The invention relates in general to flexible packaging, and more particularly, to a spout assembly for a flexible bag that is configured to interface with a plurality of different connectors commonly utilized in the dispensing of flowable material from such flexible bags.
The use of flexible packaging is known in the art. Often the flexible packaging comprises a flexible bag having a spout assembly that is positioned within an outer rigid container (such as a box). The flexible bag includes a flowable material such as a liquid, a syrup, a juice, a gel or the like. The spout assembly is coupled to an adapter which is coupled to dispensing equipment. The flowable material is often withdrawn through the dispensing equipment by way of a vacuum or a pump or the like.
Any number of different types of adapters are known in the art. Problematically, it is desirable to utilize a single spout that is capable of coupling to a plurality of such adapters. In the case of threaded spouts, due to various issues such as vibration, creep and deformation, it is often the case that the connections can loosen over time and often while still in use.
The disclosure is directed to a spout assembly for a flexible bag. The spout assembly includes a base flange, a body and a dual lead thread. The base flange has a top surface and a bottom surface opposite the top surface. At least one of the top surface and the bottom surface are configured for coupling to a flexible bag. The body extends from the base flange away from the top surface of the base flange. The body includes a proximal end corresponding to the base flange and a distal end spaced apart therefrom. The body includes an inner surface and an outer surface. The inner surface is placeable in fluid communication with a cavity of a flexible bag. The dual lead thread extends along the outer surface of the body between the proximal end and the distal end. The dual lead thread has a first threadform and a second threadform. The first threadform has a first threadform length. The second threadform has a second threadform length. The length of the first threadform is different than that of the second threadform.
In some configurations, the first threadform is longer than the second threadform.
In some configurations, the first threadform includes an upper portion and a lower portion and the second threadform includes an upper portion and a lower portion. Each upper portion and each lower portion has a length. The length of the upper portion of the first threadform is different than the length of the upper portion of the second threadform. Additionally, the length of the lower portion of the first threadform is different than the length of the lower portion of the second threadform.
In some configurations, the length of the upper portion of the first threadform is shorter than the length of the upper portion of the second threadform. Additionally, the length of the lower portion of the first threadform is longer than the length of the lower portion of the second threadform.
In some configurations, the upper portion of the first threadform and the second threadform each define an upper threadform thread diameter. Similarly, the lower portion of the first threadform and the lower portion of the second threadform define a lower threadform thread diameter. The upper threadform thread diameter is smaller than the lower threadform thread diameter.
In some configurations, the spout further includes an upper body flange spaced apart from the proximal end and the distal end extending about the body of the spout. The first threadform and the second threadform extend along the outer surface of the body between the distal end and the upper body flange.
In some configurations, the first threadform and the second threadform terminate at the upper body flange.
In some configurations, the upper body flange includes an outer surface, spaced apart from the body of the spout. The first threadform and the second threadform extend over at least a portion of the upper body flange.
In some configurations, the spout further comprises a lower body flange extending about the body of the spout. The lower body flange is spaced apart from the base flange and the upper body flange.
In some configurations, the base flange, the lower body flange and the upper body flange are substantially parallel to each other.
In some configurations, the spout further comprises an upper annular rim flange having an inner seat defining a diameter that is larger than a diameter of the body of the spout. An upstand wall extends away from the proximal end of the spout. An outwardly extending outer portion is positioned at a distal end thereof.
In some configurations, the spout assembly has an insert member slidably positionable within the spout.
In some configurations, the insert member includes a cylindrical body having an outer surface and an inner surface. The cylindrical body has an inner connector actuating assembly which includes a base web extending across the inner surface of the cylindrical body to cooperatively define a cavity. A connector engagement post extends from the base web toward a top end of the insert member, and spaced apart from the inner surface of the cylindrical body. A connector engagement rib extends between the connector engagement post and the inner surface of the cylindrical body. The engagement rib has an upper surface that is spaced apart from the base web. At least one transverse slot extends from the cavity through the cylindrical body near a bottom end of the cylindrical body.
In some configurations, the insert member further includes a plurality of flexible tabs that are hingedly coupled to a top end of the cylindrical body of the insert member. The flexible tabs are configured with a spout surface engageable with the spout and an inner coupling surface engageable with a connector insertable into the insert member. Upon insertion of the insert member into the spout, the flexible tabs are directed inwardly through interaction between the inner surface of the spout and the spout surface of the flexible tabs, to, in turn, be bias-able against the connector insertable into the insert member.
In some configurations, the spout further includes a lower spout inward lip positioned at the proximal end of the body. The insert member further includes a lower lip positioned at a bottom end of the outer surface of the cylindrical body. The lower spout inward lip and lower lip of the cylindrical body configured to sealingly engage upon positioning of the insert member into a proper orientation within the spout, to in turn, preclude the passage of a flowable material therethrough.
In some configurations, the cylindrical body further includes a plurality of transverse slots extending therethrough, with the transverse slots having a width that is greater than a height thereof, the plurality of transverse slots being positionable beyond the lower spout inward lip to be entirely in fluid communication with the cavity of the flexible bag.
In some configurations, a cap is releasably selectively coupled to the spout and the insert member.
In some configurations, the cap includes a body with an outer depending skirt and an inner depending skirt. The cap is configured to be coupled to the spout and the insert member in a first configuration upon partial insertion of the insert member within the spout, and in a second configuration upon full insertion of the insert member within the spout. In the first configuration, the outer skirt is configured to interact with the upper annular rim flange. In the second configuration, the flexible tabs engage the inner depending skirt to releasably retain the cap over the spout.
The first threadform and the second threadform are positioned so as to be approximately substantially 180° apart. Such a configuration enhances the initial coupling with the two threadforms, and provides a more positive engagement.
In some configurations, the bag comprises a pillow type bag having a plurality of panels that are sealed together to form a substantially fluid tight cavity. The spout assembly provides fluid communication therewith.
The disclosure will now be described with reference to the drawings wherein:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and described herein in detail a specific embodiment with the understanding that the present disclosure is to be considered as an exemplification and is not intended to be limited to the embodiment illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings by like reference characters. In addition, it will be understood that the drawings are merely schematic representations of the invention, and some of the components may have been distorted from actual scale for purposes of pictorial clarity.
Referring now to the drawings and in particular to
The flexible bag may comprise any number of different configurations and different materials. For example, and not limited thereto, the flexible bag 100 is shown in
The panels are then coupled together by way of seals 124. In the case of a pillow type container, the seals 124 include a top seal 131, bottom seal 133, first side seal 135 and second side seal 137. The seals are generally perpendicular to adjacent seals and parallel to opposing seals to generally define a square or rectangular configuration, thereby defining a generally square or rectangular cavity 129. The seals may be formed through the application of heat, or through other procedures, including, but not limited to RF welding, ultrasonic welding, adhesive, among others. The disclosure is not limited to any particular manner of attachment of the panels.
For many pillow type containers, an opening 126 is provided through the front panel 120 proximate, but spaced apart from the bottom seal 133. A spout 200 can be coupled thereto in sealed engagement. In certain embodiments, multiple spouts may be provided, one, for example, for dispensing, and one for filling. In other embodiments, spouts may be positioned along the seals so as to extend between the panels. The film is configured for use in association with multiple configurations of spouts, as well as in embodiments that do not require spouts.
Spout assembly 10 is shown in
The lower body flange 304 includes upper surface 330, lower surface 332 and outer surface 334. The lower body flange is spaced apart from the base flange and is generally parallel thereto. Thus, a generally uniform lower channel 370 is defined between the flanges. Filling equipment and dispensing coupling equipment may be configured to grasp the spout 200 about the geometry defined by the defined lower channel and the associated flanges. In the embodiment shown, the upper flange corresponds in diameter to the upper portion 312 of the base flange 300 with the outer surfaces of each being corresponding in configuration (that is, having the same foot print, for example). It will be understood that variations are contemplated.
The upper body flange 305 includes upper surface 336, lower surface 338 and outer surface 339. The upper body flange is spaced apart from the lower body flange and is generally parallel thereto. Thus, a generally uniform central channel 372 is defined between the upper body flange and the lower body flange. In addition, a generally uniform thread channel 374 is defined between the upper body flange and the upper annular rim flange 306. Equipment can utilize either of these channels for purposes of retention structures. The diameter of the upper body flange is less than the lower body flange, and, as will be explained, less than the dual lead helical thread 308.
The upper annular rim flange 306 extends about the distal end of the cylindrical upstand 302. In the embodiment shown, the upper annular rim flange 306 includes inner seat 340 with upstand wall 342 and outer portion 344. The inner seat 340 comprises a portion of enlarged diameter relative to the body 302 and provides a sealing surface that has an arcuate cross-sectional configuration together with the upstand wall 342 that extends upwardly therefrom. The outer portion 344 extends outwardly and provides a lip at the distal end of the upstand wall 342. As will be explained, the diameter of the upper lip is approximately the same as the upper portion of the first and second threadform.
The dual lead thread 308 is disposed between the upper annular rim flange 306 and the upper body flange 305. The dual lead thread 308 is preferably helically wound about the body 302 and includes first threadform 346 and second threadform 348. The first threadform 346 includes upper portion 350 and lower portion 352 which generally lie on the same helical winding (although it will be understood that the two portions may be slightly offset so as to be on slightly different helical windings). Generally, however, the two portions have the same pitch. The upper portion 350 includes first end 353 and second end 354 defining a length thereof. The diameter of the upper portion 350 is smaller than that of the lower portion 352, so that the upper portion diameter is similar to the upper annular rim flange 306, and smaller than the diameter of the upper body flange 305.
The lower portion 352 includes first end 355 and second end 356 defining a length. The lower portion is generally on the opposite side (that is about 180° away) from the upper portion 350, although variations are contemplated where the two structures are not entirely on opposite sides. The lower portion 352 extends approximately one quarter of a turn, although variations are contemplated. The second end 355 of the lower portion 352 generally coincides with the upper body flange 305 and terminates at or near the lower surface 338 of the upper body flange 305. In the embodiment shown, the lower portion 352 extends over the outside of the upper body flange 305.
Similarly, the second threadform 348 includes upper portion 360 and lower portion 362 which generally lie on the same helical winding (although it will be understood that the two portions may be slightly offset so as to be on slightly different helical windings). Generally, however, the two portions have the same pitch. The upper portion 360 includes first end 363 and second end 364 defining a length thereof. The diameter of the upper portion 360 is smaller than that of the lower portion 362, so that the upper portion diameter is similar to the upper annular rim flange, and smaller than the diameter of the upper body flange 305.
The lower portion 362 includes first end 365 and second end 366 defining a length. The lower portion is generally on the opposite side (that is about 180° away) from the upper portion 360, although variations are contemplated where the two structures are not entirely on opposites sides. The lower portion 362 extends approximately one quarter of a turn, although variations are contemplated. The second end 365 of the lower portion 362 generally coincides with the upper body flange 305 and terminates at or near the lower surface 338 of the upper body flange 305. In the embodiment shown, the lower portion 362 extends over the outside of the upper body flange 305.
The first threadform 346 and the second threadform 348 are positioned so as to be approximately 180° apart from each other (that is, generally corresponding to each other and on opposite sides of each other). The upper portion 350 of the first threadform 346 is longer than the upper portion 360 of the second threadform 348. To the contrary, the lower portion 352 of the first threadform 346 is shorter than the lower portion 362 of the second threadform 348. In other embodiments, the portions of the first threadform may both be longer than the corresponding portions of the second threadform. In still other embodiments, the portions of the first threadform may both be shorter than the corresponding portions of the second threadform. In yet another embodiment, the upper portions may be generally identical, with the lower portions having a longer or shorter relative configuration. In summary the first threadform is of a different length than the second threadform. That is, either or both of the upper portions and the lower portions may be of different lengths. It is possible that while each portion may be of a different length, the combined threadform lengths are the same. Such a configuration results in different lengths of the upper and lower portions, which is defined as being of different length.
Due to the different dispensing couplings in use, the threads are limited in size (i.e., length), as well as thread depth. As such, there is a chance that the connector can be loosened due to vibration or relaxation (i.e., due to creep or deformation). For example, vibrational loads will tend to loosen a fastener over time, and, for the limited thread engagement depth with different dispensing couplings, such loosening is problematic. Through relaxation of the components, pre-load holding force can be reduced. The configuration of the different length of the opposing threadform components positions the loads on the threads on different planes and locations on the opposing threads. Thus, if there is a decrease in the pre-load on one thread due to vibration or relaxation (or other forces or disturbances), while one of the threads may be affected, the other thread may maintain the pre-load holding force. This is because the opposite thread has a different geometry and load points are generally located at different points and different planes. One particular advantage is seen where the starting and ending points of the threads are at different points (that is, the corresponding portions of the threadforms have different lengths, with the possibility of both the first end and the second end not being directly opposing to each other). In the embodiment shown, the lower portions have first ends that are approximately 180° apart, with the second ends that are more than 180° apart. In other embodiments, both the first ends and the second ends of the lower portions of the threadforms may be spaced apart at a distance that are other than 180°. In the embodiment shown, the second end 366 of the lower portion 362 of the second threadform 348 is more than 180° (in a clockwise direction) from the second end 356 of the lower portion 352 of the first threadform 346.
It will be understood that in some embodiments, solely a lower portion of each of the first and second threadform may be present, and a flange may extend about the body at a location comparable to that of the upper portions of each of the first and second threadform. In other embodiments, the threadform may be continuous, that is, a single portion that extends about the entirety of the circumference of the body. In still other embodiments, the upper portions of each of the first and second threadform may be of different pitch than the corresponding lower portions.
The insert member 400 is shown in
The inner surface 416 includes cap engagement undercut 430, connector seal surface 432 and connector seal engagement surface 434. As will be explained, the cap engagement undercut 430 provides for the receipt and retention of a tab on the cap. The connector seal surface provides a relatively smooth and continuous surface for sealing engagement between a connector and the inner surface 416 of the cylindrical body. The connector seal engagement surface 434 provides an initial engagement region that urges the seal (typically an o-ring) into the proper configuration and position for further downstream positioning on the connector seal surface 432.
The outer surface 418 includes lower lip 436 and axial boss 438. The lower lip 436 extends outwardly at or near the bottom end 410 of the cylindrical body 402. The lower lip 436 precludes the insert member from pulling out of the spout in the seated position, as will be described below.
Flexible tabs 404 are disposed about the top end 412 of the cylindrical body 402 and, in the resting position extend outwardly from the outer surface 418. In the embodiment shown, a total of eight flexible tabs are disposed generally uniformly about the outer perimeter of the cylindrical body. Each of the flexible tabs is substantially identical (although variations are contemplated), and each include hinge 440, spout surface 442 and inner coupling surface 444. As will be explained the flexible tabs are configured to rotate about hinge 440 wherein the flexible tabs can be urged inwardly by interaction between the spout and spout surface 442, whereupon inward urging directs the inner coupling surface of each of the flexible tabs between portions of the connector seal engagement surface 434, and into contact with either a cap or a connector, to provide a clamping force thereagainst.
The inner connector actuating assembly 406 is shown in
The connector engagement ribs 426 extend between the inner surface 416 of the cylindrical body and the connector engagement post 424. The connector engagement ribs 426 include an upper surface that is configured to engage a portion of the connector. The connector engagement post 424, in the embodiment shown, extends upwardly from the base web 422 and terminates below the connector engagement post. As such, and as will be explained, when the connector is inserted, the connector reaches the connector engagement post prior to reaching the connector engagement ribs. A plurality of additional support members 428 extend between the inner surface 416 of the cylindrical body and the connector engagement post.
The cap 500 is shown in
The outer depending skirt 504 includes outer surface 520, inner surface 522, proximal end 524 and distal end 526. The outer depending skirt is generally orthogonal to the body 502, although variations are contemplated. At or near the distal end 526, the inner lip 528 is positioned to extend inwardly from the inner surface 522 of the outer depending skirt. The inner lip 528 includes inclined upper annular surface 530 and inclined lower annular surface 532. These surfaces tend to assist the engagement of the inner lip with the corresponding structure.
The inner depending skirt 506 is shown in
The outer surface 546 includes upper outward flange at the proximal end thereof. The upper outward flange provides a upper stop which interfaces with the top end of the cylindrical body 402 of the insert member 400. The lower outward lip 558 is positioned at or near the distal end 542 of the inner depending skirt. The lower outward lip extends outwardly toward the outer depending skirt and includes upper inclined surface 560 and lower inclined surface. The inclined surfaces assist the lip into and out of a corresponding structure on the inner surface of the cylindrical body, namely the cap engagement undercut 430.
As shown in
In operation, and with reference to
To fill the underlying bag with flowable material through the spout, the cap and the insert member are removed by the filler. In particular, and with reference to
With reference to
More particularly, as the insert member and the cap are placed within the body 302, continued insertive movement directs the bottom end 410 of the insert member into contact with the lower spout inward lip 329, and continued insertive movement passes the insert member beyond the lower spout inward lip until the lip engages the lower lip 436, precluding removal of the insert member from within the body of the spout. Such a configuration provides a seal, precluding the passage of flowable material from within the flexible bag through the spout.
At generally the same time, the flexible tabs 404 are caused to rotate about the hinge, urged by the interfacing of the spout surface and the inner seat 340 of the upper annular rim flange 306. The inward rotation of the flexible tabs 404 eventually directs the tabs toward and into the outer surface of the inner depending skirt 506 of the cap 500 so as to be positioned between the top end of the insert member and the upper outward flange 556. The filled flexible bag is ready for flowable material to be dispensed therefrom.
With reference to
It will be understood that the cap 500 is first removed. Once removed, the central member is inserted into the cylindrical body of the insert member. The sealing o-ring of the central member interfaces with the connector seal engagement surface 434 and is urged inwardly. Continued insertive movement directs the central member toward the inner connector actuating assembly, and the o-ring onto the connector seal surface 432.
With reference to
As the insert member is driven further into the spout along with the central member, the spout surface 442 of the flexible tabs 404 comes into contact with the inner surface of the body 302 of the spout 200 beyond the inner seat, thereby imparting a clamping force through the inner coupling surface 444 of the flexible tab and the central member of the connector.
With reference to
With reference to
The foregoing description merely explains and illustrates the invention and the invention is not limited thereto except insofar as the appended claims are so limited, as those skilled in the art who have the disclosure before them will be able to make modifications without departing from the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 15/368,772 filed Dec. 5, 2016, entitled Spout Assembly For A Flexible Bag, which claims priority from U.S. patent application Ser. No. 14/327,820 filed Jul. 10, 2014, now U.S. Pat. No. 9,511,907, entitled “Spout Assembly For A Flexible Bag,” the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2478544 | Olson | Aug 1949 | A |
3420413 | Corsette | Jan 1969 | A |
4691833 | Ahrens | Sep 1987 | A |
4783176 | Ichikawa | Nov 1988 | A |
5307946 | Molinaro | May 1994 | A |
5462186 | Ladina | Oct 1995 | A |
5553727 | Molinaro | Sep 1996 | A |
6006930 | Dreyer | Dec 1999 | A |
6241122 | Araki | Jun 2001 | B1 |
6415935 | Hins | Jul 2002 | B1 |
6612466 | Malin | Sep 2003 | B1 |
6612545 | Rutter | Sep 2003 | B1 |
7232042 | Last | Jun 2007 | B2 |
7628299 | Johnson | Dec 2009 | B2 |
7637384 | Price | Dec 2009 | B2 |
8479952 | Tauber | Jul 2013 | B2 |
8875958 | Last | Nov 2014 | B2 |
9434516 | Johnson | Sep 2016 | B2 |
20020166834 | Branson | Nov 2002 | A1 |
20030071042 | Adams | Apr 2003 | A1 |
20040045841 | Segovia, Jr. | Mar 2004 | A1 |
20070158294 | Tanaka | Jul 2007 | A1 |
20080063319 | Kuge | Mar 2008 | A1 |
20080245817 | Bellmore | Oct 2008 | A1 |
20110174761 | Molinaro | Jul 2011 | A1 |
20110226721 | Horstman | Sep 2011 | A1 |
20130048676 | Kaufman | Feb 2013 | A1 |
20150076011 | Pernikoff | Mar 2015 | A1 |
20150210438 | Ledun | Jul 2015 | A1 |
20160214780 | Kazuhiro | Jul 2016 | A1 |
20170107008 | Ichikawa | Apr 2017 | A1 |
20170107024 | Tamarindo | Apr 2017 | A1 |
20170291740 | Genaw, Jr. | Oct 2017 | A1 |
20180029774 | Stever | Feb 2018 | A1 |
20190009952 | Pedmo | Jan 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190077554 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15368772 | Dec 2016 | US |
Child | 16189257 | US | |
Parent | 14327820 | Jul 2014 | US |
Child | 15368772 | US |