient).
The EWS features are described initially with respect to
Example Patient Monitoring Environments
The patient monitor 100 is shown with an optional docked portable patient monitor (PPM) 102. The patient monitor 100 includes a display 104 and a docking station 106, which can mechanically and electrically mate with the portable patient monitor 102, each housed in a movable, mountable and portable housing 108. The housing 108 includes a generally upright inclined shape configured to rest on a horizontal flat surface, although the housing 108 can be affixed in a wide variety of positions and mountings and comprise a wide variety of shapes and sizes. Patient monitors without docked portable patient monitors may be used in other examples.
The display 104 may present a wide variety of measurement and/or treatment data in numerical, graphical, waveform, or other display indicia 110. The display 104 can occupy much of a front face of the housing 108, although the display 104 may comprise a tablet or tabletop horizontal configuration, a laptop-like configuration or the like. Other implementations may include communicating display information and data to a table computer, smartphone, television, or any display system currently available. The upright inclined configuration of
The patient monitor 100 can display an EWS. As mentioned above, the EWS can represent an aggregation of vital signs and/or clinical observations and may represent the potential degree of patient deterioration. There are several EWS protocols or scoring systems currently studied, such as Pediatric EWS (PEWS), Modified EWS (MEWS), and National EWS (NEWS). The EWS output by the patient monitor 100 can be based on any of these publicly-available scoring systems or a customized scoring system, as will be discussed below. The publicly-available scoring systems can use vital signs contributors—such as oxygen saturation, pulse rate, respiration rate, body temperature, and systolic blood pressure—and contributors input by clinicians, such as level of consciousness, use of supplemental oxygen, and urine output. The weighting and number of contributors may differ depending upon which EWS protocol is used. The patient monitor 100 can be customized for various predefined EWS protocols, or hospitals can configure their own set of required contributors, and optionally their relative weights, to create an EWS protocol or scoring system unique to their care environments.
By way of overview, the EWS may be initiated by a clinician (using, for example, a display option of the patient monitor 100), and then may be automatically calculated by the patient monitor 100. The patient monitor 100 may calculate contributor scores using measured values and/or clinician input, then combine these contributor scores into an aggregated EWS. The patient monitor 100 can output the EWS and associated contributor scores in a readily interpretable, high-visibility display with intuitive, optional multi-touchscreen navigation for easy and adaptable use in hospital environments.
Clinicians can choose to have the patient monitor 100 act as a stand-alone device (not connected to a network) perform EWS calculations, helping assist spot-check-based nursing workflows. Or, clinicians can use the patient monitor 100 as a network-connected device that performs EWS calculations and transmits these calculations to an electronic medical record database (see, for example,
Turning to
In the clinical computing environment 150, various patient devices 152, clinician devices 154, and nurse's station systems or kiosks 156 can communicate over a network 159 with a multi-patient monitoring system (MMS) 160. The MMS 160 is an example of a remote server that can communicate with patient devices and clinician devices. The network 159 may include a local area network (LAN), a wide area network (WAN), a public network (such as the Internet), a private network, or any combination of the same. For instance, the network 159 can include a wireless and/or wired hospital network or a network that connects multiple clinical facilities.
The patient devices 152 may be any of the patient monitors or monitoring devices described herein and may include bedside monitors, ambulatory or mobile monitors, in-home monitors, and the like. The patient devices 152 can be point-of-care devices, such as bedside devices or patient-worn devices. The patient devices 152 can receive input from physiological sensors coupled with a patient and may measure parameters such as oxygen saturation or SpO2, respiratory rate, blood pressure, heart rate or pulse rate perfusion, other blood gas parameters, brain activity, brain oxygen saturation, any of the other parameters described herein, and the like. The patient devices 102 can provide information about a patient's status, including current values of physiological parameters, waveforms, trend values, and historical values of physiological parameters over the network 159 to the MMS 160. The MMS 160 can in turn store this data in an electronic medical records (EMR) system 170.
In addition, the MMS 160 can provide this data to the nurse's station systems 156. The nurse's station systems 156 can include any type of computing device including, but not limited to, a desktop, laptop, tablet, phone or the like. The nurse's station systems 156 may also include clinical facility kiosks such as computers on wheels (COWs) (which may use laptop or tablet computers), which may be dispersed throughout a clinical facility. The nurse's station systems 156 can communicate with a plurality of patient devices 152 to receive information of a plurality of patients so that the nurse's station systems 156 can provide clinicians with the ability to monitor physiological parameter data for a plurality of patients.
The clinician devices 104 can include any mobile device, such as a laptop, tablet, cell phone, smartphone, personal digital assistant (PDA), or any other device. In some cases, the clinician devices can include desktop systems. In turn, the MMS 160 can send alarms or messages representing alarms to the nurse's station systems 156 and/or the clinician devices 154. Further, the patient devices 152 may have network capability that enables the patient devices 102 to send the alarm notifications over the network 109 to the MMS 160, the nurse's station systems 156 and/or to the clinician devices 154. Some alarms can include nonclinical alarms that may not represent that a physiological parameter has exceeded a threshold but instead may include information about a sensor that has been disconnected or otherwise has fallen off (often referred to as a probe-off condition), or a low battery of a patient device 152. Sensor disconnection or probe-off can be detected using any of a variety of techniques, some examples of which are described in U.S. Pat. No. 6,360,114, filed Mar. 21, 2000, titled “Pulse Oximeter Probe-off Detector,” and U.S. Pat. No. 9,750,461, filed Dec. 20, 2013, titled “Acoustic Respiratory Monitoring Sensor with Probe-off Detection,” the disclosures of which are hereby incorporated by reference in their entirety.
Example Patient Monitor User Interfaces
The display 200 includes two general regions, a first region 210 and a second (EWS) region 220. The first region 210 can include the majority of the display 200, and the second (EWS) region 220 includes a small horizontal section of the display below the region 210. The relative location of these two regions 210, 220 is unimportant and can be varied. The region 210 includes several horizontal rows 212. Each row 212 can represent a channel of data obtained by calculating a physiological parameter from a physiological signal, for example, received from a sensor coupled to a patient. Several rows 212 include numbers representing physiological parameter values (such as 97 for SpO2 percentage and 112 for pulse rate). In addition, the rows 212 include graphs that depict trend lines corresponding to those parameters over time.
In contrast to the rows 212 in the first region 210, the second region 220, also referred to as an EWS region, depicts a plurality of boxes 220 with numbers inside the boxes. Each box 220 is above the name of one of the parameters listed in the first region 210. For instance, a first box 222 is above the parameter SpO2 and has the number 0 in it. The next box is above the PR, or pulse rate, parameter and has the number 2 in it, and so on. To the right of these boxes (although optionally may be located to the left or elsewhere) is a larger box 224 that includes the EWS—here, having a value 8. The EWS value of 8 is the sum of the numbers in the boxes 222 in this example.
Each of the numbers in the smaller boxes 222 can be considered a contributor score which contributes to the EWS in the box 224. Each contributor score can represent a severity level of the physiological parameters depicted in the region 210. Some of the contributor scores correspond to parameters that are not shown in the region 210, such as LOC or level of consciousness and supplemental oxygen (Sup.O2). The input of these scores may be performed by clinicians manually and will be discussed in greater detail below. The contributor scores can range from 0 to 3, with 0 representing the least severe and 3 representing the most severe. This scale is somewhat arbitrary and may be changed in other implementations.
In general, the higher the contributor scores in any given box 222 represents a higher severity level for the corresponding physiological parameter. For pulse rate, for instance, a very high or a very low pulse rate may represent a greater degree of severity than an average pulse rate. Thus, the higher or lower the extreme of the pulse rate, the higher the pulse rate contributor score might be. Other physiological parameters may have different scales, but in general, the worse the parameter value (for example, corresponding to worse health status of the patient), the more severe the contributor score may be. The resulting EWS, which may be an aggregation of the contributor scores, can therefore directly reflect the severity of multiple measured physiological parameters.
Thus, the EWS can represent a rough indication of the health status of the patient. The lower the EWS, the greater the likelihood that the patient is in better health than with a higher score. A higher score reflects that, likely, multiple of the contributor scores are relatively high. Thus, for instance, in this example, pulse rate has a score of 2, respiratory rate 1, temperature 2, and level of consciousness 3, resulting in an EWS of 8. This EWS indicates that greater attention may be needed for the patient than if the EWS were lower.
The boxes 222 and 224 around the scores are of course optional but help to draw visual attention to the individual contributor scores in their EWS. In fact, the color of the boxes 222 may correspond directly to the values of the contributor scores within the boxes 222. Likewise, the color of the EWS box 224 may correspond to the value of the EWS in the box 224. For example, one color scheme may be represented with green as a low score, yellow as a slightly higher score, orange as a higher score than yellow, and red as a most severe score. With colors and numbers representing the values of the physiological parameters in the box or region 210, an easy and readily understandable display method can be provided for conveying the health status of the patient to a clinician. Thus, a clinician can look at the EWS region 220 of the display and readily grasp whether or not the patient is likely in need of greater medical assistance than he or she is currently receiving.
Viewing the EWS region 220 may be easier than looking at the region 210 and deciphering several different physiological parameter values, many of which may be on different scales and thus hard to interpret together. In fact, because the physiological parameters have different scales—for instance SpO2 goes from 0 to 100% while pulse rate may range from approximately 40 or lower to well over 200—a clinician may need greater training to understand and interpret the physiological parameter values than a clinician may need to interpret the contributor scores and the EWS. Thus, a clinician with perhaps less training may be able to glean more information about the health status of the patient than the clinician might have been able to otherwise, merely by looking at the EWS region 220. Even clinicians with more training can more quickly glean information about patient health by reviewing the EWS region 220.
The region 210 and the region 220 can be two separate regions that may or may not overlap. The region 220 can be in a horizontal line or horizontal section and can group together some or all of the contributor scores and the EWS in that section. By doing so, a clinician can readily visually perceive the various contributor scores and EWS together. In contrast, if the contributor score or EWS were distributed amongst the region 210, for example, with each contributor score next to the physiological parameter value, then a clinician would have to hunt and peck to find the different contributor scores and EWS. Of course this would take longer to identify the different contributor scores. Thus, by grouping the contributor scores and the EWS together in a horizontal row (or in some other area grouped together), the clinician can more quickly ascertain the health status of the patient and therefore more quickly react to the needs of the patient.
The horizontal row of contributor scores and EWS value may instead be vertical, but nevertheless grouped together. Or, the contributor scores may be grouped together in multiple rows in some type of rectangular or square matrix or the like. Essentially, any combination of the contributor scores and EWS graphically may be provided so long as they are grouped together in some fashion so that they are readily visually perceptible to a clinician. The EWS may be in a separate area of the display from the grouped together contributor scores or may be grouped together with the contributor scores as shown.
The EWS can be calculated or derived using any of a variety of currently available warning score systems, as discussed above (such as MEWS or NEWS). Further, as will be described in greater detail, the hospital or administrative staff may be provided functionality through the medical device or patient monitor 100 or a separate device in communication thereof, to customize the parameters used in the EWS as well as optionally other aspects of the EWS.
In addition to the features shown, a last time calculated value 226 is shown underneath the EWS 224. The last time calculated value 226 depicts when the last time the EWS was calculated and may be used when the EWS is calculated in a spot check fashion, on demand at the request of a clinician. Instead of calculating the EWS as a spot check, the EWS can be calculated continuously, which can include calculating the EWS automatically along with changes in the physiological data. Continuous does not necessarily mean in an analog sense, where it would always be changing, but rather, may be performed using discrete calculations that are rapid enough (such as once a second or once a minute) to be relatively more continuous than infrequent spot checks. The continuous version of the EWS calculation may be useful to give the clinician a moment-by-moment indication of changing health status of the patient. A spot check of the EWS may also be calculated periodically in an automatic fashion, where the EWS is calculated for instance every hour or every two hours or upon clinician request.
More generally, each of the user interfaces shown in
Further, user interface controls may be combined or divided into other sets of user interface controls such that similar functionality or the same functionality may be provided with very different looking user interfaces. Moreover, each of the user interface controls may be selected by a user using one or more input options, such as a mouse, touch screen input (for example, finger or pen), or keyboard input, among other user interface input options.
Example EWS Calculation Process
Turning to
At block 302, a processor calculates physiological parameters from physiological signals obtained from the patient. The physiological signals may be obtained from any of a number of sensors including optical sensors, piezoelectric sensors, electrical sensors, biomechanical sensors, or combinations of the same. For instance, optical sensors may provide parameters such as oxygen saturation or SpO2, pulse rate, pleth variability index (PVI), perfusion index (PI), total hemoglobin or SpHb, methemoglobin or SpMet, carboxyhemoglobin or SpCO, among others. A piezoelectric sensor may be used to calculate parameters such as respiratory rate and pulse rate. Electrical sensors can be used to calculate parameters such as respiratory rate, heart rate, and other ECG-related parameters obtained from the electrocardiogram. Biomechanical sensors, such as bioimpedance sensors, can be also used to capture parameters like respiratory rate.
Other example parameters may be calculated using any of a variety of sensors, such as blood glucose level (using an optical sensor or finger prick sensor), blood pressure (using a biomechanical sensor such as an oscillatory cuff or an optical sensor), and temperature (using a temperature probe or the like), among others. Any number of physiological parameters may be selected to be calculated as a basis for inclusion in an EWS. Seven parameters, nine parameters, or 14 parameters can be selected in various implementations. More or fewer parameters may instead be selected. Further, the number and type of parameter selected may be chosen by a clinician or the hospital.
Referring again to
At block 306, it is determined by the processor whether any manual parameters are entered. Manual parameters can include parameters entered manually by a clinician, which may be measured using other instruments such as a temperature probe or parameters that are observed by a clinician without using an instrument (such as LOC, which may correspond to the degree to which a patient is aware of their surroundings). If any manual parameters are entered at block 306, then the process 300 loops back to block 304, where parameter scores or contributor scores are calculated for each of those manual parameters in a similar fashion to the automatic parameters.
Otherwise (and eventually), the process 300 proceeds to block 308, where the processor computes an EWS from the contributor scores. This may include a simple summation or a more complex aggregation. The aggregation may be a summation or may be a weighted summation where different weights are applied to different parameters. Some parameters may be considered more important for assessing the overall health status of the patient than others, and thus, greater weights may be applied to these parameters, for example, in the form of a coefficient. Other scales may of course be used, and weighting schemes may be linear or exponential.
At block 310, the processor outputs the EWS and the contributor scores together on the display, such as in the manner discussed above with respect to
Additional Example Patient Monitor User Interfaces
The button 410 can be a clear button which can be used to clear the EWS and contributor scores shown in
Turning back to
Instead of providing the button 420, continuous calculations or updates of EWSs and contributor scores may be made without requests from a clinician to do so. Although the buttons 410 and 420 are displayed in the same horizontal row as the EWS and contributor scores, they need not be, but instead could be displayed elsewhere on the display 400.
The region 620 includes user interface controls for specifying various parameters measured manually or independent of the physiological sensors connected to the patient or with other physiological sensors that the clinician may directly use with the patient. Examples of these parameters include temperature, blood pressure (systolic or otherwise), level of consciousness and supplemental O2, among others. Slider controls allow temperature and blood pressure to be set by moving the slider from left to right, and dropdown box controls allow the level of consciousness and supplemental O2 settings to be computed or selected. The region 630 can also allow manual editing of the physiological parameters shown. For instance, if a clinician manually measures a patient's pulse rate (PR) and identifies a different pulse rate than was obtained automatically from a sensor, the clinician can enter the manual measurement in the region 630.
Turning to
Turning to
The patient monitor display 1000 can provide clinicians or hospital staff with the functionality to specify which parameters should be included in calculating an EWS. For example, the display 1000 can enable selecting which parameters should be used to compute contributor scores. Further, the display 1000 can enable a user to specify what ranges of those parameters result in certain contributor scores.
The display 1000 is divided into two example sections: parameter selection (for selecting parameters to be contributors to EWS) and parameter ranges (for specifying ranges corresponding to contributor scores). In the parameter selection section, a box 1010 lists available parameters which may be selected, for example, by selecting any of the available parameters (for example, via touch or other input) and then selecting an add button 1030 to add those parameters to a selected parameters box 1020. Parameters in the selected parameters box 1020 can be used to compute the EWS. Any number of parameters may be selected for addition to the box 1020 from the available parameters. Available parameters may also be defined by the hospital and may include parameters that are measured continuously using physiological sensors, parameters measured with spot checks using physiological sensors such as temperature or blood pressure, and/or parameters measured by observation of a clinician such as level of consciousness. The selected parameters in this example include SpO2, pulse rate, respiratory rate, temperature, and systolic blood pressure. With this selection made, a patient monitor can use each of these parameters to compute contributor scores and an EWS.
In the parameter ranges section of the display 1000, an example set of user interface controls 1040, which are sliders in this example, are shown for the SpO2 parameter. The slider controls 1040 can enable a user, such as a clinician or hospital staff, to specify ranges for various severity levels corresponding to contributor scores. These ranges are shown having been selected corresponding to different severity levels: green, yellow, orange and red. These levels may correspond to contributor scores 0, 1, 2 and 3 discussed above. The number of ranges and the actual colors or scores may vary. Some parameters do not lend themselves directly to ranges but rather have a series of values that could be mapped one-to-one to contributor scores by a user using the display 1000. For example, level of consciousness may have single values that users can select from the display to correspond to different contributor score severity values.
Further, although not shown, the display 1000 could be adapted to provide functionality for a user to specify weights to apply to contributor scores. The weights can reflect the relative importance of contributor scores and may be used to combine the contributor scores into a single EWS using a weighted combination. Conceptually, a default weight of 1 can be effectively applied to each contributor score such that adding each contributor score results in the EWS. However, it could be desired to create a normalized scale for EWSs such as 0 to 1, 1 to 10, 0 to 100, or some other range. The parameters contributing to the EWS could be weighted to produce a normalized score. If additional parameters are added, the weights may be automatically adjusted by the patient monitor to preserve normalization.
The weightings could be selected by users (for example, clinicians or staff) to emphasize which parameters reflect a greater indication of patient health. For instance, vital signs may be prioritized above non-vital signs as being more indicative of the patient's health status. But any number of parameters may be weighted higher than others to meet a hospital's needs and goals for measuring patients' health. Further, weights and ranges may be set differently for different segments of the patient population. For example, different weights may be selected based on age (such as adult versus neonate), gender, and based on different co-morbidities or diseases. A patient who has a particular disease may have a different set of ranges or weights applied to that patient, which may be defined in a user interface such as the display 1000.
Turning to
The new regions 1230 and 1240 can provide instructions for performing a spot check of different parameters using separate sensors—temperature and noninvasive blood pressure (NIBP) in this example. Following the instructions in those regions, measurements may be taken. Then, a display such as in
Turning to
The display 1400 also includes a user interface control 1412 that may be selected (for example, by swiping) to display an action list as shown in
Turning to
Example Hospital Environment
The patient monitor 1700 is an example representation of any of the patient monitors discussed herein, such as the patient monitor 100. The patient monitor 1700 can be used to implement any of the features described herein, just like the patient monitor 100.
The gateway 1750 may be a server or appliance that collects data from multiple patient monitors and forwards that data to the EMR 1752. The EMR 1752 is an example electronic medical record database that stores patient medical data. The hospital system 1754 may be a server or set of servers in communication with the nurse's station system 1756 as well as in communication with other nurse's station systems throughout the hospital. The hospital system 1754 may manage electronic scheduling for clinicians as well as paging or other features. The gateway 1750 and the hospital system 1754 may be part of the same system. The gateway 1750 and/or the hospital system 1754 may be examples of the MMS 160 described above with respect to
The patient monitor 1700 can be in communication with one or more non-invasive sensors coupled to a patient (not shown). The patient monitor 1700 can be used for continuous or spot check monitoring of one or more physiological parameters. The patient monitor 1700 may include hardware and software that processes physiological signals received from the one or more non-invasive sensors to compute contributor scores and early warning scores, for example, based on the process 300.
The patient monitor 1700 can communicate EWS data (including, for example, both contributor scores and an EWS) to the gateway 1750 across the network, which can format the data for storage in the EMR 1752 (for example, according to an HL7 data specification). The hospital system 1754 can access the EWS data and can forward this data to the nurse's station system 1756, so that clinicians not close to the patient monitor can be informed. The patient monitor 1700 may also communicate the EWS data directly to clinician devices (not shown, such as mobile phones, tablets, laptops, or desktops) over the network.
The nurse's station system 1756 can receive the EWS data from the hospital system 1754 and output the data on a display 1762. The display 1762 can include data 1760 corresponding to a plurality of patients as well as detailed data 1764 corresponding to a specific patient. The EWS data can be shown as data 1766 in the detailed data 1766 and may include just the EWS score (this example) or the entire set of EWS data (including contributor scores), which may be formatted as shown in
Example Hardware Description of a Patient Device
An example core board 2312 includes the main parameter, signal, and other processor(s) and memory, a portable monitor board (“RIB”) 2314 includes patient electrical isolation for the monitor 2102 and one or more processors, a channel board (“MID”) 2316 controls the communication with the channel ports 2212 including optional patient electrical isolation and power supply 2318, and a radio board 2320 includes components configured for wireless communications. Additionally, the instrument board 2302 may include one or more processors and controllers, busses, all manner of communication connectivity and electronics, memory, memory readers including EPROM readers, and other electronics recognizable to an artisan from the disclosure herein. Each board comprises substrates for positioning and support, interconnect for communications, electronic components including controllers, logic devices, hardware/software combinations and the like to accomplish the tasks designated above and others.
The instrument board 2302 may comprise a large number of electronic components organized in a large number of ways. Using different boards such as those disclosed above may provide organization and compartmentalization to the complex system. Of course, using different boards for different functions is optional.
Detailed Spot-Check Measurement Examples
Generally speaking, there can be at least two ways to obtain physiological parameter measurements. These include continuous monitoring and spot check measuring. A third approach is a hybrid of these two where a patient is monitored continuously for a short period of time to obtain a snapshot of physiological information. Continuous monitoring can involve taking measurements of a patient continuously or at least approximately continuously over an extended period of time. This type of monitoring is commonly done on hospital floors, in emergency rooms, and in other settings where a patient's vital signs or other physiological parameters need to be observed over a period of time. In continuous monitoring, measured values are frequently compared with predetermined criteria to identify any changes in the measured values that might warrant clinician attention. It is common, for instance, in continuous monitoring to alarm if a patient's measurements have exceeded bounds of safety such that attention from a clinician (for example doctor or a nurse) may be warranted.
Spot check measurements, on the other hand, are typically performed as a single measurement at one point in time, instead of several measurements over a period of time as in continuous monitoring. A clinician may perform a spot check measurement by placing a sensor on a patient (or by manually observing some characteristic of the patient) and recording a measured physiological parameter value on the patient's chart (paper or electronic). Like continuous measurements, spot check measurements (sometimes referred to herein simply as “spot checks”) may be performed in a hospital or in any other setting.
Clinicians may input spot check measurements into a paper chart or into a computing device, such as a computer on wheels (COW), tablet, or other mobile device. One problem with manually inputting spot check measurements in this manner is that it can take a clinician's focus away from the patient. While the clinician is inputting patient data, the clinician typically is not directly observing the patient and is instead focused on manual entry. Patients may perceive clinicians as ignoring them or less attentive to them while clinicians input parameters. Further, manual entry of spot check values can be cumbersome and time intensive for clinicians. Thus, both patients and clinicians could benefit from reducing or eliminating manual entry of spot checks. Some benefits of avoiding or reducing manual charting can include better patient care due to more attentive clinicians, more time for clinicians to spend with patients, and less time on mundane tasks and fewer clerical errors.
Example systems and methods for performing spot check measurements described herein can reduce or alleviate some or all of the problems with existing spot check measurement approaches. These spot check measurements may be performed anywhere, including in a hospital, home, or other care setting. In general, the spot check measurements can involve applying a sensor or sensors to a patient, obtaining measurements, automatically sending the measurements to the patient's electronic chart (for example, in an EMR database), and/or optionally outputting some or all measurements audibly. Spot check measurements can be performed automatically in response to a sensor being removed or upon a button press—which can free clinicians to focus on patients. Automatically saving measurements to patients' charts instead of entering measurements manually can permit clinicians to focus on patients' needs. Further, audibly outputting parameter measurements can free clinicians to focus on patients rather than looking at measurements on a display.
Referring specifically to
A menu option (not shown) can be accessible from any of the displays described above, which can be selected to cause the patient device 100 to reboot into a locked spot check mode. It can be advantageous to have a device dedicated to spot check mode or otherwise locked into spot check mode so that it may be used for this purpose and not confused with devices that are used for continuous monitoring. A spot-check dedicated monitor may be put on a wheeled cart or may be carried from room to room in a hospital or other clinical setting, where it can be used to measure spot check parameters of several different patients. Thus, unlike continuous mode where a monitor is assigned to a single patient for an extended period of time, a monitor or patient device in spot-check mode may be used with many patients over a short period of time.
The spot check mode may be changed back to continuous mode by a clinician selecting another menu option (not shown). If a clinician were to select continuous mode, the patient device 100 may be rebooted into that continuous mode.
Turning to
Turning to
In addition, action menus 2340 may be selected if desired to cause action menus to be displayed. In
Turning to
Turning to
With all these measurements populated, a snapshot may now be taken by selecting a snapshot button 2610 at the bottom of the screen. Selection of this button can cause the particular parameter values shown to be saved as snapshot parameters. Further, the optical parameters may also be frozen and stop measuring continuously once the snapshot button 2610 is selected or when the optical sensor is removed from the patient, as will be discussed in greater detail below.
Turning to
Some of the measurements in
Although not all the measurements are shown editable with the buttons 2732, any number of measurements may be so editable. Further, the measurements that may be editable may be selected by the hospital or clinical staff prior to deploying the patient device 100, for example, according to hospital policies. Pulse rate, respiratory rate, and temperature are some examples of parameters that can be overwritten manually using the user interface 2700 (in addition to the manual parameters in the area 2350 below). An example selection of one of the buttons 2732 to perform manual entry can cause an example user interface 2900 or the like to be shown as depicted in
Referring again to
Turning to
User selection of one of the patient names 3010 may cause a user interface 3100 of
In the example user interface 3200, a line 3240 is drawn vertically across each row 3220 and intersects several dots representing spot checks performed at one time for a plurality of parameters. The values of those parameters along the line 3240 is shown larger than surrounding parameter values to indicate that this particular set of spot checks is currently selected by a user. Arrow buttons 3260 at the bottom of the display permit a user to cause the line 3240 to be moved from left to right to different spot check sets to change the focus on a different set of spot checks. This feature may be useful when the cluster of spot checks (see
Buttons 3250 at the bottom of the display can permit the time scale of the trends to be manipulated. In
Turning to
At block 3501, the patient device receives a physiological signal from a sensor coupled with a patient. At block 3502, the patient device measures one or more physiological parameters from the signal. These parameters might include, for example, oxygen saturation, pulse rate, respiratory rate (optical-, acoustic-, or electrocardiogram-based), perfusion index, pleth variability index (PVI), oxygen reserve index (ORI), carboxyhemoglobin concentration (SpCO), methemoglobin concentration (SpMet), and total hemoglobin concentration (SpHb), to name a few. Many other parameters may be measured in other implementations.
At block 3504, the patient device displays the physiological parameters (see, for example,
At block 3507, once the snapshot option or sensor has been disconnected, the patient device selects the currently displayed parameters as spot check measurements, freezes the display of the spot check measurements in block 3508, and outputs audio of the spot check parameters at block 3510. The audio is optional. However, audio can be beneficial because if the parameter values are output audibly, then a clinician does not need to look at a display to determine what those measurements are. For example, the patient device might audibly output the following: “97 percent SpO2,” “65 beats per minute pulse rate,” or the like.
Turning to
At block 3602, the patient device receives a physiological signal from a sensor coupled with a patient. At block 3604, the patient device measures the physiological parameters from the signal (see, for example,
The following description provides additional examples of the EWS features and spot check features described above, as well as a new example feature—vital signs check mode. Any of the features described above can be implemented together with any of the features described below. Further, any of the patient monitors or other patient devices described herein can implement the features described below.
One difference between the patient monitor display 200 of
The early warning score shown in the box 3724 may be calculated as described above. Although the appearance of the box 3724 is that of a 3-dimensional (3D) box, this is optional, and the box 3724 may be similar to a two-dimensional box as shown in
Another example feature of the EWS region 3720 is a vertical emergency bar 3726. The vertical emergency bar 3726 can cover an entire vertical portion of the EWS graph. The EWS region 3720 essentially includes a graph ranging from EWS scores of 0 to 15. The vertical emergency bar 3726 extends from 0 to 15 (the entire vertical range of the trend graph) in this example, representing that an emergency has occurred. Thus, the vertical emergency bar 3726 can be very visible. The emergency bar 3726 can correspond to when one of the contributor scores and hence the EWS has an emergency value, as described above with respect to
Also shown is an example EWS menu button 3730. Selection of this button can perform a similar action as described above with respect to the button 230 of
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Referring again to
Turning to
Turning to
Turning to
In addition, measurement areas 4930 indicate that measurements are currently being taken from temperature and NIBP sensors, similar to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
In some cases, however, it may not be possible or desirable to use scanning technology. Instead, the patient lookup user interface 5900 or a similar user interface may be used to look up the patient. As shown, a list of patients 5920 is provided, and a search box 5910 is provided to search for a particular patient. Once found, the patient can be selected from the list 5920 to admit them automatically to the patient monitor. A similar user interface like the one shown in
Turning to
Turning to
Various alarm interfaces will now be described. Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Turning to
Spot-Check Overview
Any of the features described above, including EWS features, spot-check features, and vital signs check features, can be combined with any of the additional optional features set forth below. Spot-check measurements, for instance, can involve applying a sensor or sensors for a period of time to a patient and obtaining signals from the sensors, which can be utilized to determine one or more of various measurements, such as one or more physiological parameters associated with an individual. In general, a spot-check system can employ a credit- or token-based scheme in which one or more credits can enable spot-check monitor and/or a sensor to make a single measurement of a group of predefined parameters. Expressed differently, a credit can, in effect, act as a voucher that can be exchanged for a group of measurements.
The number of spot-check credits, and thus the number of remaining or available spot-check system uses, associated with any given user, patient monitor, or sensor can be controlled or limited. For example, the number of spot-check credits can correspond to a service life of a sensor or patient monitor, which can be defined in terms of a permitted or estimated number of available uses or amount of usage time. In some cases, an available use (and/or a signal spot-check credit) can correspond to a single measurement of a group of predefined parameters and/or can correspond to receiving a single signal (for example, over a particular duration of time) from a spot-check sensor. Accordingly, the credits can advantageously provide a mechanism to inform users that a medical device, such as a sensor, has exceeded its designed service length. In addition or alternatively, the number of spot-check credits can correspond to a number of prescribed or recommended measurements. For example, the tokens can be provided to the patient by a physician based on a prescription. Still, in some cases, the spot-check credits can represent a quantum of currency, specifying a price per use or per unit time. Further, tokens can correspond to a subscription service.
A spot-check system can include a physiological monitor in communication with a sensor so as to perform spot-check measurements in conjunction with the sensor. The physiological monitor or the sensor can include a memory that stores a number of remaining spot-check credits. The monitor can read the number of remaining spot-check credits, and the monitor can be enabled to make a physiological measurement in conjunction with the sensor if the number of remaining spot-check credits is greater than a threshold (non-limiting example: zero). The number of spot-check credits can be decremented in response to a determination that a valid spot-check signal was received.
For various reasons, a signal from a spot-check device may be invalid and/or a measurement or parameter determined from a signal from a spot-check device may be invalid. It will be appreciated that throughout this specification reference is made to an invalid signal. In this sense it is to be understood that the term invalid signal can be broadly construed as any signal that is determined to be unreliable or inaccurate. Furthermore, in some cases, an invalid signal can be broadly construed as corresponding to an undesired measurement, irrespective of whether the signal was reliable or accurate. Example considerations in the determination of an invalid signal include, but are not limited to, the stability of the signal, the presence of interference on the signal, a signal Identification and Quality indicator (“signal IQ”), a comparison to previous or valid signal, a confidence of the signal, patient movement during the sensing of a sensor, the placement of the sensor, cancellation of a measurement, timing of a cancellation, a successive or duplicative measurement, or the like.
In some cases, the number of spot-check credits is not decremented in response to a determination that an invalid spot-check signal was received. In other words, despite taking receiving a signal, the spot-check system can effectively ignore or disregard it due to it invalidity. By determining whether a spot-check signal is valid or invalid, the spot-check system is advantageously improving patient monitoring.
System Overview
Each of the sensors 6904A, 6904B can include a combination of one or more various sensors. For example, the sensors 6904A, 6904B can include, but are not limited to, a spectrometer, a pulse oximetry device, a plethysmograph sensor, a pressure sensor, an electrocardiogram sensor, or acoustic sensor, among other sensors. The tissue sites 6906A, 6906B can include one or more of a finger, a nose, a limb, a head, an ear, a neck, an upper body, or a lower body.
The spot-check monitor 6902 can include a sensor interface and a processor. The spot-check monitor 6902 can receive a signal from one or more of the sensors 6904A, 6904B and can determine, based on the received signal, one or more physiological parameters, such as blood oxygen saturation (SpO2), pulse rate (PR), pulse rate variability (PRV), Perfusion Index (Pi), Total Hemoglobin (SpHb®), Oxygen Content (SpOC™), Pleth Variability Index (PVi®), Methemoglobin (SpMet®), Carboxyhemoglobin (SpCO®), Acoustic Respiration Rate (RRa®), a concentration of an analyte, pulse pressure variation (PPV), stroke volume (SV), stroke volume variation (SVV), mean arterial pressure (MAP), central venous pressure (CVP), Carboxyhemoglobin (HbCO), or Methemoglobin (HbMet), among other parameters.
System Structure
Referred to
The DSP 7112A can include one or more data or signal processors configured to execute one or more programs for determining physiological parameters from input data. The DSP 7112A can perform operations that include calculating and outputting one or more plethysmograph measures, such as PVI®. The operations performed by the DSP 7112A can be implemented in software, firmware or other form of code or instructions, or logic or other hardware, or a combination of the above.
The DSP 7112A can communicate with one or more input or output devices 7120. The one or more input or output devices 7120 can include a user interface 7122, controls 7124, a transceiver 7126, and a memory device 7128.
The user interface 7122 can include a numerical or graphical display that provides readouts of measures or parameters, trends and bar graphs of measures or parameters, visual indications that measures are, say, above a threshold, visual indicators like LEDs of various colors that signify measure magnitude, or device management interfaces, which can be generated by LEDs, LCDs, or CRTs, for example. The user interface 7122 can include an audible output device that provides readouts or audible indications that measures are, say, above a threshold. The user interface 7122 can include one or more input devices like a keypad, touch screen, pointing device, voice recognition device, and computer that can be used to supply control or configuration data, such as initialization settings, from the user interface 7122 to the instrument manager 7110. In some implementations, the user interface 7122 can be an interface for devices as well as users.
The controls 7124 can be outputs to medical equipment, such as drug administration devices, ventilators, or fluid IVs, so as to control the amount of administered drugs, ventilator settings, or the amount of infused fluids. In some implementations, the spot-check monitor 7002 can use the controls 7124 to automatically treat the patient. For example, controls 7124 can provide fluid to the patient, provide medication to the patient, turn on a fan to cool the patient, or adjust a temperature of a room to heat or cool the patient.
The transceiver 7126 via an antenna can transmit information about operation of the spot-check monitor 7002 to an electronic device or receive control or configuration data for operating the spot-check monitor 7002. The transceiver can, for example, communicate via a computer network or intermediary device or directly with the electronic device using electromagnetic radiation.
The memory device 7128 can be used to store information about operation of the spot-check monitor 7002. This information can, for example, include readouts of measures or parameters, trends and bar graphs of measures or parameters, visual indications or indicators.
The spot-check monitor 7202 can include an instrument manager 7210 that monitors or controls the activity of the pleth sensor 7204A using DSP 7212A and the pleth sensor 7204B using DSP 7212B. The instrument manager 7210 can include a controller for managing operations of the instrument manager 7210.
Many of the components of the spot-check system 7200B can operate similarly to corresponding components of the spot-check system 7100. One or more input or output devices 7120, user interface 7122, controls 7124, transceiver 7126, and memory device 7128 can respectively operate similarly to one or more input or output devices 7220, user interface 7222, controls 7224, transceiver 7226, and memory device 7228 of the spot-check system 7200B. Additionally, the DSP 7112A, front-end 7114A, drivers 7116A, detector(s) 7108A, and emitters 7109A can respectively operate similarly to DSP 7212A, front-end 7214A, drivers 7216A, detector(s) 7208A, and emitters 7209A of the spot-check system 7200B. Moreover, the DSP 7112A, front-end 7114A, drivers 7116A, detector(s) 7108A, and emitters 7109A can respectively operate similarly to DSP 7212B, front-end 7214B, drivers 7216B, detector(s) 7208B, and emitters 7209B of the spot-check system 7200B.
The DSP 7312B can receive via a front-end 7314B one or more pressure signals from transducer(s) 7308B of the pressure sensor 7304B. The transducer(s) 7308B can generate the one or more pressure signals responsive to detected pressure, such as pulse pressure, at the tissue site 7306B. The front-end 7314B can, in turn, filter or pre-process the one or more pressure signals and convert the one or more pressure signals into digital data for input into the DSP 7312B. The digital data from the front-end 7314B can be referred to herein as a pressure waveform.
The DSP 7312B can include one or more data or signal processors configured to execute one or more programs for determining physiological parameters from input data. The DSP 7312B can perform operations that include calculating and outputting one or more pressure measures, such as PPV. The operations performed by the DSP 7312B can be implemented in software, firmware or other form of code or instructions, or logic or other hardware, or a combination of the above.
Many of the components of the spot-check system 7300B can operate similarly to corresponding components of the spot-check system 7100. One or more input or output devices 7120, user interface 7122, controls 7124, transceiver 7126, and memory device 7128 can respectively operate similarly to one or more input or output devices 7320, user interface 7322, controls 7324, transceiver 7326, and memory device 7328 of the spot-check system 7300B. Additionally, the DSP 7112A, front-end 7114A, drivers 7116A, detector(s) 7108A, and emitters 7109A can respectively operate similarly to DSP 7312A, front-end 7314A, drivers 7316A, detector(s) 7308A, and emitters 7309A of the spot-check system 7100. Moreover, the instrument manager 7210 can operate similarly to instrument manager 7310 of the spot-check system 7300B.
As illustrated in
Although not illustrated in
One or more of the components relating to signal acquisition and/or processing can be incorporated into one or more connecting cables, the sensors themselves, or are otherwise closer to the sensor sites. As such, the patient monitor can include primarily the input or output devices and an instrument manager (if appropriate). In addition, some of the components are illustrated as separate units but can be combined. For instance, front end can be combined into one or more front ends, drivers can be combined into one or more drives, can be combined into one or more DSPs, etc. By reducing the number of components included in the patient monitor, the monitor can be smaller in size and/or more portable, which can be more convenient for home or “spot check” use.
Invalid Signal
As described herein, for various reasons, a signal received from a spot-check device, such as a sensor, may be invalid. That is, the signal generated by the sensor and/or a measurement using the signal is unreliable, inaccurate, or otherwise undesired. When implementing a credit- or token-based scheme in which one or more credits can enable the spot-check monitor and/or a sensor to make a single measurement, it can be undesirable or objectionable to exchange or charge a credit for these invalid signals or measurements. Accordingly, in some cases, the spot-check system can perform various checks on the signal received from the sensor to determine whether the signal should be deemed valid or invalid. If determined to be an invalid signal, in some cases, the spot-check system can be configured not to charge a credit for that invalid measurement. Put a different way, the spot-check system can be configured not to decrement the number of available spot-check uses in response to a determination that a spot-check signal was invalid.
In some instances, the spot-check monitor can determine the validity of a signal using one or more techniques, which may be referred to herein as a series of checks or tests that the spot-check monitor can perform on the signal to assess its validity. The spot-check monitor can suitably arbitrate between the techniques, or use multiple techniques. Based on one or more determinations, the spot-check monitor can prioritize (or weight) some techniques over other techniques. For example, if the spot-check monitor determines or perceives a technique to be inaccurate or unreliable, the spot-check monitor can give that technique little or no weight. Similarly, if the spot-check monitor determines or perceives a technique to be accurate or very reliable, the spot-check monitor can heavily weight that technique high or even use that technique for the sole determination.
The spot-check monitor can assess a Signal IQ of the signal to determine whether the signal was valid or invalid. Signal IQ is a Signal Identification and Quality indicator of the Masimo pulse oximetry waveform data, and can directly relate to SpO2 and/or pulse rate data, among other physiological data. The spot-check monitor can analyze an incoming signal and remove noise or motion components to measure arterial oxygen saturation and pulse rate using one or more algorithms. In some cases, the Signal IQ can be representative of the relative confidence if these algorithms, which can represent the degree of success the algorithm had in finding and extracting a signal based upon its particular specialty. A Signal IQ check can become a particularly effective assessment during motion, low perfusion or environmental interference, such as when the pleth can be completely obscured by artifact. In some cases, a low Signal IQ results in a determination that the signal was invalid. In contrast, a high Signal IQ can result in a determination that the signal was valid.
The spot-check monitor can additionally or alternatively assess the signal using various other checks. For example, the spot-check monitor can compare or analyze the signal to calculate, derive or determine an accuracy or a confidence value of a signal. For example, the spot-check monitor can compare the signal to a previously determined or model signals. The accuracy or confidence level determination can be based at least in part on how close the comparison to the other signals are. For example, if the signal satisfies a threshold corresponding to the previous or model measurement then the monitor can determine that the signal was valid. In contrast, if the signal does not satisfy a threshold corresponding to the previous or model measurement then the monitor can determine that the signal was invalid.
Furthermore, the monitor can calculate one or more parameters from the received signal and can compare the calculated parameters to previously calculated or known parameters to determine the validity of the signal. For example, if a pressure measure determined from a received signal changed a small amount as compared to a model pressure measure, the spot-check monitor can determine that the change in the pressure measure may be due partly, largely, or entirely to vascular tonal change (e.g., expansion and contraction of the patient's vascular system). Accordingly, the spot-check monitor can determine that the pressure measure is invalid and therefore the signal is invalid. As described herein, the spot-check monitor can track, record, or communicate that an invalid signal was received. In addition, in some embodiments, the spot-check monitor can determine, based on a determined reason for the invalid signal, whether the invalid signal was the fault (or primarily the fault) of the patient's actions, carelessness, movement, placement of the measuring device, etc. In some instances (such as when the patient caused an inaccurate signal), although the signal may be determined to be invalid, the spot-check monitor does not count the measurement as an invalid signal. Instead, the signal is considered a valid signal.
Other checks by the spot-check monitor can include determining if the sensor exhibited a not properly attached condition, patient movement detection, or poor positioning of the sensor detection. For example, if the spot-check monitor determines that the sensor was not positioned correctly or the patient moved more than a threshold amount during the sensing by the sensor, the monitor can determine that the signal was invalid. Furthermore, the spot-check monitor can assess one or more of a signal stability or a signal strength against a threshold to determine if the signal is valid or invalid
Canceling or Removing a Receive Signal or Calculated Measurement
In some cases, an individual may be able to cancel or stop a measurement from either being taken or calculated, even after the sensing has been initiated. For example the user may have accidentally selected or started the sensing by the sensor. Alternatively, the user may have initially desired to calculate a measurement, but, for one reason or another (for instance, an emergency, a phone call, etc.), the user may want to cancel.
In these situations, the spot-check monitor can receive the user's cancellation request, and, in response, can stop the calculation of the measurement and/or be configured to ignore the signal received from the sensor. In some cases, even if a valid signal was received by the monitor, if it was subsequently or concurrently cancelled, the signal can be deemed invalid. Further, despite receiving a valid signal, because the signal is deemed invalid, the spot-check system can configured not to decrement the available number of credits.
However, in some cases, if a valid signal was received, a credit decremented despite a user's attempt to cancel the measurement. For example, a user may have reached a maximum number of canceled measurements. Alternatively, the user may have been too late in attempting to cancel the measurement. For example, the spot-check monitor may disallow the cancellation of measurements after a certain period of time has passed between the start of the sensing by the sensor.
In some cases, a user may be able to cancel or remove a previously recorded measurement that was calculated from a valid signal. For example, the user may have accidentally or unknowingly taken successive measurements of the same parameter. Although the monitor most likely received successive valid signals, successive calculations of the same measurement may be not helpful or desirable. Thus, at least one of a set of successive valid signals may be deemed invalid, despite its accuracy, reliability, or otherwise valid nature. For example, a certain parameter may not change dramatically over time. Thus, the spot-check monitor can permit a user to delete a successive measurement from the records kept by the spot-check monitor, despite it being a valid measurement. In some instances, the spot-check monitor can itself track and assess the timestamp of signals and can delete, or otherwise fail to record an otherwise valid measurement corresponding to those signals, for example, based at least on the time stamp of the signal.
Other circumstances which the spot-check monitor can be configured to ignore a valid signal can include, but are not limited to, a power outage, a child playing with the machine, an emergency during the measurement process, etc. The spot-check monitor can be configured to permit a user to delete or otherwise remove a certain number of recorded measurements corresponding to valid signals, or add back a certain number of spot-check credits. For example, a number of “redo” measurements can be associated with an individual, and can correspond to how familiar the individual is with the spot-check monitor. For example, the number of “redo” measurements can provide the patient with a buffer when learning to use the spot-check monitor.
Spot-Check Credits
The number of spot-check credits, and thus the number of remaining or available spot-check system uses, associated with any given user, patient monitor, or sensor can be controlled or limited. For example, the number of spot-check credits can correspond to a service life of a sensor or patient monitor, which can be defined in terms of a permitted or estimated number of available uses or amount of usage time. In addition or alternatively, the number of spot-check credits can correspond to a number of prescribed or recommended uses that result in a valid signal. Still, in some cases, the spot-check credits can represent a quantum of currency, specifying a price per use or per unit time, or a subscription service.
The physiological monitor or the sensor can include a memory that stores a number of remaining spot-check credits. The monitor can read the number of remaining spot-check credits, and the monitor can be enabled to make a physiological measurement in conjunction with the sensor signal if the number of remaining spot-check credits is greater than a threshold (non-limiting example: zero). The number of spot-check credits can be decremented in response to a determination that a valid spot-check signal was received. In contrast, the number of spot-check credits is not decremented in response to a determination that an invalid spot-check signal was received. In other words, despite receiving a signal and using the sensor, the spot-check system can effectively ignore or disregard the invalid signal.
In various aspects, the spot-check system can be configured to perform a measurement only when a number of available uses is greater than a threshold. Accordingly, the number of token available to an individual can control the capabilities of the patient monitoring device. That is, if no tokens are available, the spot-check monitoring device can be configured not to calculate measurement and/or the sensor can be configured not to be used, unless, for example, new tokens are made available. For example, one or more elements of the spot-check system, such as a spot-check monitor or a sensor, can store an indication of a number of available or remaining uses (or tokens). Based on a determination that a number of available uses satisfies a threshold, the spot-check monitor can be configured to receive a signal from the sensor, and a number of number of available uses can be decremented. In contrast, based on a determination that a number of available uses does not satisfy the threshold, the spot-check system can be configured not to calculate a measurement or receive a signal from a sensor. However, in some cases, the spot-check system can be configured receive a signal or calculate a measurement in spite of a determination that a number of available uses does not satisfy the threshold.
As described herein, the spot-check system can advantageously be configured to assess the validity of a particular signal to determine whether a valid or invalid signal was received. Based on a determination that a valid signal was received, the number of available uses can be decremented. In contrast, based on a determination that an invalid signal was received, the number of available uses can remain the same. In other words, despite using the sensor and/or monitor, the spot-check system can ignore an invalid signal or not count the use towards a patient's quota associated with the number of credits and/or available uses.
In some cases, the spot-check system can provide feedback to the user, indicating why a signal was invalid and/or suggestions to improve the signal. In some cases, the number of available uses can be decremented despite a determination of an invalid signal. For example, a user may be given a limited number of passes corresponding to invalid signal, each pass permitting the user to disregard an invalid signal. The spot-check system can track a number of invalid signal. If the number of invalid signal satisfies a threshold corresponding to the permitted number of passes corresponding to the invalid signal, the spot-check system can count the invalid signal as a valid signal and decrement the number of available uses.
Example Spot-Check Monitor
The display 7430 can be a numerical or graphical display that provides readouts of measures or parameters, trends and bar graphs of measures or parameters, visual indications that measures are, say, above a threshold, visual indicators like LEDs of various colors that signify measure magnitude, or device management interfaces, which can be generated by LEDs, LCDs, or CRTs, for example. In addition, the display 7430 can provide readouts of a history of one or more measurements. For instance, the display 7430 can show a complete, recent, or selected history of valid or invalid measurements. In addition, the display 7430 can provide readouts of a total number of measurements, a number of invalid signals, a number of valid signals, or a remaining number of available uses of the sensor or monitor over a selectable time period. In some embodiments, the display 7430 can include a touch screen that can be used to supply control or configuration data, such as initialization settings, select a measurement, or cancel a measurement.
The user interface can include an audible output device 7436 that provides readouts or audible indications that measures are, say, above a threshold. The user interface can further include one or more input devices like a keypad, touch screen 7430, pointing device 7442, voice recognition device 7440, and computer. In some implementations, the user interface can be an interface for devices as well as users.
Valid Measurement Determination
At block 8202, the process 8200 can read or determine a number of remaining spot-check credits. For example, a spot-check system can employ a credit- or token-based scheme in which one or more spot-check credits can enable a spot-check monitor and/or a sensor to make a single measurement of a group of predefined parameters, which can correspond to receiving a single signal from a spot-check sensor. The spot-check monitor or the sensor can include a memory that stores the number of remaining spot-check credits. The monitor can read the number of remaining spot-check credits, and the system can be enabled to make the measurement of the group of predefined parameters using a single signal from a sensor if the number of remaining spot-check credits is greater than a threshold (non-limiting example: zero).
At block 8202, the process can initiate the sensing of a spot-check sensor based at least in part on a determination that the number of remaining spot-check credits satisfies a threshold. In some cases the threshold can be zero while in other cases the threshold may be higher. If the number of remaining spot-check credits does not satisfy the threshold, the process 8200 can be configured not to allow the sensor to begin sensing. In addition or alternatively, the process 8200 can present to the user a request to purchase additional credits.
At block 8204, the process 8200 receives a signal from which the monitor can calculate a group of predefined parameters from a sensor coupled to a patient. As described herein, the sensor can include a combination of one or more of a spectrometer, a pulse oximetry device, a plethysmograph sensor, a pressure sensor, an electrocardiogram sensor, or acoustic sensor, among other sensors.
At block 8206, the process 8200 can perform one or more of a series of checks on received signal to assess a validity of the received signal. For example, the spot-check monitor can suitably arbitrate between the checks, or use multiple checks. Based on one or more determinations, the spot-check monitor can prioritize (or weight) some checks over other checks. For example, if the spot-check monitor determines or perceives a check to be inaccurate or unreliable, the spot-check monitor can give that check little or no weight. Similarly, if the spot-check monitor determines or perceives a check to be accurate or very reliable, the spot-check monitor can heavily weight that check high or even use that check for the sole determination.
As described herein, the checks can include, but are not limited to, an assessment of Signal IQ, a comparison to a previously determined or model signal, a determination if the sensor exhibited a not properly attached condition, patient movement detection, or poor positioning of the sensor detection. Further, the one or more checks can include any of the accuracy, quality, patient, or sensor determinations as described herein. Non-limiting examples of the plurality of checks include: determining if the signal satisfies a threshold signal strength; determining if the signal corresponds to a previously valid signal, determining if the signal includes signal interference, determining if the sensor exhibited a not properly attached condition, determining if the patient satisfied a movement threshold, and determining a confidence value associated with the signal and determining whether the confidence value satisfies a confidence threshold.
At block 8208, the process 8200 can determine whether a valid cancellation exists. In some case, an individual may be able to cancel or stop a measurement. For instance, the user may have accidentally selected or started a measurement. Alternatively, the user may have initially desired the measurement, but, for one reason or another (for instance, an emergency, a phone call, etc.), the user may want to cancel.
In these situations, the spot-check monitor can receive the user's cancellation request, and, in response, can treat a received signal as an invalid signal. In some cases, the signal was received, but the measurement calculation was subsequently or concurrently cancelled. In cases such as these, despite receiving a valid signal, the spot-check system can treat the signal as an invalid signal.
At block 8210, based at least in part on a determination that a valid spot-check measurement was performed, the spot-check monitor can decrement a remaining number of available credits, which is sometimes referred to herein as a remaining number of available uses of the sensor and/or monitor. For example, a spot-check credit can enable a spot-check monitor to make a single measurement of a group of predefined parameters, which can correspond to receiving a single signal from a spot-check sensor. In some cases, the spot-check monitor and/or sensor can store the number of valid signals received and/or the number of uses remaining.
Various example features can be found in the following clauses, which can be implemented together with any combination of the features described above:
Clause 1: A pulse oximetry monitor configured to perform a spot-check measurement of a physiological parameter, the monitor comprising:
a driver circuit that drives one or more emitters of an optical sensor at multiple wavelengths of light to cause the one or more emitters to transmit the multiple wavelengths of light through body tissue of a patient;
a hardware processor in communication with the sensor, the hardware processor configured to:
Clause 2: The monitor of clause 1, wherein the spot-check measurement is an oxygen saturation measurement or a hemoglobin measurement.
Clause 3: The monitor of any of the preceding clauses, wherein the number of remaining spot-check credits are stored in memory of the sensor, and wherein to determine the number of remaining spot-check credits is configured to read from the sensor.
Clause 4: The monitor of any of the preceding clauses, wherein to assess the validity of the spot-check measurement, the processor is configured to assess a validity of the signal obtained from the optical sensor.
Clause 5: The monitor of any of the preceding clauses, wherein to assess the validity of the signal the processor is configured to assess a quality of the signal.
Clause 6: The monitor of any of the preceding clauses, wherein the processor is configured to determine the that spot-check signal is valid based at least in part on a determination that the signal quality of the signal satisfied a signal quality threshold for a least a threshold portion of a time window during which the measurement was taken.
Clause 7: The monitor of any of the preceding clauses, wherein the quality of the signal is based at least in part on a combination of one or more of a signal IQ, a signal stability, or a signal strength of the signal obtained from the optical sensor.
Clause 8: The monitor of any of the preceding clauses, wherein the quality of the signal is based at least in part on a combination of one or more of a position or location of the optical sensor during the measurement or an identified amount of patient movement during the measurement.
Clause 9: The monitor of any of the preceding clauses, wherein to assess the validity of the spot-check measurement, the processor is further configured to compare the measurement to an expected or previously determined measurement.
Clause 10: The monitor of any of the preceding clauses, wherein the processor is configured to determine that the spot-check signal is valid based at least in part on a determination that the measurement matches or is within a threshold of the expected or previously determined measurement.
Clause 11: The monitor of any of the preceding clauses, wherein to assess the validity of the signal measurement, the processor is further configured to determine that a cancellation condition does not exist.
Clause 12: The monitor of any of the preceding clauses, wherein the processors is configured to determine the number of remaining spot-check credits in response to a request to initiate the spot-check measurement.
Clause 13: The monitor of any of the preceding clauses, wherein, responsive to a determination that the number of remaining spot-check credits does not satisfy the threshold, the processor is further configured to output an indication of an insufficient number of remaining spot-checks to the display.
Clause 14: The monitor of any of the preceding clauses, wherein the hardware processor is further configured to compute the spot-check measurement upon either detecting that the physiological sensor has been disconnected from the patient or upon detecting that the clinician has selected a display input requesting the spot-check measurement.
Clause 15: The monitor of any of the preceding clauses, wherein the hardware processor is further configured to compute an early warning score based on contributor scores derived from the spot-check measurement and a plurality of other physiological parameter measurements, and output in a single region of the display the early warning score together with the contributor scores or a trend of prior early warning scores.
Clause 16: A method of performing a spot-check measurement of a physiological parameter, the method comprising:
under control of a hardware processor of a patient monitor,
Clause 17: The method of clause 16, wherein the number of remaining spot-check credits are stored in memory of the sensor, and said determining the number of remaining spot-check credits comprises reading the number of remaining from the sensor memory.
Clause 18: The method of any of the preceding clauses, wherein said assessing the validity of the spot-check measurement comprises assessing a validity of the signal obtained from the optical sensor.
Clause 19: The method of any of the preceding clauses, said assessing the validity of the signal comprises assessing a quality of the signal.
Clause 20: The method of any of the preceding clauses, wherein the determination that the spot-check signal is valid is based at least in part on a determination that the signal quality of the signal satisfied a signal quality threshold for a least a threshold portion of a time window during which the measurement was taken.
Clause 21: The method of any of the preceding clauses, wherein the quality of the signal is based at least in part on a combination of one or more of a signal IQ, a signal stability, or a signal strength of the signal obtained from the optical sensor.
Clause 22: The method of any of the preceding clauses, wherein the quality of the signal is based at least in part on a combination of one or more of a position or location of the optical sensor during the measurement or an identified amount of patient movement during the measurement.
Clause 23: The method of any of the preceding clauses, wherein said assessing the validity of the spot-check measurement comprises comparing the measurement to an expected or previously determined measurement.
Clause 24: The method of any of the preceding clauses, further comprising determining that the spot-check measurement is valid based at least in part on a determination that the measurement matches or is within a threshold of the expected or previously determined measurement.
Clause 25: The method of any of the preceding clauses, wherein said assessing the validity of the spot-check measurement, comprises determining that a cancellation condition does not exist.
Clause 26: The method of any of the preceding clauses, further comprising determining the number of remaining spot-check credits in response to a request to initiate the spot-check measurement.
Clause 27: The method of any of the preceding clauses, further comprising responsive to a determination that the number of remaining spot-check credits does not satisfy the threshold, causing a display to display an indication of an insufficient number of remaining spot-checks.
Clause 28: A medical device configured to receive a physiological signal from a physiological sensor coupled with a patient and to perform a spot-check measurement based on the physiological signal, the medical device comprising:
a circuit board comprising circuitry configured to receive the physiological signal either from a cable connected to the physiological sensor or wirelessly from the physiological sensor;
a display in electrical communication with the circuit board;
a speaker in electrical communication with the circuit board;
a memory device in electrical communication with the circuit board, the memory device comprising executable instructions stored thereon; and
a processor in electrical communication with the circuit board, the processor configured to implement the executable instructions so as to:
Clause 29: The medical device of clause 28, wherein the processor is further configured to lock the medical device in spot-check mode so that continuous measurements are not able to be calculated by the medical device when in the spot-check mode.
Clause 30: The medical device of any of the preceding clauses, wherein the processor is further configured to select a plurality of additional spot-check measurements and to output a graph of the spot-check measurement and the additional spot-check measurements on the display, the graph representing a trend of the spot-check measurement and the additional spot-check measurements.
Clause 31: The medical device of any of the preceding clauses, wherein the processor is further configured to cause the display to output a user interface control together with the spot-check measurement, the user interface control selectable by a user to permit a user to overwrite the spot-check measurement with a manual measurement.
Clause 32: The medical device of any of the preceding clauses, wherein the processor is further configured to
measure a second plurality of physiological parameter values from the physiological signal;
select one of the second plurality of physiological parameter values as a second spot-check measurement upon said detecting that the physiological signal has been disconnected from the patient;
output audio of the second spot-check measurement to the speaker; and
output the second spot-check measurement to the display.
Clause 33: The medical device of any of the preceding clauses, wherein the processor is further configured to:
calculate a contributor score for each of the spot-check measurement and the second spot-check measurement;
derive an early warning score at least in part from the contributor scores; and
output the contributor scores and the early warning score together in a group on the display, apart from the spot-check measurement and the second spot-check measurement.
Clause 34: The medical device of any of the preceding clauses, wherein the contributor scores are depicted together in a single row or a single column.
Clause 35: The medical device of any of the preceding clauses, wherein the contributor scores are depicted together in two rows, a first row and a second row, and wherein the first row is offset from the second row.
Clause 36: The medical device of any of the preceding clauses, wherein each of the contributor scores is associated with an indicator having a color representing the severity level.
Clause 37: The medical device of any of the preceding clauses, further comprising outputting a trend graph of the early warning score and subsequent early warning scores over time.
Clause 38: The medical device of any of the preceding clauses, wherein the trend graph comprises colored dots to indicate severity of the early warning score and subsequent early warning scores.
Clause 39: The medical device of any of the preceding clauses, wherein the trend graph comprises an emergency bar indicator.
Clause 40: A method for using a medical device to perform a spot-check measurement, the method comprising:
by a medical device comprising electronic hardware:
Clause 41: The method of clause 40, further comprising outputting a review screen on the display comprising functionality that permits the clinician to adjust one or both of the spot-check measurements.
Clause 42: The method of any of the preceding clauses, further comprising outputting a list of the spot-check measurements for the patient, each of the spot-check measurements selectable by a clinician.
Clause 43: The method of any of the preceding clauses, further comprising outputting a trend graph of the spot-check measurements in response to selection of one of the spot-check measurements by the clinician.
Clause 44: The method of any of the preceding clauses, further comprising reverting to a continuous-mode output of the first and second physiological parameters after a timeout period.
Clause 45: The method of any of the preceding clauses, further comprising, in response to said detecting that the sensor has been disconnected from the patient or that a clinician has selected an input requesting spot-check measurements, calculating an early warning score based at least in part on the spot-check measurements, and outputting the early warning score to the display.
Clause 46: The method of any of the preceding clauses, further comprising outputting a trend graph of the early warning score over time.
Clause 47: The method of any of the preceding clauses, further comprising, prior to said receiving,
outputting an option to place the medical device in spot-check mode;
receiving a selection of the option to place the medical device in the spot-check mode; and
subsequent to receiving the selection of the option, rebooting the medical device in spot-check mode and not permitting continuous monitoring.
Clause 48: A pulse oximetry monitor configured to assess a validity of a signal obtained from a sensor, the monitor comprising:
a driver circuit that drives one or more emitters of an optical sensor at multiple wavelengths of light to cause the one or more emitters to transmit the multiple wavelengths of light through body tissue of a patient;
a hardware processor in communication with the optical sensor, the hardware processor configured to:
Clause 49: A pulse oximetry monitor and/or system configured to perform a spot-check measurement of a physiological parameter as shown and/or described in the drawings or foregoing description.
Clause 50: A method for using a medical device to perform a spot-check measurement, the method comprising one or more steps or features of the drawings or foregoing description.
Many other variations than those described herein can be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (for example, not all described acts or events can be necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, for example, through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.
Not necessarily all such advantages are achieved in accordance with any particular embodiment of the embodiments disclosed herein. Thus, the embodiments disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality can be implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a hardware processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A hardware processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry or digital logic circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “for example,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, are generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way may required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” mechanism one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, can be otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (for example, X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments may require at least one of X, at least one of Y, or at least one of Z to each be present.
Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” is intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it is understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As is recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
Number | Name | Date | Kind |
---|---|---|---|
4815469 | Cohen et al. | Mar 1989 | A |
4858615 | Meinema | Aug 1989 | A |
4900904 | Wright et al. | Feb 1990 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5041187 | Hink et al. | Aug 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5163438 | Gordon et al. | Nov 1992 | A |
5317269 | Mills et al. | May 1994 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
5452717 | Branigan et al. | Sep 1995 | A |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5534851 | Russek | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5562002 | Lalin | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5785659 | Caro et al. | Jul 1998 | A |
5791347 | Flaherty et al. | Aug 1998 | A |
5810734 | Caro et al. | Sep 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5830131 | Caro et al. | Nov 1998 | A |
5833618 | Caro et al. | Nov 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
5904654 | Wohltmann et al. | May 1999 | A |
5919134 | Diab | Jul 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5991355 | Dahlke | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6011986 | Diab et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6045509 | Caro et al. | Apr 2000 | A |
6066204 | Haven | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6069955 | Coppersmith et al. | May 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6110522 | Lepper, Jr. et al. | Aug 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6151516 | Kiani-Azarbayjany et al. | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6301493 | Marro et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6325761 | Jay | Dec 2001 | B1 |
6330468 | Scharf | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6371921 | Caro et al. | Apr 2002 | B1 |
6377829 | Al-Ali | Apr 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6397091 | Diab et al. | May 2002 | B2 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6419636 | Young et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6433696 | Deiterman et al. | Aug 2002 | B1 |
6463310 | Swedlow et al. | Oct 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6499843 | Cox et al. | Dec 2002 | B1 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6553241 | Mannheimer et al. | Apr 2003 | B2 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6587945 | Pasieka | Jul 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6597933 | Kiani et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6631353 | Davis et al. | Oct 2003 | B1 |
6632181 | Flaherty et al. | Oct 2003 | B2 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697657 | Shehada et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6704786 | Gupta et al. | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6735459 | Parker | May 2004 | B2 |
6738652 | Mattu et al. | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6792300 | Diab et al. | Sep 2004 | B1 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6852083 | Caro et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6931268 | Kiani-Azarbayjany et al. | Aug 2005 | B1 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6950687 | Al-Ali | Sep 2005 | B2 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6979812 | Al-Ali | Dec 2005 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
6997879 | Turcott | Feb 2006 | B1 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999904 | Weber et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7030749 | Al-Ali | Apr 2006 | B2 |
7039449 | Al-Ali | May 2006 | B2 |
7041060 | Flaherty et al. | May 2006 | B2 |
7044918 | Diab | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7067893 | Mills et al. | Jun 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7132641 | Schulz et al. | Nov 2006 | B2 |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7149561 | Diab | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7190261 | Al-Ali | Mar 2007 | B2 |
7215984 | Diab | May 2007 | B2 |
7215986 | Diab | May 2007 | B2 |
7221971 | Diab | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7225007 | Al-Ali | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7239905 | Kiani-Azarbayjany et al. | Jul 2007 | B2 |
7245953 | Parker | Jul 2007 | B1 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7272425 | Al-Ali | Sep 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7295866 | Al-Ali | Nov 2007 | B2 |
7328053 | Diab et al. | Feb 2008 | B1 |
7332784 | Mills et al. | Feb 2008 | B2 |
7340287 | Mason et al. | Mar 2008 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
7349856 | Ackermann et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7355512 | Al-Ali | Apr 2008 | B1 |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7373194 | Weber et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7377794 | Al Ali et al. | May 2008 | B2 |
7377899 | Weber et al. | May 2008 | B2 |
7383070 | Diab et al. | Jun 2008 | B2 |
7390299 | Weiner et al. | Jun 2008 | B2 |
7394370 | Chan | Jul 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7428432 | Ali et al. | Sep 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7440787 | Diab | Oct 2008 | B2 |
7444436 | Wille | Oct 2008 | B2 |
7450927 | Creswell et al. | Nov 2008 | B1 |
7454240 | Diab et al. | Nov 2008 | B2 |
7467002 | Weber et al. | Dec 2008 | B2 |
7469157 | Diab et al. | Dec 2008 | B2 |
7471969 | Diab et al. | Dec 2008 | B2 |
7471971 | Diab et al. | Dec 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
7483730 | Diab et al. | Jan 2009 | B2 |
7489958 | Diab et al. | Feb 2009 | B2 |
7496391 | Diab et al. | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7499741 | Diab et al. | Mar 2009 | B2 |
7499835 | Weber et al. | Mar 2009 | B2 |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509154 | Diab et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
7526328 | Diab et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7530949 | Al Ali et al. | May 2009 | B2 |
7530955 | Diab et al. | May 2009 | B2 |
7563110 | Al-Ali et al. | Jul 2009 | B2 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7618375 | Flaherty | Nov 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
7660616 | Poore | Feb 2010 | B1 |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7734320 | Al-Ali | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7761128 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
7797248 | Bierbaum et al. | Sep 2010 | B1 |
7801581 | Diab | Sep 2010 | B2 |
7822452 | Schurman et al. | Oct 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7844313 | Kiani et al. | Nov 2010 | B2 |
7844314 | Al-Ali | Nov 2010 | B2 |
7844315 | Al-Ali | Nov 2010 | B2 |
7865222 | Weber et al. | Jan 2011 | B2 |
7873497 | Weber et al. | Jan 2011 | B2 |
7880606 | Al-Ali | Feb 2011 | B2 |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7881761 | Mannheimer et al. | Feb 2011 | B2 |
7891355 | Al-Ali et al. | Feb 2011 | B2 |
7894868 | Al-Ali et al. | Feb 2011 | B2 |
7899507 | Al-Ali et al. | Mar 2011 | B2 |
7899518 | Trepagnier et al. | Mar 2011 | B2 |
7904132 | Weber et al. | Mar 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7910875 | Al-Ali | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7937130 | Diab et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7951086 | Flaherty et al. | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7962190 | Diab et al. | Jun 2011 | B1 |
7976472 | Kiani | Jul 2011 | B2 |
7988637 | Diab | Aug 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7991446 | Ali et al. | Aug 2011 | B2 |
8000761 | Al-Ali | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8019400 | Diab et al. | Sep 2011 | B2 |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8029765 | Bellott et al. | Oct 2011 | B2 |
8036727 | Schurman et al. | Oct 2011 | B2 |
8036728 | Diab et al. | Oct 2011 | B2 |
8046040 | Ali et al. | Oct 2011 | B2 |
8046041 | Diab et al. | Oct 2011 | B2 |
8046042 | Diab et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8126528 | Diab et al. | Feb 2012 | B2 |
8128572 | Diab et al. | Mar 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8145287 | Diab et al. | Mar 2012 | B2 |
8150487 | Diab et al. | Apr 2012 | B2 |
D659836 | Bensch | May 2012 | S |
8175672 | Parker | May 2012 | B2 |
8180420 | Diab et al. | May 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8185180 | Diab et al. | May 2012 | B2 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8190227 | Diab et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8204566 | Schurman et al. | Jun 2012 | B2 |
D663421 | Steiner | Jul 2012 | S |
8219172 | Schurman et al. | Jul 2012 | B2 |
8222166 | Chu et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8228181 | Al-Ali | Jul 2012 | B2 |
8229533 | Diab et al. | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8234126 | Estes | Jul 2012 | B1 |
8244325 | Al-Ali et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8255027 | Al-Ali et al. | Aug 2012 | B2 |
8255028 | Al-Ali et al. | Aug 2012 | B2 |
8260577 | Weber et al. | Sep 2012 | B2 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8301217 | Al-Ali et al. | Oct 2012 | B2 |
8306596 | Schurman et al. | Nov 2012 | B2 |
8310336 | Muhsin et al. | Nov 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8337403 | Al-Ali et al. | Dec 2012 | B2 |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8359080 | Diab et al. | Jan 2013 | B2 |
8364223 | Al-Ali et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8385995 | Al-Ali et al. | Feb 2013 | B2 |
8385996 | Smith et al. | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8399822 | Al-Ali | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8405608 | Al-Ali et al. | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8423106 | Lamego et al. | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8463349 | Diab et al. | Jun 2013 | B2 |
8466286 | Bellot et al. | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8483787 | Al-Ali et al. | Jul 2013 | B2 |
8489364 | Weber et al. | Jul 2013 | B2 |
8498684 | Weber et al. | Jul 2013 | B2 |
8504128 | Blank et al. | Aug 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
8529301 | Al-Ali et al. | Sep 2013 | B2 |
8532727 | Ali et al. | Sep 2013 | B2 |
8532728 | Diab et al. | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8547209 | Kiani et al. | Oct 2013 | B2 |
8548548 | Al-Ali | Oct 2013 | B2 |
8548549 | Schurman et al. | Oct 2013 | B2 |
8548550 | Al-Ali et al. | Oct 2013 | B2 |
8560032 | Al-Ali et al. | Oct 2013 | B2 |
8560034 | Diab et al. | Oct 2013 | B1 |
8570167 | Al-Ali | Oct 2013 | B2 |
8570503 | Vo et al. | Oct 2013 | B2 |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8584345 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8581732 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8600467 | Al-Ali et al. | Dec 2013 | B2 |
8606342 | Diab | Dec 2013 | B2 |
8626255 | Al-Ali et al. | Jan 2014 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8634889 | Al-Ali et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8663107 | Kiani | Mar 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8667967 | Al-Ali et al. | Mar 2014 | B2 |
8670811 | O'Reilly | Mar 2014 | B2 |
8670814 | Diab et al. | Mar 2014 | B2 |
8676286 | Weber et al. | Mar 2014 | B2 |
8682407 | Al-Ali | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8700112 | Kiani | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8706179 | Parker | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8718735 | Lamego et al. | May 2014 | B2 |
8718737 | Diab et al. | May 2014 | B2 |
8718738 | Blank et al. | May 2014 | B2 |
8720249 | Al-Ali | May 2014 | B2 |
8721541 | Al-Ali et al. | May 2014 | B2 |
8721542 | Al-Ali et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8725645 | Montini | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8754776 | Poeze et al. | Jun 2014 | B2 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755856 | Diab et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8761850 | Lamego | Jun 2014 | B2 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8777634 | Kiani et al. | Jul 2014 | B2 |
8781543 | Diab et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8781549 | Al-Ali et al. | Jul 2014 | B2 |
8788003 | Schurman et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8831700 | Schurman et al. | Sep 2014 | B2 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8847740 | Kiani et al. | Sep 2014 | B2 |
8849365 | Smith et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8868147 | Stippick et al. | Oct 2014 | B2 |
8868150 | Al-Ali et al. | Oct 2014 | B2 |
8870792 | Al-Ali et al. | Oct 2014 | B2 |
8886271 | Kiani et al. | Nov 2014 | B2 |
8888539 | Al-Ali et al. | Nov 2014 | B2 |
8888708 | Diab et al. | Nov 2014 | B2 |
8892180 | Weber et al. | Nov 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8909310 | Lamego et al. | Dec 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8912909 | Al-Ali et al. | Dec 2014 | B2 |
8920317 | Al-Ali et al. | Dec 2014 | B2 |
8921699 | Al-Ali et al. | Dec 2014 | B2 |
8922382 | Al-Ali et al. | Dec 2014 | B2 |
8929964 | Al-Ali et al. | Jan 2015 | B2 |
8942777 | Diab et al. | Jan 2015 | B2 |
8948834 | Diab et al. | Feb 2015 | B2 |
8948835 | Diab | Feb 2015 | B2 |
8965471 | Lamego | Feb 2015 | B2 |
8983564 | Al-Ali | Mar 2015 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8996085 | Kiani et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
D729939 | Moon | May 2015 | S |
9028429 | Telfort et al. | May 2015 | B2 |
9037207 | Al-Ali et al. | May 2015 | B2 |
9060721 | Reichgott et al. | Jun 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9069069 | Freund et al. | Jun 2015 | B2 |
9072474 | Al-Ali et al. | Jul 2015 | B2 |
9078560 | Schurman et al. | Jul 2015 | B2 |
9084569 | Weber et al. | Jul 2015 | B2 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9107626 | Al-Ali et al. | Aug 2015 | B2 |
9113831 | Al-Ali | Aug 2015 | B2 |
9113832 | Al-Ali | Aug 2015 | B2 |
9119595 | Lamego | Sep 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9131882 | Al-Ali et al. | Sep 2015 | B2 |
9131883 | Al-Ali | Sep 2015 | B2 |
9131917 | Telfort et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9138182 | Al-Ali et al. | Sep 2015 | B2 |
9138192 | Weber et al. | Sep 2015 | B2 |
9142117 | Muhsin et al. | Sep 2015 | B2 |
D741497 | Aber | Oct 2015 | S |
9153112 | Kiani et al. | Oct 2015 | B1 |
9153121 | Kiani et al. | Oct 2015 | B2 |
9161696 | Al-Ali et al. | Oct 2015 | B2 |
9161713 | Al-Ali et al. | Oct 2015 | B2 |
9167995 | Lamego et al. | Oct 2015 | B2 |
9176141 | Al-Ali et al. | Nov 2015 | B2 |
9186102 | Bruinsma et al. | Nov 2015 | B2 |
9192312 | Al-Ali | Nov 2015 | B2 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
D745167 | Canas et al. | Dec 2015 | S |
D745497 | Canas | Dec 2015 | S |
9211072 | Kiani | Dec 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9226696 | Kiani | Jan 2016 | B2 |
9241662 | Al-Ali et al. | Jan 2016 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9259185 | Abdul-Hafiz et al. | Feb 2016 | B2 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9289167 | Diab et al. | Mar 2016 | B2 |
9295421 | Kiani et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9333316 | Kiani | May 2016 | B2 |
9339220 | Lamego et al. | May 2016 | B2 |
9341565 | Lamego et al. | May 2016 | B2 |
9351673 | Diab et al. | May 2016 | B2 |
9351675 | Al-Ali et al. | May 2016 | B2 |
9364181 | Kiani et al. | Jun 2016 | B2 |
9368671 | Wojtczuk et al. | Jun 2016 | B2 |
9370325 | Al-Ali et al. | Jun 2016 | B2 |
9370326 | McHale et al. | Jun 2016 | B2 |
9370335 | Al-ali et al. | Jun 2016 | B2 |
9375185 | Ali et al. | Jun 2016 | B2 |
9386953 | Al-Ali | Jul 2016 | B2 |
9386961 | Al-Ali et al. | Jul 2016 | B2 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9397448 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9466919 | Kiani et al. | Oct 2016 | B2 |
9474474 | Lamego | Oct 2016 | B2 |
9480422 | Al-Ali | Nov 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9492110 | Al-Ali et al. | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9538949 | Al-Ali et al. | Jan 2017 | B2 |
9538980 | Telfort et al. | Jan 2017 | B2 |
9549696 | Lamego et al. | Jan 2017 | B2 |
9554737 | Schurman et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9560998 | Al-Ali et al. | Feb 2017 | B2 |
9566019 | Al-Ali et al. | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9591975 | Dalvi et al. | Mar 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
9622693 | Diab | Apr 2017 | B2 |
D788312 | Al-Ali | May 2017 | S |
9636055 | Al-Ali et al. | May 2017 | B2 |
9636056 | Al-Ali | May 2017 | B2 |
9649054 | Lamego et al. | May 2017 | B2 |
9662052 | Al-Ali et al. | May 2017 | B2 |
9668679 | Schurman et al. | Jun 2017 | B2 |
9668680 | Bruinsma et al. | Jun 2017 | B2 |
9668703 | Al-Ali | Jun 2017 | B2 |
9675286 | Diab | Jun 2017 | B2 |
9687160 | Kiani | Jun 2017 | B2 |
9693719 | Al-Ali et al. | Jul 2017 | B2 |
9693737 | Al-Ali | Jul 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
D794803 | Thom | Aug 2017 | S |
9717425 | Kiani et al. | Aug 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9730640 | Diab et al. | Aug 2017 | B2 |
9743887 | Al-Ali et al. | Aug 2017 | B2 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750443 | Smith et al. | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9775546 | Diab et al. | Oct 2017 | B2 |
9775570 | Al-Ali | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9782110 | Kiani | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9788735 | Al-Ali | Oct 2017 | B2 |
9788768 | Al-Ali et al. | Oct 2017 | B2 |
9795300 | Al-Ali | Oct 2017 | B2 |
9795310 | Al-Ali | Oct 2017 | B2 |
9795358 | Telfort et al. | Oct 2017 | B2 |
9795739 | Al-Ali et al. | Oct 2017 | B2 |
9801556 | Kiani | Oct 2017 | B2 |
9801588 | Weber et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9814418 | Weber et al. | Nov 2017 | B2 |
9820691 | Kiani | Nov 2017 | B2 |
9833152 | Kiani et al. | Dec 2017 | B2 |
9833180 | Shakespeare et al. | Dec 2017 | B2 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847002 | Kiani et al. | Dec 2017 | B2 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9848806 | Al-Ali et al. | Dec 2017 | B2 |
9848807 | Lamego | Dec 2017 | B2 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861304 | Al-Ali et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9867578 | Al-Ali et al. | Jan 2018 | B2 |
9872623 | Al-Ali | Jan 2018 | B2 |
9876320 | Coverston et al. | Jan 2018 | B2 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9877686 | Al-Ali et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9895107 | Al-Ali et al. | Feb 2018 | B2 |
9913617 | Al-Ali et al. | Mar 2018 | B2 |
9924893 | Schurman et al. | Mar 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9943269 | Muhsin et al. | Apr 2018 | B2 |
9949676 | Al-Ali | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali | May 2018 | B2 |
9980667 | Kiani et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986919 | Lamego et al. | Jun 2018 | B2 |
9986952 | Dalvi et al. | Jun 2018 | B2 |
9989560 | Poeze et al. | Jun 2018 | B2 |
9993207 | Al-Ali et al. | Jun 2018 | B2 |
10007758 | Al-Ali et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10039482 | Al-Ali et al. | Aug 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123729 | Dyell et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188348 | Al-Ali et al. | Jan 2019 | B2 |
RE47218 | Al-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10279247 | Kiani | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10327337 | Schmidt et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
RE47882 | Al-Ali | Mar 2020 | E |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10621571 | Martinez de Velasco Cortina et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020013517 | West et al. | Jan 2002 | A1 |
20020013538 | Teller | Jan 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020120467 | Buanes | Aug 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20020138336 | Bakes et al. | Sep 2002 | A1 |
20020147693 | Banerjee et al. | Oct 2002 | A1 |
20020178126 | Beck et al. | Nov 2002 | A1 |
20020184224 | Haff et al. | Dec 2002 | A1 |
20020198740 | Roman et al. | Dec 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030055794 | Johnson et al. | Mar 2003 | A1 |
20030063913 | Yamazaki | Apr 2003 | A1 |
20030093301 | Chesney et al. | May 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20040068436 | Boubek et al. | Apr 2004 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20040146328 | Sasayama | Jul 2004 | A1 |
20040162035 | Petersen et al. | Aug 2004 | A1 |
20040236699 | Beenau et al. | Nov 2004 | A1 |
20040245330 | Swift et al. | Dec 2004 | A1 |
20040267103 | Li et al. | Dec 2004 | A1 |
20040267552 | Gilliam et al. | Dec 2004 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050108060 | Sasano | May 2005 | A1 |
20050125317 | Winkelman, III | Jun 2005 | A1 |
20050131810 | Garrett | Jun 2005 | A1 |
20050135306 | McAllen et al. | Jun 2005 | A1 |
20050165693 | Moritzen | Jul 2005 | A1 |
20050221276 | Rozakis et al. | Oct 2005 | A1 |
20050228242 | Kawamura et al. | Oct 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20050247778 | Roberts | Nov 2005 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060087407 | Stewart et al. | Apr 2006 | A1 |
20060149594 | Hilligoss et al. | Jul 2006 | A1 |
20060161054 | Reuss | Jul 2006 | A1 |
20060167351 | Isaacson et al. | Jul 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20060224059 | Swedlow et al. | Oct 2006 | A1 |
20060258917 | Burd et al. | Nov 2006 | A1 |
20060259328 | Burd et al. | Nov 2006 | A1 |
20070021843 | Neill et al. | Jan 2007 | A1 |
20070022015 | Tarinelli et al. | Jan 2007 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070133767 | Hahn et al. | Jun 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070197881 | Wolf et al. | Aug 2007 | A1 |
20070213658 | Hickle | Sep 2007 | A1 |
20070226013 | Elletson et al. | Sep 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20070282478 | Al-Ali et al. | Dec 2007 | A1 |
20070293745 | McCutcheon et al. | Dec 2007 | A1 |
20070299318 | Chen et al. | Dec 2007 | A1 |
20080000479 | Elaz et al. | Jan 2008 | A1 |
20080015423 | Lam et al. | Jan 2008 | A1 |
20080046286 | Halsted | Feb 2008 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080071155 | Kiani | Mar 2008 | A1 |
20080089499 | Hahn et al. | Apr 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080097908 | Dicks et al. | Apr 2008 | A1 |
20080103375 | Kiani | May 2008 | A1 |
20080179401 | Hart et al. | Jul 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20080242945 | Gugliotti et al. | Oct 2008 | A1 |
20080251579 | Larsen | Oct 2008 | A1 |
20080281168 | Gibson et al. | Nov 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080319510 | Simpson et al. | Dec 2008 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090047926 | Mastrantuono | Feb 2009 | A1 |
20090076844 | Koegen | Mar 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090112769 | Dicks et al. | Apr 2009 | A1 |
20090119062 | Owens et al. | May 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275813 | Davis | Nov 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100056875 | Schoenberg et al. | Mar 2010 | A1 |
20100057556 | Rousso et al. | Mar 2010 | A1 |
20100094951 | Furuta | Apr 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100145833 | Hamilton, II et al. | Jun 2010 | A1 |
20100204557 | Kiaie et al. | Aug 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100254581 | Nesser | Oct 2010 | A1 |
20100268120 | Eriksen | Oct 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110073644 | Sarkis et al. | Mar 2011 | A1 |
20110077484 | Van Slyke et al. | Mar 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110105854 | Kiani et al. | May 2011 | A1 |
20110118561 | Tani et al. | May 2011 | A1 |
20110125060 | Telfort et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110179405 | Dicks et al. | Jul 2011 | A1 |
20110208015 | Welch et al. | Aug 2011 | A1 |
20110208568 | Deitiker et al. | Aug 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20110235792 | Foster | Sep 2011 | A1 |
20120109685 | Carter et al. | May 2012 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120143754 | Patel | Jun 2012 | A1 |
20120143772 | Abadir | Jun 2012 | A1 |
20120156337 | Studor | Jun 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120209082 | Al-Ali | Aug 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130066644 | Dicks et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130096936 | Sampath et al. | Apr 2013 | A1 |
20130097085 | Peckover | Apr 2013 | A1 |
20130117155 | Glasgo | May 2013 | A1 |
20130159456 | Daoud et al. | Jun 2013 | A1 |
20130160082 | Miller | Jun 2013 | A1 |
20130212381 | Bousarnra et al. | Aug 2013 | A1 |
20130243021 | Siskavich | Sep 2013 | A1 |
20130246132 | Buie | Sep 2013 | A1 |
20130253334 | Al-Ali et al. | Sep 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130296713 | Al-Ali et al. | Nov 2013 | A1 |
20130312066 | Suarez et al. | Nov 2013 | A1 |
20130324808 | Al-Ali et al. | Dec 2013 | A1 |
20130331660 | Al-Ali et al. | Dec 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140012100 | Al-Ali et al. | Jan 2014 | A1 |
20140012981 | Samuell et al. | Jan 2014 | A1 |
20140037089 | Itoh et al. | Feb 2014 | A1 |
20140038545 | Ramprasad et al. | Feb 2014 | A1 |
20140051953 | Lamego et al. | Feb 2014 | A1 |
20140106706 | Tan et al. | Apr 2014 | A1 |
20140120564 | Workman et al. | May 2014 | A1 |
20140121482 | Merritt et al. | May 2014 | A1 |
20140127137 | Bellott et al. | May 2014 | A1 |
20140129702 | Lamego | May 2014 | A1 |
20140163344 | Al-Ali | Jun 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140171763 | Diab | Jun 2014 | A1 |
20140180038 | Kiani | Jun 2014 | A1 |
20140180154 | Sierra et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140181524 | Itoh et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140213864 | Abdul-Hafiz et al. | Jul 2014 | A1 |
20140275835 | Lamego et al. | Sep 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140275881 | Lamego | Sep 2014 | A1 |
20140288400 | Diab et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140316228 | Blank et al. | Oct 2014 | A1 |
20140323825 | Al-Ali et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20140330092 | Al-Ali et al. | Nov 2014 | A1 |
20140330098 | Merritt et al. | Nov 2014 | A1 |
20140330993 | Raz | Nov 2014 | A1 |
20140357966 | Al-Ali et al. | Dec 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150032029 | Al-Ali et al. | Jan 2015 | A1 |
20150038859 | Dalvi et al. | Feb 2015 | A1 |
20150048159 | Martinez de Velasco Cortina et al. | Feb 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150073925 | Renfroe | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150087936 | Al-Ali et al. | Mar 2015 | A1 |
20150094546 | Al-Ali | Apr 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150101844 | Al-Ali et al. | Apr 2015 | A1 |
20150106121 | Muhsin et al. | Apr 2015 | A1 |
20150112151 | Muhsin et al. | Apr 2015 | A1 |
20150116076 | Al-Ali et al. | Apr 2015 | A1 |
20150165312 | Kiani | Jun 2015 | A1 |
20150196249 | Brown et al. | Jul 2015 | A1 |
20150207626 | Neftel | Jul 2015 | A1 |
20150216459 | Al-Ali et al. | Aug 2015 | A1 |
20150238722 | Al-Ali | Aug 2015 | A1 |
20150245773 | Lamego et al. | Sep 2015 | A1 |
20150245794 | Al-Ali | Sep 2015 | A1 |
20150257689 | Al-Ali et al. | Sep 2015 | A1 |
20150272514 | Kiani et al. | Oct 2015 | A1 |
20150351697 | Weber et al. | Dec 2015 | A1 |
20150359429 | Al-Ali et al. | Dec 2015 | A1 |
20150366507 | Blank | Dec 2015 | A1 |
20160029932 | Al-Ali | Feb 2016 | A1 |
20160058347 | Reichgott et al. | Mar 2016 | A1 |
20160066824 | Al-Ali et al. | Mar 2016 | A1 |
20160081552 | Wojtczuk et al. | Mar 2016 | A1 |
20160095543 | Telfort et al. | Apr 2016 | A1 |
20160095548 | Al-Ali et al. | Apr 2016 | A1 |
20160103598 | Al-Ali et al. | Apr 2016 | A1 |
20160143548 | Al-Ali | May 2016 | A1 |
20160166182 | Al-Ali et al. | Jun 2016 | A1 |
20160166183 | Poeze et al. | Jun 2016 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160197436 | Barker et al. | Jul 2016 | A1 |
20160213281 | Eckerbom et al. | Jul 2016 | A1 |
20160228043 | O'Neil et al. | Aug 2016 | A1 |
20160233632 | Scruggs et al. | Aug 2016 | A1 |
20160234944 | Schmidt et al. | Aug 2016 | A1 |
20160270735 | Diab et al. | Sep 2016 | A1 |
20160283665 | Sampath et al. | Sep 2016 | A1 |
20160287090 | Al-Ali et al. | Oct 2016 | A1 |
20160287786 | Kiani | Oct 2016 | A1 |
20160296169 | McHale et al. | Oct 2016 | A1 |
20160310052 | Al-Ali et al. | Oct 2016 | A1 |
20160314260 | Kiani | Oct 2016 | A1 |
20160324488 | Olsen | Nov 2016 | A1 |
20160327984 | Al-Ali et al. | Nov 2016 | A1 |
20160331332 | Al-Ali | Nov 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170000394 | Al-Ali et al. | Jan 2017 | A1 |
20170007134 | Al-Ali et al. | Jan 2017 | A1 |
20170007198 | Al-Ali et al. | Jan 2017 | A1 |
20170014083 | Diab et al. | Jan 2017 | A1 |
20170014084 | Al-Ali et al. | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170027456 | Kinast et al. | Feb 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170055882 | Al-Ali et al. | Mar 2017 | A1 |
20170055887 | Al-Ali | Mar 2017 | A1 |
20170055896 | Al-Ali et al. | Mar 2017 | A1 |
20170079594 | Telfort et al. | Mar 2017 | A1 |
20170086723 | Al-Ali et al. | Mar 2017 | A1 |
20170143281 | Olsen | May 2017 | A1 |
20170147774 | Kiani | May 2017 | A1 |
20170156620 | Al-Ali et al. | Jun 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170187146 | Kiani et al. | Jun 2017 | A1 |
20170188919 | Al-Ali et al. | Jul 2017 | A1 |
20170196464 | Jansen et al. | Jul 2017 | A1 |
20170196470 | Lamego et al. | Jul 2017 | A1 |
20170224262 | Al-Ali | Aug 2017 | A1 |
20170228516 | Sampath et al. | Aug 2017 | A1 |
20170245790 | Al-Ali et al. | Aug 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170251975 | Shreim et al. | Sep 2017 | A1 |
20170258403 | Abdul-Hafiz et al. | Sep 2017 | A1 |
20170311851 | Schurman et al. | Nov 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20170325728 | Al-Ali et al. | Nov 2017 | A1 |
20170332976 | Al-Ali et al. | Nov 2017 | A1 |
20170340293 | Al-Ali et al. | Nov 2017 | A1 |
20170360310 | Kiani et al. | Dec 2017 | A1 |
20170367632 | Al-Ali et al. | Dec 2017 | A1 |
20180008146 | Al-Ali et al. | Jan 2018 | A1 |
20180014752 | Al-Ali et al. | Jan 2018 | A1 |
20180028124 | Al-Ali et al. | Feb 2018 | A1 |
20180055385 | Al-Ali | Mar 2018 | A1 |
20180055390 | Kiani et al. | Mar 2018 | A1 |
20180055430 | Diab et al. | Mar 2018 | A1 |
20180064381 | Shakespeare et al. | Mar 2018 | A1 |
20180069776 | Lamego et al. | Mar 2018 | A1 |
20180082767 | Al-Ali et al. | Mar 2018 | A1 |
20180085068 | Telfort | Mar 2018 | A1 |
20180087937 | Al-Ali et al. | Mar 2018 | A1 |
20180103874 | Lee et al. | Apr 2018 | A1 |
20180103905 | Kiani | Apr 2018 | A1 |
20180110478 | Al-Ali | Apr 2018 | A1 |
20180116575 | Perea et al. | May 2018 | A1 |
20180125368 | Lamego et al. | May 2018 | A1 |
20180125430 | Al-Ali et al. | May 2018 | A1 |
20180125445 | Telfort et al. | May 2018 | A1 |
20180130325 | Kiani et al. | May 2018 | A1 |
20180132769 | Weber et al. | May 2018 | A1 |
20180132770 | Lamego | May 2018 | A1 |
20180146901 | Al-Ali et al. | May 2018 | A1 |
20180146902 | Kiani et al. | May 2018 | A1 |
20180153442 | Eckerbom et al. | Jun 2018 | A1 |
20180153447 | Al-Ali et al. | Jun 2018 | A1 |
20180153448 | Weber et al. | Jun 2018 | A1 |
20180161499 | Al-Ali et al. | Jun 2018 | A1 |
20180168491 | Al-Ali et al. | Jun 2018 | A1 |
20180174679 | Sampath et al. | Jun 2018 | A1 |
20180174680 | Sampath et al. | Jun 2018 | A1 |
20180182484 | Sampath et al. | Jun 2018 | A1 |
20180184917 | Kiani | Jul 2018 | A1 |
20180192953 | Shreim et al. | Jul 2018 | A1 |
20180199871 | Pauley et al. | Jul 2018 | A1 |
20180213583 | Al-Ali | Jul 2018 | A1 |
20180214090 | Al-Ali et al. | Aug 2018 | A1 |
20180218792 | Muhsin et al. | Aug 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247353 | Al-Ali et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180256087 | Al-Ali et al. | Sep 2018 | A1 |
20180296161 | Shreim et al. | Oct 2018 | A1 |
20180300919 | Muhsin et al. | Oct 2018 | A1 |
20180310823 | Al-Ali et al. | Nov 2018 | A1 |
20180317826 | Muhsin et al. | Nov 2018 | A1 |
20190015023 | Monfre | Jan 2019 | A1 |
20190034775 | Martinez de Velasco Cortina et al. | Jan 2019 | A1 |
20190117070 | Muhsin et al. | Apr 2019 | A1 |
20190200941 | Chandran et al. | Jul 2019 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190374139 | Kiani et al. | Dec 2019 | A1 |
20190374173 | Kiani et al. | Dec 2019 | A1 |
20190374713 | Kiani et al. | Dec 2019 | A1 |
20200021930 | Iswanto et al. | Jan 2020 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113435 | Muhsin | Apr 2020 | A1 |
20200113488 | Al-Ali et al. | Apr 2020 | A1 |
20200113496 | Scruggs et al. | Apr 2020 | A1 |
20200113497 | Triman et al. | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138288 | Al-Ali et al. | May 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200196877 | Vo et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
H08-315919 | Nov 1996 | JP |
H11-156657 | Nov 1997 | JP |
H10-314149 | Dec 1998 | JP |
2002-268764 | Sep 2002 | JP |
2002351564 | Dec 2002 | JP |
2003502092 | Jan 2003 | JP |
2003-521985 | Jul 2003 | JP |
2003296114 | Oct 2003 | JP |
2004164597 | Jun 2004 | JP |
2009528909 | Aug 2009 | JP |
2013-504827 | Feb 2013 | JP |
WO 0117450 | Mar 2001 | WO |
WO 0217779 | Mar 2002 | WO |
WO 2006051461 | May 2006 | WO |
WO 2007108513 | Sep 2007 | WO |
WO 2007143626 | Dec 2007 | WO |
WO 2011032177 | Mar 2011 | WO |
WO-2011032177 | Mar 2011 | WO |
WO 2018201078 | Apr 2018 | WO |
Entry |
---|
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn) |
US 9,579,050 B2, 02/2017, Al-Ali (withdrawn) |
“E-ZPass Quick Guide” (https://web.archive.org/web/20121217041418/https://www.e-zpassny.com/en/about/i_guide.pdf). Archived on Jan. 6, 2012. |
“E-ZPass User's Manual” (https://web.archive.org/web/20120417132149/http://www.paturnpike.com/ezpass/pdf/EZPass_User_Manual.pdf). Archived on Apr. 17, 2012. |
International Search Report and Written Opinion, re PCT Application No. PCT/US2018/030004, dated Sep. 27, 2018. |
Office Action in European Application No. 10763906.4 dated Mar. 31, 2017. |
Office Action in Japanese Application No. 2012-529002 dated Feb. 12, 2014. |
Office Action in Japanese Application No. 2012-529002 dated Jan. 27, 2015. |
Partial International Search Report for PCT Application No. PCT/US2010/048825, dated Feb. 20, 2012 in 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180310822 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62535168 | Jul 2017 | US | |
62564879 | Sep 2017 | US | |
62575231 | Oct 2017 | US | |
62492083 | Apr 2017 | US |