SPRAY APPLICATION SYSTEM COMPONENTS COMPRISING A REPELLENT SURFACE & METHODS

Abstract
Presently described are components of a spray application system, a method of making thereof, wherein at least one component comprises a liquid repellent surface layer such that the receding contact angle with water ranged from 90 degrees to 135 degrees. The liquid repellent surface (e.g. layer) may comprise a porous layer and a lubricant impregnated into pores of the porous layer; a fluoropolymer; a fluorochemical material and an organic polymeric binder; or a fluorochemical material melt additive or silicone/silane/siloxane material melt additive and a thermoplastic polymeric material component. The component is typically a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof. In some embodiments, the component comprises a thermoplastic polymeric material. In some favored embodiments, the component is a removable liquid reservoir or liner. In some favored embodiments, the component is a collapsible liquid reservoir or liner. The spray application system typically further comprises a gravity-fed spray gun.
Description
BACKGROUND

As described for example in WO98/32539, spray application systems for spraying liquids (e.g. paints, garden chemicals etc.) are generally known. Such systems generally comprise a reservoir to contain a liquid and a spray gun through which the liquid is dispensed. The liquid may be fed from the reservoir under gravity and/or it may be entrained in a stream of pressurized liquid, for example air or water, which is supplied to the gun from an external source.


As also described in WO98/32539 disposable liners have been used with (e.g. re-usable) liquid reservoirs. The liner may aid in disposal of the contents; protect the reservoir or its contents; as well as facilitate or even eliminate the cleaning of the reservoir.


SUMMARY

With current spray (e.g. paint) application systems, a portion of the liquid (e.g. paint) is retained within the liquid reservoir or liner after dispensing the liquid. Depending on the size of the liquid reservoir or liner, the amount of retained paint may range from about ½ to 1 ounce. In the case of relatively expensive liquids, such as colored automobile base coat paints that can cost $3-$6 per sprayable ounce, the cost of such wasted retained (e.g. paint) liquid can be substantial. Thus, industry would find advantage in minimizing the amount of paint or other liquid that is retained on components of spray application systems.


Presently described are components of a spray application system. At least one component comprises a liquid repellent surface (e.g. layer). In some embodiments, the liquid repellent surface comprises a fluoropolymer or a (e.g. non-fluorinated) binder and a fluorochemical material and/or siloxane (e.g. polydimethylsiloxane) material. In some embodiments, the liquid repellent surface comprises a thermally processible polymer and a fluorochemical and/or siloxane melt additive. In another embodiment, the liquid repellent surface (e.g. layer) comprises a porous layer and a lubricant impregnated into pores of the porous layer. The component is typically a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof. In some embodiments, the component comprises a thermoplastic polymeric material. In some favored embodiments, the component is a removable liquid reservoir or liner. In some favored embodiments, the component is a collapsible liquid reservoir or liner. The spray application system typically further comprises a gravity-fed spray gun.


Also described are spray application systems, methods of using a spray application system, as well as methods of making a component of a spray application system wherein the component has a liquid repellent surface.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a spray application system;



FIG. 2 shows an exploded view of components of a liquid (e.g. paint) reservoir further comprising a liner for the gun of FIG. 1;



FIG. 3 shows the liquid reservoir of FIG. 2 in an assembled condition, with an adapter 21 for connecting the liquid reservoir to a spray gun;



FIG. 4 shows a longitudinal cross-section through the liquid reservoir and the adapter of FIG. 3;



FIG. 5 shows the collapsed liner after the liquid (e.g. paint) has been dispensed from a reservoir or liner;



FIG. 6A is a transmission electron micrograph of a surface of a comparative example porous layer formed without sintering of the silica nanoparticles;



FIG. 6B is a transmission electron micrograph of an exemplary surface of a porous layer comprising sintered silica nanoparticles;



FIG. 7 is a cross-sectional view of an article comprising a repellent coating;



FIG. 8 is cross-sectional view of another embodiment of an article comprising a liquid repellent surface;



FIG. 9 is cross-sectional view of another embodiment of an article comprising a liquid repellent surface;



FIG. 10 is cross-sectional view of another embodiment of an article comprising a liquid repellent surface; and



FIG. 11 is cross-sectional view of another embodiment of an article comprising a liquid repellent surface.





The cross-sectional drawings are not to scale.


DETAILED DESCRIPTION


FIG. 1 illustrates an embodied spray application system. The gun 1 comprises a body 2, a handle 3 which extends downwards from the rear end of the body, and a spray nozzle 4 at the front end of the body. The gun is manually-operated by a trigger 5 which is pivotally-mounted on the sides of the gun. The liquid (e.g. paint) reservoir 6 is located on the top of the body 2 and communicates with an internal passageway (not visible) which extends through the gun from a connector 7 at the lower end of the handle 3 to the nozzle 4. During use, liquid (e.g. paint) is provided in reservoir 6. Removable lid 8 is engaged with the open end of (e.g. paint) liquid reservoir 6. Further, connector 7 is connected to a source of compressed air (not shown) so that, when the user pulls on the trigger 5, compressed air is delivered through the gun to nozzle 4 and entrains and atomizes paint being delivered under gravity from liquid reservoir 6. The liquid (e.g. paint) is then discharged through the nozzle 4 with the compressed air, as a spray.


Various spray gun designs can be utilized in the embodied spray application system, such as described for example in U.S. Pat. No. 5,582,350; U.S. Pat. No. 5,267,693; and EP 0768 921.



FIG. 2 illustrates the components of another embodied liquid (e.g. paint) reservoir 11 that can be used with the gun 1 of FIG. 1 (or any similar gun) instead of liquid (e.g. paint) reservoir 6. The liquid (e.g. paint) reservoir 11 comprises an open container 12, of suitable size for attachment to a (e.g. hand-held) spray gun, having an air hole 12A in its base and provided with a liner 13. The liner 13 corresponds in shape to and fits within the interior of container 12. The (e.g. removable) liner may have a narrow rim 14 at the open end that contacts the top edge of the container 12. The container 12 also has a (e.g. disposable) lid 15. Lid 15 typically engages rim 14 of the open end of the liner 13 and is held firmly in place when lid 15 is attached to container 12. The lid can be attached by an annular collar 20 which screws onto the container, such as depicted in FIG. 3.


Liquid reservoir 6 or container 12 of the liquid (e.g. paint) reservoir 11 is typically formed from a self-supporting (e.g. rigid) thermoplastic polymeric material, for example polyethylene or polypropylene, of any suitable size. For use with paint spray guns, containers having a capacity ranging from 100 ml to 1 liter such as a capacity of 250, 500 or 800 ml are common. The lid 15 is also typically formed from a thermoplastic polymeric material, for example, polyethylene or polypropylene. The lid may be transparent, translucent or opaque and may optionally be colored. The collar 20 may be a molded thermoplastic or it may be a machined metal (for example, aluminum). In some embodiments, fluid reservoir 6 and container 12 are formed by injection molding of a thermoplastic polymer.


Liquid reservoir 6, as well as liner 13, are typically also self-supporting but can also be collapsible, i.e. collapses when (e.g. paint) liquid is withdrawn from the liner or liquid (e.g. paint) reservoir during operation of the spray gun. In one embodiment, the liner 13 or liquid (e.g. paint) reservoir 6 have a (e.g. thicker) rigid base 13A and (e.g. thinner) flexible side walls 13B. In this embodiment, the base may have a thickness of about 250 to 400 microns. In contrast, the side walls can range from about 100 to 250 microns and in some embodiments are no greater than 225, 200 or 175 microns. When the liner collapses, it typically collapses in the longitudinal direction by virtue of the side walls collapsing rather than the base. Liner 13 and some embodiments of liquid (e.g. paint) reservoir 6 are preferably formed by thermo/vacuum forming a sheet of thermoplastic material such as low density polyethylene (LDPE). When the liner 13 or liquid (e.g. paint) reservoir 6 is collapsible it can be characterized as a single-use or in other words “disposable” component.


The lid 15 typically includes a (e.g. central) aperture 16 from which extends a connector tube 17 provided, at its end, with outward extensions 18 forming one part of a connection, such as a bayonet connection; i.e. a fitting engaged by being pushed into a socket and then twisted to lock in place. The liquid (e.g. paint) reservoir 11 can be attached to the spray gun 1 through the use of an adapter 21 as depicted in FIG. 3 and FIG. 4. The adapter 21 is a tubular component which, at one end 22, is formed internally with the other part of the (e.g. bayonet) connection for attachment to the connector tube 17. The other end 23 of the adapter can be shaped to match the standard attachment of the spray gun (typically a screw thread). The adapter 21 may be a machined metal component and may, for example, be formed from anodized aluminum.


During use of the spray application system, adapter 21 is securely attached (at end 23) to the spray gun. Liner 13 is inserted into container 12. Liquid (e.g. paint) is then put into liner 13, lid 15 is pushed into place, and collar 20 engaged (e.g. screwed down) tightly with container 12 to hold the lid in position. The rim 14 of the liner 13 is typically held in place between lid 15 and container 12 as shown in FIG. 4. As paint is removed from within the liner 13, the sides of the liner collapse as depicted in FIG. 5 as a result of the decreased pressure within the liner. The base of the liner, being more rigid, retains its shape so that the liner tends to collapse in the longitudinal rather than the transverse direction thereby reducing the possibility of pockets of paint being trapped in the liner.


The liner 13 typically has a smooth (e.g. continuous) internal surface, lacking structures that would increase retention of the liquid (e.g. paint). Thus, the liner typically has no discontinuities (projections or indentations) from a planar surface such as pleats, corrugations, seams, joints, gussets, or groove at the internal junction of the side walls 13B with the base 13A. Further, the liner volumetrically coincides with the inside of the container 12.


Liquid (e.g. paint) can be mixed within liner 13 or within liquid (e.g. paint) reservoir 6. To facilitate the use as a mixing receptacle, the side walls of the container 12 or liquid (e.g. paint) reservoir 6 may be provided with markings 25 (FIGS. 2 and 3) enabling the volume of the contents within the container to be determined.


Although fluid reservoir 6, container 12, and liner 13 may be opaque, such components are preferably transparent or translucent such that the liquid can be visually observed through the walls. This can also facilitate using the fluid reservoir 6, or container 12 and liner 13 as a mixing receptacle.


Liquid (e.g. paint) contained in the liquid reservoir 6 or liner 13 it is often mixed by hand. Hand mixing can be beneficial to avoid air entrapment. The inside surfaces of the liquid reservoir 6 or liner 13 are also typically not exposed to high amounts of mixing forces when mixed by hand. However, the side walls of the mixing container may be ‘scraped’ in order to ensure all of the toners are thoroughly mixed.


In some embodiments, the liners are thermoformed, injection molded, blow molded (or formed using some other plastic processing technique) from materials such as, but not necessarily limited to, low density polyethylene, polypropylene, polyethylene, and/or blends thereof. Suitable liner components are commercially available from 3M Company, St. Paul, Minn. under trade designation “3M PPS PAINT PREPARATION SYSTEM”.


To ensure that there are no unwanted particles, the liquid (e.g. paint) typically passes through a (e.g. removable) filter as the (e.g. paint) liquid passes from the liquid reservoir 6 or liner 13 to the spray nozzle during use of the spray application system. Such filter can be positioned at various locations. In one embodiment, aperture 16 is covered by a filter mesh 19 which may be a push fit into the aperture or may be an integral part of the lid 15, as depicted in FIG. 4. In another embodiment, a filter may be provided within liquid reservoir 6, as described and depicted in FIG. 12 of WO 98/32539.



FIGS. 1-7 and 8 and 11 depict examples of illustrative liquid (e.g. paint) reservoirs, liquid reservoir liners, lids for liquid (e.g. paint) reservoirs and liners. Such components may optionally include various other adaptations as known in the art for spray application systems, as described for examples in WO 98/32539.


In the present invention, a component (e.g. a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof) of a spray application system comprises a liquid repellent surface (e.g. layer). The liquid repellent surface layer may be present on a portion of a surface of at least one of such components or the liquid repellent surface layer may be present on the entire surface that comes in contact with liquid (e.g. paint) during use. Although the exterior surfaces of the liquid reservoir, liner, lid, etc. may comprise the liquid repellent surface layer described herein, in typical embodiments, the interior surface(s) of at least one of such components comprises a liquid repellent surface layer.


With reference to FIG. 7, article 100 is a component of a spray application system comprising substrate 110 (e.g. a liner, liquid reservoir, or lid), and a liquid (e.g. paint) repellent surface comprising a porous layer 128 disposed on a (e.g. paint or other liquid contacting) surface of the substrate, and a lubricant 150 disposed in pores 125 of the surface treated porous layer. The surface treated porous layer (120 with 128) is positioned between the substrate 110 and the impregnated lubricant 150. However, in some embodiment, portions of the porous layer are evident at the outermost surface surrounded by valleys of lubricant.


In one favored embodiment, the porous layer comprises a plurality of sintered inorganic oxide (e.g. silica) particles 125 arranged to form a porous three-dimensional network. The porous layer comprises a hydrophobic layer 128 disposed on the porous three-dimensional network. The hydrophobic layer is generally disposed on the opposing surface of the porous layer relative to the surface of the porous layer disposed on (e.g. in contact with) the substrate or component of the spray application system. Thus, the porous layer can be considered to have two major surfaces, one major surface disposed on a substrate or component, and the opposing major surface comprising the hydrophobic coating impregnated with lubricant.


In some embodiments, the porous layer includes a porous network of sintered inorganic oxide particles. In typical embodiments, the inorganic oxide particles comprise or consist of silica. However, various other inorganic oxide particles can be used in place of silica or in combination with silica, such as alumina, titania, etc.


The term “nanoparticle” refers to particles that are submicron in size. In some embodiments, the nanoparticles have an average particle size, which typically refers to the average longest dimension of the particles, that is no greater than 500 nanometers, no greater than 200 nanometers, no greater than 100 nanometers, no greater than 75 nanometers, no greater than 50 nanometers, no greater than 40 nanometers, no greater than 25 nanometers, no greater than 20 nanometers, no greater than 10 nanometers, or no greater than 5 nanometers.


The average particle size is often determined using transmission electron microscopy but various light scattering methods can be used as well. The average particle size refers to the average particle size of the nanoparticles used to form the porous layer coating. That is, the average particle size refers to the average particle size of the inorganic oxide nanoparticles prior to sintering, such as depicted in FIG. 1A.


In some embodiments, the porous layer comprises thermally sintered inorganic oxide nanoparticles, such as fumed silica. Fumed silica is advantageously lower in cost in comparison to smaller non-aggregated nanoparticles. Fumed silica is commercially available from various suppliers including Evonik, under the trade designation “Aerosil”; Cabot under the trade designation “Cab-O-Sil” and Wacker Chemie-Dow Corning. Fumed silica consists of microscopic droplets of amorphous silica fused into branched, chainlike, three-dimensional secondary aggregate particle. Thus, the fumed silica aggregates comprise sub-particles that are often referred to as primary particles, typically ranging in size from about 5 to 50 nm. Further, the aggregates can agglomerate. Thus, the particle size of the aggregates and agglomerates is considerably larger. For example, the average particle size (of aggregates and agglomerates) is typically greater than 10 microns (without sonication). Further, the average aggregate particle size after 90 seconds of sonication typically ranges from 0.3 to 0.4 microns. The energy of mixing the fumed silica into a liquid medium is generally less than 90 seconds of sonication. Hence, the particle size of fumed silica in the liquid medium and dried coating thereof is surmised to range between the aggregate particle size (e.g. 0.3 to 0.4 microns) and the particle size without sonication (10 microns).


In certain embodiments, bimodal distributions of particle sizes may be used. For example, nanoparticles or particles having an average particle size of at least 150 or 200 nanometers can be used in combination with nanoparticles having an average (non-aggregate) particle size of no greater than 100, 80, 50, 40, 30, 20, or 10 nanometers. The smaller sized sintered nanoparticles can be considered “mortar” for the larger particle size “bricks”. The weight ratio of the larger to smaller nanoparticles can be in the range of 2:98 to 98:2, in the range of 5:95 to 95:5, in the range of 10:90 to 90:10, or in the range of 20:80 to 80:20. In this embodiment, the larger sized particles may be fumed silica. The particle size of the larger inorganic oxide particles is typically no greater than 30, 25, 20 or 15 microns. In some embodiments, the porous layer is free of particles having a particle size greater than 10 microns.


The inclusion of larger particles can increase porosity and lower cost. However, the use of larger particles detracts from providing thin, uniform porous layers. Additionally, larger particles may result in the porous layer and repellent coating having a hazy appearance.


In some embodiments, the (e.g. silica) nanoparticles preferably have an average particle size (i.e., longest dimension) that is no greater than 100, 80, 50, 40, 30, 20 or 10 nanometers. In this embodiment, the porous layer may be free of particles having an average particle size greater than 100, 200, 300, 400, or 500 nanometers, such as fumed silica.


The (e.g. silica) inorganic oxide particles used to prepare the porous layer coating compositions can have any desired shape or mixture of shapes. The (e.g. silica) particles can be spherical or non-spherical (i.e., acicular) with any desired aspect ratio. Aspect ratio refers to the ratio of the average longest dimension of the particles to the average shortest dimension of acicular particles. The aspect ratio of acicular (e.g. silica) particles is often at least 2:1, at least 3:1, at least 5:1, or at least 10:1. Some acicular particles are in the shape of rods, ellipsoids, needles, and the like. The shape of the particles can be regular or irregular. The porosity of the coatings can be varied by changing the amount of regular and irregular shaped particles in the composition and/or by changing the amount of spherical and acicular particles in the composition.


For embodiments wherein the (e.g. silica) nanoparticles are spherical, the average diameter is often less than 50 nanometers, less than 40 nanometers, less than 25 nanometers, or less than 20 nanometers. Some nanoparticles can have an even smaller average diameter such as less than 10 nanometers or less than 5 nanometers.


For embodiments wherein the (e.g. silica) nanoparticles are acicular, they often have an average width (smallest dimension) equal to at least 1 nanometer, at least 2 nanometers, or at least 5 nanometers. The average width of acicular (e.g. silica) nanoparticles is often no greater than 25 nanometers, no greater than 20 nanometers, or no greater than 10 nanometers. The acicular nanoparticles can have an average length D1 measured by dynamic light scattering methods that is, for example, at least 40 nanometers, at least 50 nanometers, at least 75 nanometers, or at least 100 nanometers. The average length D1 (e.g., longer dimension) can be up to 200 nanometers, up to 400 nanometers, or up to 500 nanometers. The acicular nanoparticles may have degree of elongation D1/D2 in a range of 5 to 30, wherein D2 means a diameter in nanometers calculated by the equation D2=2720/S and S means specific surface area in meters squared per gram (m2/gram) of the nanoparticle, as described in U.S. Pat. No. 5,221,497 (Watanabe et al.).


In some embodiments, the particles (e.g. nanoparticles) typically have an average specific surface area equal to at least 150 m2/gram, at least 200 m2/gram, at least 250 m2/gram, at least 300 m2/gram, or at least 400 m2/gram. In other embodiments, the particles (e.g. nanoparticles) typically have an average specific surface area equal to at least 500 m2/gram, at least 600 m2/gram, or at least 700 m2/gram.


The (e.g. silica) inorganic oxide nanoparticles are typically commercially available in the form of a sol. Some examples of aqueous-based silica sols comprising spherical silica nanoparticles are commercially available under the trade designation LUDOX (e.g., LUDOX SM) from E.I. DuPont de Nemours and Co., Inc. (Wilmington, Del.). Other aqueous-based silica sols are commercially available under the trade designation NYACOL from Nyacol Co. (Ashland, Mass.). Still other aqueous-based silica sols are commercially available under the trade designation NALCO (e.g., NALCO 1115, NALCO 2326, and NALCO 1130) from Ondea Nalco Chemical Co. (Oak Brook, Ill.). Yet other aqueous-based silica sols are commercially available under the trade designation REMASOL (e.g., REMASOL SP30) from Remet Corporation (Utica, N.Y.) and under the trade designation SILCO (e.g., SILCO LI-518) from Silco International Inc (Portland, Oreg.).


Suitable non-spherical (i.e., acicular) inorganic oxide nanoparticles may also be obtained in the form of aqueous-based sol. Some acircular silica nanoparticles sols are available under the trade designation SNOWTEX from Nissan Chemical Industries (Tokyo, Japan). For example, SNOWTEX-UP contains silica nanoparticles having a diameter in the range of about 9 to 15 nanometers with lengths in a range of 40 to 300 nanometers. SNOWTEX-PS—S and SNOWTEX-PS-M have a chain of beads morphology. The SNOWTEX-PS-M particles are about 18 to 25 nanometers in diameter and have lengths of 80 to 150 nanometers. The SNOWTEX-PS—S has a particle diameter of 10-15 nm and a length of 80-120 nm.


The particles in the porous layer are sintered. At least some adjacent inorganic oxide particles tend to have bonds such as inorganic oxide (e.g. silica) “necks” joining them together. Stated differently, at least some adjacent particles tend to be joined (i.e. fused) together forming a three-dimensional porous network. FIG. 1B is a transmission electron micrograph of one example of a porous layer comprising sintered nanoparticles. Since sintering is utilized to bond the particles to each other, the porous layer of the sintered particles typically does not include an organic (e.g. polymeric) binder for the purpose of fixing the particles to the component. Thus, the inorganic oxide content of the sintered porous layer is typically at least 90, 95, 96, 97, 98, 99 or 100 wt-%.


The term “network” refers to a continuous three-dimensional structure formed by linking together inorganic oxide (e.g. silica) particles. The term “continuous” means that the individual particles are linked over a sufficient dimension (e.g. area) such that the porous layer, together with the hydrophobic layer and impregnated lubricant can provide the desired repellency of water or other fluid. In typical embodiments, the porous layer has no gaps or discontinuities in the areas where the sintered porous layer is present on the component. However, some discontinuities or gaps may be present provided that the presence thereof does not detract from the desired repellency properties.


The term “porous” refers to the presence of voids between the individual (e.g. silica) particles within the (e.g. continuous) porous layer coating. The network of (dried) sintered particles has a porosity of 20 to 50 volume percent, 25 to 45 volume percent, or 30 to 40 volume percent. Porosity may be calculated from the refractive index of the porous layer coating according to published procedures such as in W. L. Bragg and A. B. Pippard, Acta Crystallographica, 6, 865 (1953). Porosity tends to correlate to the roughness of the surface. In some embodiments, the porosity may be greater than 50 volume percent. Porosity of the surface can often be increased by using (e.g. silica) particles with a larger average particle size or by using a mixture of particles with different shapes.


In some embodiments, the sintered nanoparticles are acid-sintered (e.g. silica) nanoparticles. In this embodiment, the porous layer is prepared from a coating composition that contains an acid having a pKa (H2O) that is less than or equal to 3.5. The use of weaker acids such as those having a pKa greater than 4 (e.g., acetic acid) can result in less uniform coatings. In particular, coating compositions with weaker acids such as acetic acid typically bead up on the surface of a component. The pKa of the acid added to the coating composition is often less than 3, less than 2.5, less than 2, less than 1.5, or less than 1. Useful acids that can be used to adjust the pH of the porous coating composition include both organic and inorganic acids. Example acids include, but are not limited to, oxalic acid, citric acid, H2SO3, H3PO4, CF3CO2H, HCl, HBr, HI, HBrO3, HNO3, HClO4, H2SO4, CH3SO3H, CF3SO3H, CF3CO2H, and CH3SO2OH. In many embodiments, the acid is HCl, HNO3, H2SO4, or H3PO4. In some embodiments, it is desirable to provide a mixture of an organic and inorganic acid. If commercially available acidic silica sols are used, the addition of a stronger acid can improve the uniformity of the porous layer.


For embodiments wherein the sintered nanoparticles are acid-sintered (e.g. silica) nanoparticles, the coating composition generally contains sufficient acid to provide a pH no greater than 5. The pH is often no greater than 4.5, no greater than 4, no greater than 3.5, or no greater than 3. For example, the pH is often in the range of 2 to 5. In some embodiments, the coating composition can be adjusted to a pH in the range of 5 to 6 after first reducing the pH to less than 5. This pH adjustment can allow the coating of more pH sensitive components.


The porous layer coating composition containing the acidified (e.g. silica) nanoparticles usually is applied to a component surface and then dried. In many embodiments, the porous layer coating composition contains (a) (e.g. silica) nanoparticles having an average particle diameter (i.e., average particle diameter prior to acid-sintering) no greater than 40 nanometers and (b) an acid with a pKa (H2O) that is less than or equal to 3.5. The pH of the porous layer coating composition often is less than or equal to 5 such as in the pH range of 2 to 5.


The acidified (e.g. silica) nanoparticles exhibit a stable appearance when the pH is in the range 2 to 4. Light-scattering measurements have demonstrated that the acidified silica nanoparticles at pH in the range of 2 to 3 and at a concentration of 10 weight percent silica nanoparticles can retain the same size for more than a week or even more than a month. Such acidified porous layer coating compositions are expected to remain stable even longer if the concentration of silica nanoparticles is lower than 10 weight percent.


In other embodiments, the sintered nanoparticles are base sintered (e.g. silica) nanoparticles. In this embodiment, the porous layer can be prepared from a nanoparticle sol having a pH of greater than 8, 8.5, 9, 9.5, or 10 and the sintered nanoparticles may be characterized as base-sintered (e.g. silica) nanoparticles.


Suitable organic bases include but are not limited to, amidines, guanidines (including substituted guanidines such as biguanides), phosphazenes, proazaphosphatranes (also known as Verkade's bases), alkyl ammonium hydroxide, and combinations thereof. Self-protonatable forms of the bases (for example, aminoacids such as arginine) generally are less suitable, as such forms tend to be at least partially self-neutralized. Preferred bases include amidines, guanidines, and combinations thereof.


The organic bases can be used in the curable composition singly (individually) or in the form of mixtures of one or more different bases (including bases from different structural classes). If desired, the base(s) can be present in latent form, for example, in the form of an activatable composition that, upon exposure to heat, generates the base(s) in situ.


Useful amidines include those that can be represented by the following general formula:




embedded image


wherein R1, R2, R3, and R4 are each independently selected from hydrogen, monovalent organic groups, monovalent heteroorganic groups (for example, comprising nitrogen, oxygen, phosphorus, or sulfur in the form of groups or moieties that are bonded through a carbon atom and that do not contain acid functionality such as carboxylic or sulfonic), and combinations thereof; and wherein any two or more of R1, R2, R3, and R4 optionally can be bonded together to form a ring structure (preferably, a five-, six-, or seven-membered ring; more preferably, a six- or seven-membered ring. The organic and heteroorganic groups preferably have from 1 to 20 carbon atoms (more preferably, from 1 to 10 carbon atoms; most preferably, from 1 to 6 carbon atoms).


Amidines comprising at least one ring structure (that is, cyclic amidines) are generally preferred. Cyclic amidines comprising two ring structures (that is, bicyclic amidines) are more preferred.


Representative examples of useful amidine compounds include 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-ethyl-2-methyl-1,4,5,6-tetrahydropyrimidine, 1,2-diethyl-1,4,5,6-tetrahydropyrimidine, 1-n-propyl-2-methyl-1,4,5,6-tetrahydropyrimidine, 1-isopropyl-2-methyl-1,4,5,6-tetrahydropyrimidine, 1-ethyl-2-n-propyl-1,4,5,6-tetrahydropyrimidine, 1-ethyl-2-isopropyl-1,4,5,6-tetrahydropyrimidine, DBU (that is, 1,8-diazabicyclo[5.4.0]-7-undecene), DBN (that is, 1,5-diazabicyclo[4.3.0]-5-nonene), and the like, and combinations thereof. Preferred amidines include 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, DBU (that is, 1,8-diazabicyclo[5.4.0]-7-undecene), DBN (that is, 1,5-diazabicyclo[4.3.0]-5-nonene), and combinations thereof, with DBU, DBN, and combinations thereof being more preferred and with DBU being most preferred.


Other useful organic bases are described in WO2013/127054; incorporated herein by reference.


The porous layer is generally prepared by coating an inorganic oxide (e.g. silica) nanoparticle sol on a surface of a component. A sol is a colloidal suspension of the nanoparticles in a continuous liquid medium. Thus, the sol is utilized as a coating composition. The sol typically comprises water or a mixture of water plus a water-miscible organic solvent. Suitable water-miscible organic solvents include, but are not limited to, various alcohols (e.g., ethanol or isopropanol) and glycols (e.g., propylene glycol), ethers (e.g., propylene glycol methyl ether), ketones (e.g., acetone), and esters (e.g., propylene glycol monomethyl ether acetate). The (e.g. silica) nanoparticles included in the porous layer coating compositions typically are not surface modified.


In some embodiments, optional silane coupling agents, that contain a plurality of reactive silyl groups, can be added to the porous layer coating compositions. Some example coupling agents include, but are not limited to, tetraalkoxysilanes (e.g., tetraethylorthosilicate (TEOS)) and oligomeric forms of tetraalkoxysilane such as alkyl polysilicates (e.g., poly(diethoxysiloxane). These coupling agents may, at least in some embodiments, improve binding between silica particles. If added, the coupling agent is typically added to the porous layer coating composition in an amount of 1 to 10 or 1 to 5 weight percent based on the weight of silica particles. However, in typical embodiments, the porous layer (i.e. prior to deposition of the hydrophobic layer) is free of silane coupling agent such as tetraalkoxysilanes (e.g., tetraethylorthosilicate (TEOS)) and oligomeric forms of tetraalkoxysilane such as alkyl polysilicates (e.g., poly(diethoxysiloxane).


The sol coating compositions can be applied directly to any component. The component can be an organic material (e.g., polymeric) or inorganic material (e.g., glass, ceramic, or metal). The surface energy of the component surface may be increased by oxidizing the component surface prior to coating using methods such as corona discharge or flame treatment methods. These methods may also improve adhesion of the porous layer to the component. Other methods capable of increasing the surface energy of the component include the use of primer layers such as thin coatings of polyvinylidene chloride (PVDC). Alternatively, the surface tension of the porous layer coating composition may be decreased by addition of lower alcohols (e.g., alcohols having 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms).


In some embodiments a surfactant may be included in the (e.g. sol) coating composition. Surfactants are molecules having both hydrophilic (polar) and hydrophobic (non-polar) regions and that are capable of reducing the surface tension of the porous layer coating composition. Useful surfactants include anionic surfactants, cationic surfactants, and nonionic surfactants. Various surfactants can be utilized, such as described in US2013/0216820, US2014/0120340 and WO2013/127054; incorporated herein by reference.


When added, the surfactant is typically present in an amount up to 5 weight percent based on a total weight of the porous layer coating composition. For example, the amount can be up to 4 weight percent, up to 2 weight percent, or up to 1 weight percent. The surfactant is typically present in an amount equal to at least 0.001 weight percent, at least 0.005 weight percent, at least 0.01 weight percent, at least 0.05 weight percent, at least 0.1 weight percent, or at least 0.5 weight percent. However, in some embodiments, the porous layer is substantially free of surfactant. Surfactants can interfere with adhesion of the porous layer to the component and/or the hydrophobic layer.


The (e.g. sol) coating compositions are typically applied to the surface of the component using conventional techniques such as, for example, bar coating, roll coating, curtain coating, rotogravure coating, knife coating, spray coating, spin coating, or dip coating techniques. Coating techniques such as bar coating, roll coating, and knife coating are often used to adjust the thickness of the coating composition. The coating compositions can be coated on one or more sides of the component.


The average dry coating thickness of the porous layer is dependent upon the particular porous layer coating composition used. In general, the average thickness of the dry and sintered porous layer is typically at least 25, 30, 35, 40, 45 or 50 nm and often no greater than about 5, 4, 3, 2, or 1 micron. In some embodiments, the thickness is no greater than 500, 400, or 300 nm. In other embodiments, the thickness is no greater than 250, 200, or 100 nm. The thickness can be measured using an ellipsometer such as a Gaertner Scientific Corp. Model No. L115C. The mechanical properties of the porous layer often improve as the thickness is increased.


Although the actual coating thickness can vary considerably from one particular point to another, it is often desirable to apply the porous layer coating composition uniformly over the surface of the component. In some embodiments, it may be desirable to control the average coating thickness within 200 Å, within 150 Å, or within 100 Å. The particle size of the nanoparticles and larger particles affects the ability to achieve a thin, uniform coating. Thus, in some embodiments, the thickness of the coating is greater than the maximum particle size of the nanoparticles and larger particles.


Once applied to the component, the coating composition is typically dried at temperatures in a range from 20° C. to 250° C. In some embodiments, the coating composition is dried at a temperature no greater than 225° C., 200° C., 175° C., 150° C., 125° C. or 100° C. An oven with circulating air or inert gas such as nitrogen is often used for drying purposes. The temperature may be increased further to speed the drying process, but care should be exercised to avoid damage to the component. For inorganic components, the drying temperature can be above 200° C. The dried porous layer refers to the porous layer remaining after the drying process.


After the (e.g. sol) coating composition is applied to the component, a gelled material forms as the sol dries and the (e.g. silica) acidified nanoparticles sinter to form the continuous network. Thus, in this embodiment, the drying temperature is also the temperature at which the sintering occurs. Micrographs reveal the formation of “necks” between adjacent nanoparticles that are created even in the absence of other silicon-containing materials such as the silane coupling agents. The formation of these necks is attributed to the catalytic action of strong acid or strong base in making and breaking siloxane bonds.


Alternatively, for substrates or components having sufficient heat resistance, the inorganic oxide (silica) particles can be thermally sintered, typically at temperatures substantially greater than 200° C. For example it is common to thermally sinter (e.g. silica) particles at temperatures of greater than 300° C., 400° C., or 500° C. ranging up to 1000° C.


The dried porous layer can contain some water such as the amount of water typically associated with equilibrium of the porous layer with the atmospheric moisture present in the environment of the porous layer. This equilibrium amount of water is typically no greater than 5 weight percent, no greater than 3 weight percent, no greater than 2 weight percent, no greater than 1 weight percent, or no greater than 0.5 weight percent based on a total weight of the dried porous layer.


Although a three-dimensional network of sintered inorganic oxide (e.g. silica) particles is a preferred porous layer in view of durability, various other porous layers are also suitable for lubricant impregnation, as described in the art. For example, as described in US2014/0147627; porous layers can alternatively be formed by spraying an emulsion of particles/nanoparticles that assemble into a porous layer upon drying of the solvent. Further, porous layers can also be produced via electrodeposition, mechanical roughening (e.g. abrasive blasting), dry etching, and polymer fiber spinning. In one embodiment, the porous layer is formed by exposing a surface of the component to a solvent (e.g., acetone). For example, the solvent may impart texture by inducing crystallization (e.g., polycarbonate liquid reservoirs may recrystallize when exposed to acetone). In yet another embodiment, the porous layer can be formed from particle/nanoparticles, a solvent, and a polymeric organic binder.


A hydrophobic layer is disposed on a surface of the porous three-dimensional network of the sintered inorganic oxide (e.g. silica) particles. A hydrophobic layer can also be disposed on a surface of the porous layer formed by other methods as just described. This is accomplished by coating a surface of the (e.g. sintered) porous layer with a hydrophobic material


The selection of hydrophobic material is typically based on the selection of lubricant. In typical embodiments, the hydrophobic layer comprises a material of the same chemical class as the lubricant. For example, when the hydrophobic layer comprises a fluorinated material (e.g. comprising a fluorinated group), the lubricant is typically a fluorinated liquid. Likewise, when the hydrophobic layer comprises a hydrocarbon material (e.g. comprising a hydrocarbon group), the lubricant is typically a hydrocarbon liquid. Further, when the hydrophobic layer comprises a silane or siloxane material (lacking long chain alkyl groups), the lubricant is typically a silicone fluid.


In some embodiments, the hydrophobic layer may comprise an organic polymeric material such as polydimethylsiloxane or a fluoropolymer composed of tetrafluoroethylene, optionally in combination with hexafluoropropylene and/or vinylidene fluoride.


However, in typical embodiments, the hydrophobic layer is bonded to the porous layer. In this embodiment, the hydrophobic layer comprises a compound having the general formula A-B or A-B-A, wherein A is an inorganic group capable of bonding with the sintered (e.g. silica) particles and B is a hydrophobic group. In some embodiments, A is a reactive silyl group. The (e.g. silane) hydrophobic surface treatment compounds are typically covalently bonded to the porous layer through a —Si—O—Si-bond. Suitable hydrophobic groups include aliphatic or aromatic hydrocarbon groups, fluorinated groups such as polyfluoroether, polyfluoropolyether and perfluoroalkane.


In some embodiments, the silane compound used to form the hydrophobic layer is of Formula (I).





Rf-[Q-[C(R1)2—Si(R2)3-x(R3)x]y]z   (I)


In Formula (I), group Rf is a z-valent radical of a perfluoroether, perfluoropolyether, or perfluoroalkane (i.e., Rf is (a) a monovalent or divalent radical of a perfluoroether, (b) a monovalent or divalent radical of a perfluoropolyether, or (c) a monovalent or divalent radical of a perfluoroalkane). Group Q is a single bond, a divalent linking group, or trivalent linking group. Each group R1 is independently hydrogen or alkyl. Each group R2 is independently hydroxyl or a hydrolyzable group. Each group R3 is independently a non-hydrolyzable group. The variable x is an integer equal to 0, 1, or 2. The variable y is an integer equal to 1 or 2. The variable z is an integer equal to 1 or 2.


Group Rf is a z-valent radical of a polyether, a z-valent radical of a perfluoropolyether, or a z-valent radical of a perfluoroalkane. As used herein, the term “z-valent radical” refers to a radical having a valence equal to the variable z. Because z is an integer equal to 1 or 2, a z-valent radical is a monovalent or divalent radical. Thus, Rf is (a) a monovalent or divalent radical of a perfluoroether, (b) a monovalent or divalent radical of a perfluoropolyether, or (c) a monovalent or divalent radical of a perfluoroalkane.


If the variable z in Formula (I) is equal to 1, the fluorinated silane is of Formula (Ia) where group Rf is a monovalent group.





Rf-Q-[C(R1)2—Si(R2)3-x(R3)x]y   (Ia)


Such a compound can be referred to as a monopodal fluorinated silane because there is a single end group of formula -Q-[C(R1)2—Si(R2)3-x(R3)x]y. There can be a single silyl group if the variable y is equal to 1 or two silyl groups if the variable y is equal to 2.


If the variable z in Formula (I) is equal to 2, the fluorinated silane is of Formula (Ib) where group Rf is a divalent group.





Rf-[Q-[C(R1)2—Si(R2)3-x(R3)x]y]2   (Ib)


Such a compound can be referred to as a bipodal fluorinated silane because there are two end groups of formula -Q-[C(R1)—Si(R2)3-x (R3)x]y. Each end group can have a single silyl group if the variable y is equal to 1 or two silyl groups if the variable y is equal to 2. Formula (Ib) can be written as the following equivalent formula that emphasizes the divalent nature of the Rf group.





[(R3)x(R2)3-xSi—C(R1)2]y-Q-Rf-Q-[C(R1)2—Si(R2)3-x(R3)x]y


Any suitable perfluorinated group can be used for Rf. The perfluorinated group is typically a monovalent or divalent radical of a perfluoroether, perfluoropolyether, or perfluoroalkane. This group can have a single carbon atom but often has at least 2 carbon atoms, at least 4 carbon atoms, at least 6 carbon atoms, at least 8 carbon atoms, or at least 12 carbon atoms. The Rf group often has up to 300 or more carbon atoms, up to 200 carbon atoms, up to 100 carbon atoms, up to 80 carbon atoms, up to 60 carbon atoms, up to 50 carbon atoms, up to 40 carbon atoms, up to 20 carbon atoms, or up to 10 carbon atoms. The Rf group is usually saturated and can be linear, branched, cyclic (e.g., alicyclic), or a combination thereof.


Rf groups that are monovalent or divalent radicals of a perfluoroether or perfluoropolyether often contains at least one perfluorinated unit selected from —CbF2bO—, —CF(Z)O—, —CF(Z)CbF2bO—, —CbF2bCF(Z)O—, —CF2CF(Z)O—, or combinations thereof. The variable b is an integer equal to at least 1. For example, the variable b can be an integer in the range of 1 to 10, in the range of 1 to 8, in the range of 1 to 4, or in the range of 1 to 3. The group Z is a perfluoroalkyl, perfluoroalkoxy, perfluoroether, or perfluoropolyether group. Any of these Z groups can be linear, branched, cyclic, or a combination thereof. Example perfluoroalkyl, perfluoralkoxy, perfluoroether, and perfluoropolyether Z groups often have up to 20 carbon atoms, up to 16 carbon atoms, up to 12 carbon atoms, up to 8 carbon atoms, or up to 4 carbon atoms. Perfluoropolyether groups for Z can have, for example, up to 10 oxygen atoms, up to 8 oxygen atoms, up to 6 oxygen atoms, up to 4 oxygen atoms, or up to 3 oxygen atoms. In some embodiments, Z is a —CF3 group.


Monovalent perfluoroether groups are of general formula Rf1—O—Rf2— where Rf1 is a perfluoroalkyl and Rf2 is a perfluoroalkylene. Rf1 and Rf2 each independently have at least 1 carbon atoms and often have at least 2 carbon atoms, at least 3 carbon atoms, or at least 4 carbon atoms. Groups Rf1 and Rf2 each independently can have up to 50 carbon atoms, up to 40 carbon atoms, up to 30 carbon atoms, up to 25 carbon atoms, up to 20 carbon atoms, up to 16 carbon atoms, up to 12 carbon atoms, up to 10 carbon atoms, up to 8 carbon atoms, up to 4 carbon atoms, or up to 3 carbon atoms. In many embodiments, the perfluoroalkylene groups and/or the perfluoroalkyl groups have 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms.


Monovalent perfluoroether groups often have a terminal group (i.e., Rf1—O— group) of formula CbF2b+1O—, CF2(Z1)O—, CF2(Z1)CbF2bO—, CbF2b+1CF(Z1)O—, or CF3CF(Z1)O— where b is the same as defined above. The group Z1 is a perfluoroalkyl having up to 20 carbon atoms, up to 16 carbon atoms, up to 12 carbon atoms, up to 8 carbon atoms, up to 6 carbon atoms, or up to 4 carbon atoms. In some embodiments, Z1 is a —CF3 group. The terminal group is directly bonded to a perfluoroalkylene group. The perfluoroalkylene group can be linear or branched and often has up to 20 carbon atoms, up to 16 carbon atoms, up to 12 carbon atoms, up to 8 carbon atoms, or up to 4 carbon atoms. Specific examples of perfluoroether groups include, but are not limited to, CF3CF2OCF2CF2CF2—, CF3OCF2CF2CF2—, C3F7OCF2CF2CF2—, CF3CF2OCF(CF3)CF2—, CF3OCF(CF3)CF2—, and C3F7OCF(CF3)CF2—.


Divalent perfluoroether groups are of general formula —Rf2—O—Rf3— where Rf2 and Rf3 are each independently a perfluoroalkylene. Each perfluoroalkylene independently has at least 1 carbon atom, at least 2 carbon atoms, at least 3 carbon atoms, or at least 4 carbon atoms. Groups Rf2 and Rf3 each independently can have up to 50 carbon atoms, up to 40 carbon atoms, up to 30 carbon atoms, up to 25 carbon atoms, up to 20 carbon atoms, up to 16 carbon atoms, up to 12 carbon atoms, up to 10 carbon atoms, up to 8 carbon atoms, up to 4 carbon atoms, or up to 3 carbon atoms. In many embodiments, each perfluoroalkylene group has 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, 1 to 3 carbon atoms, or 1 to 2 carbon atoms.


Monovalent perfluoropolyether groups are of general formula Rf1—O—(Rf2—O)a—Rf3— where Rf1 is a perfluoroalkyl, Rf2 and Rf3 are each independently a perfluoroalkylene, and the variable a is an integer equal to at least 1. Groups Rf1, Rf2, and Rf3 are the same as defined above for perfluoroether groups. The variable a is any integer in the range of 1 to 50, in the range of 1 to 40, in the range of 1 to 30, in the range of 1 to 25, in the range of 1 to 20, or in the range of 1 to 10.


Monovalent perfluoropolyether groups often have a terminal group (i.e., Rf1—O— group) of formula CbF2b+1O—, CF2(Z)O—, CF2(Z)CbF2bO—, CbF2b+1CF(Z)O—, or CF3CF(Z)O— where b and Z are the same as defined above. The terminal group is directly bonded to at least one perfluoroalkyleneoxy or poly(perfluoroalkyleneoxy) group (i.e., —(Rf2—O)a— group). Each perfluoroalkyleneoxy group often has 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. The perfluoroalkyleneoxy or poly(perfluoroalkyleneoxy) group is directly bonded to a perfluoroalkylene group (i.e., —Rf3—).


Representative examples of useful monovalent perfluoropolyether groups or terminal groups of monovalent perfluoropolyether groups include, but are not limited to, C3F7O(CF(CF3)CF2O)nCF(CF3)—, C3F7O(CF(CF3)CF2O)nCF2CF2—, C3F7O(CF2CF2CF2O)nCF2CF2—, C3F7O(CF2CF2CF2O)nCF(CF3)—, CF3O(C2F4O)nCF2—, CF3O(CF2O)m(C2F4O)qCF2—, F(CF2)3O(C3F6O)n(CF2)3—, and CF3O(CF2CF(CF3)O)n(CF2O)X—. The group X is usually —CF2—, —C2F4—, —C3F6—, or —C4F8—. The variable n is an integer that is often in the range of 1 to 50, in the range of 1 to 40, in the range of 1 to 30, in the range of 3 to 30, in the range of 1 to 20, in the range of 3 to 20, in the range of 1 to 10, or in the range of 3 to 10. Provided that the sum (m+q) is equal to at least one, the variables m and q can each independently be in the range of 0 to 50, in the range of 0 to 40, in the range of in the range of 0 to 30, in the range of 1 to 30, in the range of 3 to 20, or in the range of 3 to 10. The sum (m+q) is often in the range of 1 to 50, in the range of 1 to 40, in the range of 1 to 30, in the range of 3 to 20, in the range of 1 to 20, in the range of 3 to 20, in the range of 1 to 10, or in the range of 3 to 10.


Representative examples of divalent perfluoropolyether groups or segments include, but are not limited to, —CF2O(CF2O)m(C2F4O)qCF2—, —CF2O(C2F4O)nCF2—, —(CF2)3O(C4F8O)n(CF2)3—, —CF(CF3)O(CF2CF2CF2O)nCF2CF2—, —CF(CF3)O(CF2CF2CF2O)nCF(CF3)—, —(CF2)3O(C3F6O)n(CF2)3— and —CF(CF3)(OCF2CF(CF3))mOCtF2tO(CF(CF3)CF2O)qCF(CF3)—. The variables n, m, and q are the same as defined above. The variable t is an integer in the range of 2 to 8, in the range of 2 to 6, in the range of 2 to 4, or in the range of 3 to 4.


In many embodiments, the perfluoropolyether (whether monovalent or divalent) includes at least one divalent hexafluoropropyleneoxy group (—CF(CF3)—CF2O— or —CF2CF2CF2O—). Segments with —CF(CF3)—CF2O— can be obtained through the oligomerization of hexafluoropropylene oxide and can be preferred because of their relatively benign environmental properties. Segments with —CF2CF2CF2O— can be obtained by anionic oligomerization of tetrafluorooxetane followed by direct fluorination. Example hexafluoropropyleneoxy groups include, but are not limited to, C3F7O(CF(CF3)CF2O)nCF(CF3)—, C3F7O(CF(CF3)CF2O)nCF2CF2—, C3F7O(CF2CF2CF2O)nCF2CF2—, C3F7O(CF2CF2CF2O)nCF(CF3)—, —CF(CF3)O(CF(CF3)CF2O)nCF(CF3)—, —CF(CF3)O(CF(CF3)CF2O)nCF2CF2—, —CF(CF3)O(CF2CF2CF2O)nCF2CF2—, —CF(CF3)O(CF2CF2CF2O)nCF(CF3)—, and —CF(CF3)(OCF2CF(CF3))nOCtF2tO(CF(CF3)CF2O)qCF(CF3)—. The variables n, m, q, and t are the same as defined above.


Frequently, the compounds of Formula (I) are present as a mixture of materials having Rf groups of the same basic structure but with a different number of carbon atoms. For example, the compounds of Formula (I) can be a mixture of materials having different variables m, n, and/or q in the above example monovalent and divalent perfluoropolyether groups. As such, the number of repeating groups is often reported as an average number that may not be an integer.


The group Q in Formula (I) is a single covalent bond, a divalent linking group, or a trivalent linking group. If Q is a single bond, the variable y is equal to 1. For compounds of Formula (Ia) with a monovalent Rf group, if Q is a single covalent bond and y is equal to 1, the compounds are of Formula (Ia-1).





Rf—C(R1)2—Si(R2)3-x(R3)x   (Ia-1)


Similarly, for compounds of Formula (Ib) with a divalent Rf group, if Q is a single covalent bond and y is equal to 1, the compounds are of Formula (Ib-1).





Rf—[C(R1)2—Si(R2)3-x(R3)x]2   (Ib-1)


If the group Q is a divalent linking group, the variable y is equal to 1. For compounds of Formula (Ia) with a monovalent Rf group, if Q is a divalent group and y is equal to 1, the compounds are of Formula (Ia-2).





Rf-Q-C(R1)2—Si(R2)3-x(R3)x   (Ia-2)


Similarly, for compounds of Formula (Ib) with a divalent Rf group, if Q is a divalent group and y is equal to 1, the compounds are of Formula (Ib-2).





Rf-[Q-C(R1)2—Si(R2)3-x(R3)x]2   (Ib-2)


If the group Q is a trivalent linking group, the variable y is usually equal to 2. For compounds of Formula (Ia) with a monovalent Rf group, if Q is a trivalent group and y is equal to 2, the compounds are of Formula (Ia-3). There are two groups of formula





—C(R1)2—Si(R2)3-x(R3)x.





Rf-Q-[C(R1)2—Si(R2)3-x(R3)x]2   (Ia-3)


Similarly, for compounds of Formula (Ib) with a divalent Rf group, if Q is a trivalent group and y is equal to 2, the compounds are of Formula (Ib-3).





Rf-[Q-[C(R1)2—Si(R2)3-x(R3)x]2]2   (Ib-3)


Group Q typically includes at least one alkylene group (e.g., an alkylene having 1 to 30 cabon atoms, 1 to 20 carbon atoms, 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms) plus optional groups selected from oxy, thio, —NR4—, methine, tertiary nitrogen, quaternary nitrogen, carbonyl, sulfonyl, sulfiryl, carbonyloxy, carbonylthio, carbonylimino, sulfonylimino, oxycarbonyloxy, iminocarbonylimino, oxycarbonylimino, or a combination thereof. Group R4 is hydrogen, alkyl (e.g., an alkyl having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms), aryl (e.g., an aryl having 6 to 12 carbon atoms such as phenyl or biphenyl), or aralkyl (e.g., an aralkyl having an alkyl group with 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms and an aryl group with 6 to 12 carbon atoms such as phenyl). If the compound of Formula (I) has multiple Q groups, the Q groups can be the same or different. In many embodiments with multiple Q groups, these groups are the same.


In some embodiments, group Q includes an alkylene having at least 1 or at least 2 carbon atoms directly bonded to the —COO— group in Formula (I). The presence of such an alkylene group tends to provide stability against hydrolysis and other chemical transformations such as nucleophilic attack.


Some divalent Q groups are an alkylene group of formula —(CH2)k— where each variable k is independently an integer greater than 1, greater than 2, or greater than 5. For example, k can be an integer in the range of 1 to 30, in the range of 1 to 25, in the range of 1 to 20, in the range of 1 to 15, in the range of 2 to 15, in the range of 2 to 12, in the range of 1 to 10, in the range of 1 to 6, or in the range of 1 to 4. Specific examples include, but are not limited to, —CH2— and —CH2CH2—. Such groups are typical for Q when Rf is a monovalent or divalent radical of a perfluoroalkane.


Some divalent Q groups include a single alkylene group directly bonded to one or more of the optional groups. Such groups can be of formula —(CO)N(R4)—(CH2)k— where the alkylene is bonded to a carbonylimino group, —O(CO)N(R4)—(CH2)k— where the alkylene is bonded to a oxycarbonylimino group, —(CO)S—(CH2)k— where the alkylene is linked to a carbonylthio, or —S(O)2N(R4)—(CH2)k— where the alkylene is linked to a sulfonylimino group. The variable k and the group R4 are the same as described above. Some more specific groups include, for example, —(CO)NH(CH2)2—, or —O(CO)NH(CH2)2—. In these Q groups, the alkylene group is also bonded to the —C(R1)2— group.


Other suitable Q groups are described in US2013/021680; incorporated herein by reference.


Some specific fluorinated silanes where Rf is a monovalent or divalent radical of a perfluoroether or perfluoropolyether are of formula Rf—(CO)N(R4)—(CH2)k—CH2—Si(R2)3, of formula Rf—[(CO)N(R4)—(CH2)k—CH2—Si(R2)3]2, or a mixture thereof. The variable k is the same as defined above. In some embodiments, k is in the range of 1 to 10, in the range of 1 to 6, or in the range of 1 to 4. Some more particular fluorinated silanes of formula Rf—(CO)N(R4)—CH2)k—CH2—Si(R2)3 include, but are not limited to, F(CF(CF3)CF2O)aCF(CF3)—CONHCH2CH2CH2Si(OCH3)3 where a is a variable in a range of 4 to 20 and CF3OC2F4OC2F4OCF2CONHC3H6Si(OEt)3. A more particular example of formula Rf—[(CO)N(R4)—CH2)k—CH2—Si(R2)3]2 is a compound of formula




embedded image


where n and m are each a variable in a range of about 9 to 10.


Some specific fluorinated silanes where Rf is a monovalent or divalent radical of a perfluoroalkane are of formula Rf—(CH2)k—CH2—Si(R2)3, or formula Rf—[(CH2)k—CH2—Si(R2)3]2, or a mixture thereof. The variable k is the same as defined above. More specific fluorinated silanes are of formula Rf—(CH2)2—Si(R2)3, or formula Rf—[(CH2)2—Si(R2)3]2, or a mixture thereof.


The above-described fluorinated silane compounds can be synthesized using standard techniques, as described in previously cited US2013/021680.


In some embodiments, the silane compound used to form the hydrophobic layer is of Formula (II).





R1L[Si(R2)3-x(R3)x]y   (II)


In Formula (II), group R1 is an aliphatic or aromatic hydrocarbon group. L is a covalent bond or-divalent organic linking group such as a urethane group. Each R2 is independently hydroxyl or a hydrolyzable group. Each R3 is independently a non-hydrolyzable group. Each variable x is an integer equal to 0, 1, or 2. The variable y is an integer equal to 1 or 2.


If the variable y in Formula (II) is equal to 1, group R1 is monovalent and Formula (II) is equal to Formula (IIa).





R1LSi(R2)3-x(R3)x   (IIa)


If the variable y in Formula (II) is equal to 2, group R1 is divalent and Formula (II) is equal to Formula (IIb).





(R3)x(R2)3-xSiLR1LSi(R2)3-x(R3)x   (IIb)


Suitable divalent groups include alkylene, arylene, or a combination thereof.


Each of the described silane compounds has at least one group of formula —Si(R2)3-x(R3)x. Each group R2 is independently hydroxyl or a hydrolyzable group. Each group R3 is independently a non-hydrolyzable group. The variable x is an integer equal to 0, 1, or 2. The silane compound has a single silyl group if R1 is monovalent and two silyl groups if R1 is divalent.


In some embodiments, R1 is a (e.g. linear or branched) alkyl or alkylene group having at least 1 carbon atom, at least 2 carbon atoms, at least 3 carbon atoms, at least 4 carbon atoms, or at least 5 carbon atoms and can have, for example, up to 40 carbon atoms, up to 35 carbon atoms, up to 30 carbon atoms, up to 25 carbon atoms, up to 20 carbon atoms, up to 15 carbon atoms, or up to 10 carbon atoms. Suitable aryl and arylene R1 groups often have 6 to 18 carbon atoms, 6 to 12 carbon atoms, or 6 to 10 carbon atoms. Some example aryl groups are phenyl, diphenyl, and naphthyl. Some examples of arylene groups are phenylene, diphenylene, and naphthylene.


Examples silane compounds wherein R1 is a hydrocarbon group include, but are not limited to, C10H21—Si(OC2H5)3, C18H37—Si(OC2H5)3, C18H37—Si(Cl)3, C8H17—Si(Cl)3, and CH3—Si(Cl)3, (CH3O)3Si—C8H6—Si(OCH3)3, (C2H5O)3Si—C2H4—Si(OC2HO3(CH3O)3Si—CH2CH(C8H17)—Si(OCH3)3, C6H5—Si(OCH3)3, C6H5—Si(Cl)3, C10H7—Si(OC2H5)3, and (CH3O)3Si—C2H4—C6H4—C2H4—Si(OCH3)3.


In some embodiments, R1 is a (e.g. linear or branched) alkyl or alkylene group having at least 5, 6, 7, or 8 carbon atoms. Compounds of this type are generally preferred for use with hydrocarbon lubricants. In addition to some of the silane compounds described above, suitable silane compounds include triacontyldimethylchlorosilane and 13-(chlorodimethylsilylmethyl)-heptacosane.


In another embodiment, the hydrophobic compound is the reaction product of a diol comprising an alkylene group, as previously described, and an isocyanto functional alkyl trialkoxy silane. One suitable diol is PRIPOL 2033, depicts as follows:




embedded image


The OH groups of the dimer diol are converted to the group -L[Si(R2)3-x(R3)x]y, wherein L is a urethane linkage.


In each group of formula —Si(R2)3-x(R3)x, there can be one, two, or three R2 groups. The R2 group is the reaction site for reaction with the sintered (e.g. silica) particles included in the porous layer. That is, the hydrolyzable group or hydroxyl group reacts with the surface of the sintered (e.g. silica) particles to covalently attach the silane compound to the porous layer resulting in the formation of a —Si—O—Si— bond. Suitable hydrolyzable R2 groups include, for example, alkoxy, aryloxy, aralkyloxy, acyloxy, or halo groups. Suitable alkoxy groups often have 1 to 10 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. Suitable aryloxy groups often have 6 to 12 carbon atoms or 6 to 10 carbon atoms such as, for example, phenoxy. Suitable aralkyloxy group often have an alkoxy group with 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms and an aryl group with 6 to 12 carbon atoms or 6 to 10 carbon atoms. An example aralkyloxy group has an alkoxy group with 1 to 4 carbon atoms with a phenyl group covalently attached to the alkoxy group. Suitable halo groups can be chloro, bromo, or iodo but are often chloro. Suitable acyloxy groups are of formula —O(CO)Rb where Rb is alkyl, aryl, or aralkyl. Suitable alkyl Rb groups often have 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Suitable aryl Rb groups often have 6 to 12 carbon atoms or 6 to 10 carbon atoms such as, for example, phenyl. Suitable aralkyl Rb groups often have an alkyl group with 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms that is substituted with an aryl having 6 to 12 carbon atoms or 6 to 10 carbon atoms such as, for example, phenyl. When there are multiple R2 groups, they can be the same or different. In many embodiments, each R2 is an alkoxy group or chloro.


If there are fewer than three R2 group in each group of formula, there is at least one R3 group. The R3 group is a non-hydrolyzable group. Many non-hydrolyzable groups are alkyl, aryl, and aralkyl groups. Suitable alkyl groups include those having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Suitable aryl groups often have 6 to 12 carbon atoms or 6 to 10 carbon atoms such as, for example, phenyl or biphenyl. Suitable aralkyl groups often have an alkyl group with 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms substituted with an aryl having 6 to 12 carbon atoms or 6 to 10 carbon atoms such as, for example, phenyl. When there are multiple R3 groups, these groups can be the same or different. In many embodiments, each R3 is an alkyl group.


In some embodiments, a silazane compound is utilized to form the hydrophobic layer. A silazane is a hydride of silicon and nitrogen having a straight or branched chain of silicon and nitrogen atoms joined by covalent bonds. Silazanes are analogous to siloxanes, with —NH— replacing —O—. Suitable silazane compounds include for example hexamethyldisilazane (HMDS); 1,1,3,3-tetramethyldisilazane; 2,2,4,4,6,6-hexamethylcyclotrisilazane; 1,3-diethyl-1,1,3,3-tetramethyldisilazane; and 1,1,3,3-tetramethyl-1,3-diphenyldisilazane.


In the presence of water (e.g. vapor), silazanes form a compound having the formula of Formula (III)





R1[Si(R2)3-xR3)x]y   (III)


wherein R1 and R3 are independently non-hydrolyzable groups, R2 is hydroxyl, x is 2 and y is 1. In typical embodiments, R1 and R3 are independently hydrogen, C1-C4 alkyl (e.g. methyl, ethyl) or phenyl.


In other embodiments, the hydrophobic material is a silanol-terminated polydimethylsiloxane or hydroxy terminated polydimethylsiloxane.


In some embodiments, the hydrophobic material comprises silane or siloxane compounds comprising C1-C4 alkyl groups that are typically free of longer chain alkyl or alkylene groups in combination with a silicone lubricant.


The hydrophobic materials often can be used in neat form in the surface treatment of the sintered inorganic oxide porous layer. Alternatively, the materials can be mixed with one or more organic solvents and/or one or more other optional components.


Suitable organic solvents include, but are not limited to, aliphatic alcohols such as, for example, methanol, ethanol, and isopropanol; ketones such as, for example, acetone and methyl ethyl ketone; esters such as, for example, ethyl acetate and methyl formate; ethers such as, for example, diethyl ether, diisopropyl ether, methyl t-butyl ether, and dipropylene glycol monomethyl ether (DPM); alkanes such as, for example, heptane, decane, and other paraffinic (i.e., oleofinic) solvents; perfluorinated hydrocarbons such as, for example, perfluorohexane and perfluorooctane; fluorinated hydrocarbons such as, for example, pentafluorobutane; hydrofluoroethers such as, for example, methyl perfluorobutyl ether and ethyl perfluorobutyl ether; and the like; and combinations thereof. Preferred solvents often include aliphatic alcohols, perfluorinated hydrocarbons, fluorinated hydrocarbons, hydrofluoroethers, or combinations thereof. In some embodiments, the surface treatment composition contains aliphatic alcohols, hydrofluoroethers, or combinations thereof. In other embodiments, the hydrocarbon layer coating composition contains hydrofluoroethers or combinations thereof.


Some suitable fluorinated solvents that are commercially available include, for example, those commercially available from 3M Company (Saint Paul, Minn.) under the trade designation 3M NOVEC ENGINEERED FLUID (e.g., 3M NOVEC ENGINEERED FLUID 7100, 7200DL, and 7500).


The hydrophobic coating compositions often contain an amount of the organic solvent that can dissolve or suspend at least about 0.1 percent by weight of the hydrophobic material based on a total weight of the hydrophobic coating composition. In some embodiments, the hydrophobic material (e.g. silane) compound is present in the coating composition at an amount of at least 0.5 percent by weight and no greater than 20, 15, or 10 percent by weight.


The coating composition comprising the hydrophobic (e.g. silane) compound can include other optional compounds. For example, a crosslinker can be added. The crosslinker is typically added when there are multiple silyl groups on the silane compound; as further described in previously cited Riddle et al. US2014/0120340 and US2013/0216820.


After coating a surface of the sintered porous layer with a hydrophobic compound and evaporating any solvent that is present, a lubricant is coated onto the surface treated porous layer of sintered inorganic oxide particles thereby impregnating the lubricant into pores of the surface treated porous layer. By impregnate, it is meant that the pores are saturated with the lubricant. Further, the lubricant is held in place within the pores by surface tension forces, capillary forces, van der Waal forces (e.g., suction), or combinations thereof.


The repellent surface layer of the spray application system component is typically not exposed to forces in excess of the forces that hold the lubricant in place within the pores. Thus, in some embodiments, the repellent surface layer is suitable for liquid (e.g. paint) reservoirs, liners, and lid wherein the liquid (e.g. paint) is mixed within such components in a manner (such as by hand mixing) such that the mixing forces are less than the forces that hold the lubricant within the pores of the porous layer.


The impregnating lubricant may be sprayed or brushed onto the (e.g. surface treated) porous layer. In one embodiment, the lubricant is applied by filling or partially filling a container that includes the component having the (e.g. surface treated) porous layer. The excess impregnating liquid is then removed from the container. Additional methods for impregnating lubricant include spin coating processes and condensing the lubricant onto the (e.g. surface treated) porous layer. The lubricant can also be applied by depositing a solution with the lubricant and one or more volatile liquids (e.g., via any of the previously described methods) and evaporating away the one or more volatile liquids. With any of these methods, the excess lubricant may be mechanically removed (e.g., pushed off the surface with a solid object or fluid), absorbed off of the surface using another porous material, removed via gravity or centrifugal forces or removed by utilizing a wash liquid (e.g., water or paint) to remove excess lubricant.


The lubricant is generally a liquid at the use temperature of the coated component. Although environmental use temperatures can range from −40° C. to 45° C., use temperatures most commonly range from 40° F. to 120° F. In typical embodiments, the lubricant is a liquid at room temperature (e.g. 25° C.). In typically embodiments, a single lubricant is utilized. However, a mixture of lubricants can also be used, especially mixtures within the same chemical class.


By “liquid” it is meant that the lubricant has a dynamic (shear) viscosity of at least about 0.1, 0.5, or 1 mPas and no greater than 107 mPas at the use temperature. In typical embodiments, the dynamic viscosity is no greater than 106, 105, 104, or 103 mPas. The dynamic viscosity values described herein refer to those measured at a shear rate of 1 sec−1.


The lubricant generally has no solubility or only trace solubility with water, e.g., a solubility of 0.01 g/l or 0.001 g/l or less.


In some embodiments, the surface tension at the boundary of the lubricant is preferably <50 mN/m, in particular is in the range from 5 to 45 mN/m, and specifically is in the range from 10 to 40 mN/m at 20° C., in particular when the liquid that is being repelled from the surface is an aqueous liquid.


In some embodiments, the lubricant is a hydrocarbon fluid. Suitable lubricants include low-molecular-weight hydrocarbons such as saturated hydrocarbons having at least 8 carbon atoms, preferably at least 10 carbon atoms, in particular from 10 to about 20 carbon atoms, e.g. octanes, nonanes, decanes, decalins, undecanes, dodecanes, tetradecanes, and hexadecane.


In some embodiments, the lubricant is a branched C3-C50 hydrocarbon, such as polyisobutenes or mineral oil. Depending on the molecular weight and branching, such materials may be liquids, high-viscosity liquids, or solids.


The hydrocarbon lubricant can optionally comprise substituents such as in the case of alkanols and diols having at least 8 carbon atoms, preferably at least 10 carbon atoms, e.g. 3-octanol, 1-decanol, 2-decanol, undecanols, dodecanols, tridecanols, 2-hexadecanol, 2-hexyldecanol, and 2-octyl-1-dodecanol.


In some embodiments, the lubricant is a fluorinated fluid such as perfluorohydrocarbons (also referred to as perfluoroalkanes), polyfluoroethers, and polyfluroropolyethers. Perfluorohydrocarbons typically have at least 8 carbon atoms, preferably at least 10 carbon atoms, in particular from 10 to 40 carbon atoms, e.g. perfluorodecalins, perfluoroeicosanes, and perfluorotetracosanes. Suitable perfluoropolyethers are available from DuPont as the trade designation KRYTOX. Other suitable perfluoropolyethers are available from Sigma-Aldrich, ranging in molecular weight from about 1500 to about 3500 amu, such as available under the trade designation FOMBLIN Y.


Other suitable lubricants include silicone fluids. The silicones are generally linear, branched, or cyclic polydimethylsiloxanes, or polymethylhydrosiloxanes. These may have various organic end-groups or side-chains. Silicone lubricants are commercially available from Rhodia, Gelest, and Fischer Scientific.


The method of making an article as described herein generally comprises providing a component, forming a surface treated porous layer on a surface of the component, wherein the porous layer comprises sintered inorganic oxide (e.g. silica) particles and impregnating a lubricant into pores of the surface treated porous layer. The method of forming the surface treated porous layer typically comprises coating a plurality of inorganic oxide particles dispersed in a liquid medium onto a surface of the component. Such coating is also referred to herein as a sol. The sintering of the inorganic oxide nanoparticles can occur during drying of the sol when the sol contains a strong acid or base or the inorganic oxide particles can be thermally sintered, as previously described. After sintering, the porous layer contains a plurality of sintered particles arranged to form a (e.g. continuous) three-dimensional network.


The hydrophobic compound can be dispersed in a liquid medium (e.g. aqueous and/or organic solvent) and applied to the porous layer as a coating composition. The hydrophobic coating composition can be applied to the porous layer using any suitable application method. The application method often involves forming a coating layer by dip coating, spin coating, spray coating, wiping, roll coating, brushing, spreading, flow coating, or the like, or combinations thereof. Alternatively the hydrophobic compound can be applied to the porous layer via vapor deposition.


The hydrophobic coating composition is typically applied to the porous layer at room temperature (typically in a range of 15° C. to 30° C. or in a range of 20° C. to 25° C.). Alternatively, the porous layer can be preheated at an elevated temperature such as, for example, in a range of 40° C. to 200° C., in a range of 50° C. to 175° C., or in a range of 60° C. to 150° C. before application of the hydrophobic coating composition. The resulting coating can be dried and then cured at ambient temperature (for example, in the range of 15° C. to 30° C. or in the range of 20° C. to 25° C.) or at an elevated temperature (for example, in the range of 40° C. to 200° C., in the range of 50° C. to 175° C., or in the range of 50° C. to 100° C.) for a time sufficient for the curing to take place.


Typically, the hydrophobic layer coating is applied to the porous layer on the component such that after curing, a hydrophobic layer is formed over the porous layer. That is, the porous layer is positioned between the component and the hydrophobic layer. The hydrophobic layer can be a monolayer or greater than a monolayer in thickness. When greater than a monolayer in thickness, the hydrophobic layer is typically a small fraction of the total thickness and may generally range from a few nanometers to 50, 75 or 100 nm.


In some embodiments, the method further comprises bonding the hydrophobic compound to the porous layer by reacting a surface of the sintered (e.g. silica) particles in the porous layer with a silane compound. The silane compound contains both a reactive silyl group and a hydrophobic group.


After application to the porous layer, the hydrophobic coating composition can be dried and cured by exposure to heat and/or moisture. Curing attaches the silane compound to the porous layer. Curing results in the formation of the —Si—O—Si— bond between the silane compound and the sintered (e.g. silica) particles in the porous layer. The resulting hydrophobic layer is attached to the component through the porous layer.


If a crosslinker is included in the coating composition, these materials can react with any remaining reactive silyl groups on the silane compound. Moisture cure can be affected at temperatures ranging from room temperature (for example, 20° C. to 25° C.) up to about 80° C. or more. Moisture curing times can range from a few minutes (for example, at the higher temperatures such as 80° C. or higher) to hours (for example, at the lower temperatures such as at or near room temperature).


For the attachment of the silane compound to the porous layer, sufficient water typically can be present to cause hydrolysis of the hydrolyzable groups described above, so that condensation to form —Si—O—Si— groups can occur (and thereby curing can be achieved). The water can be, for example, present in the hydrocarbon layer coating composition, adsorbed on the component surface, or in the ambient atmosphere. Typically, sufficient water can be present if the coating method is carried out at room temperature in an atmosphere containing water (for example, an atmosphere having a relative humidity of about 30 percent to about 50 percent). The silane compound can undergo chemical reaction with the surface of the acid-sintered (e.g. silica) particles in the porous layer to form a hydrophobic layer.


When the liquid (e.g. paint) repellent surface comprises a lubricant impregnated into pores of a porous layer as just described, the outer exposed surface is predominantly liquid lubricant. Some structures of the porous layer may protrude through the liquid lubricant and be present at the outer exposed surface. However, the outer exposed surface is predominantly liquid lubricant. In this embodiment, typically at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95% or greater of the surface area is a liquid lubricant, as can be determined by microscopy. Thus, the aqueous liquid (e.g. paint) that is being repelled comes in contact with and is repelled by the liquid lubricant.


In other embodiments, the liquid (e.g. paint) repellent surface of the spray application system component is not a lubricant impregnated surface. Rather the outer exposed surface is predominantly a solid liquid (e.g. paint) repellent material. In this embodiment, less than 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 4, 3, 2, 1, 0.5, 0.1, 0.005, 0.001% of the surface area is a liquid lubricant. Rather, at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5% or greater of the outer exposed surface is a solid liquid-repellent material. Thus, the aqueous liquid (e.g. paint) that is being repelled comes in contact with and is repelled by the solid liquid-repellent material.


The solid liquid (e.g. paint) repellent material is generally a solid at the use temperature of the spray application system component, which commonly ranges from 40° F. to 120° F. In typical embodiments, the solid liquid (e.g. paint) repellent material is a solid at room temperature (e.g. 25° C.). Thus, the solid liquid (e.g. paint) repellent material has a melting temperature (peak endotherm as measured by Differential Scanning calorimetry) greater than 25° C., greater than 120° F., and greater than 120° F. In some embodiments, the solid liquid (e.g. paint) repellent material has a melting temperature no greater than 200° C. In typical embodiments, a single solid liquid (e.g. paint) repellent material is utilized. However, when the liquid repellent surface is provided by a coating composition, the coating composition may contain a mixture of solid liquid (e.g. paint) repellent materials.


With reference to FIG. 8, article 200 is a component of a spray application system comprising substrate or component 210 (e.g. a liner, liquid reservoir, or lid) comprising a liquid (e.g. paint) repellent surface 253 that comprises a (e.g. non-fluorinated) organic polymeric binder and a fluorochemical material and/or siloxane (e.g. polydimethylsiloxane “PDMS”) material. The concentration of fluorochemical material and/or siloxane (e.g. PDMS) material at the outer exposed surface (e.g. layer) 253 is typically higher than the concentration of fluorochemical material within the (e.g. non-fluorinated) organic polymeric binder layer 251 proximate substrate 210. In one embodiment, the liquid (e.g. paint) repellent surface (e.g. layer) can be provided by coating substrate 210 with a coating composition comprising an organic solvent, a (e.g. non-fluorinated) organic polymeric binder, and a fluorochemical material, such as a fluorochemical compound; and/or a siloxane (e.g. PDMS) material as will subsequently be described. With reference to FIG. 9, article 300 is a component of a spray application system comprising substrate or component 310 (e.g. a liner, liquid reservoir, or lid) comprising a liquid (e.g. paint) repellent surface (e.g. layer) 353 that comprises a fluorochemical material and/or siloxane (e.g. (PDMS) material. The concentration of fluorochemical material and/or siloxane (e.g. PDMS) material at the outer exposed surface (e.g. layer) 353 is typically higher than the concentration of fluorochemical and/or siloxane (e.g. PDMS) material proximate the center of the substrate 310. In one embodiment, the liquid (e.g. paint) repellent surface 353 can be provided by including a fluorochemical material, such as a fluorochemical compound, and/or a siloxane (e.g. PDMS) material as a melt additive in a polymeric material that is thermally processed to form substrate 310 into a component such as a liner, liquid reservoir, or lid.


With reference to FIG. 10, article 400 is a component of a spray application system comprising substrate or component 410 (e.g. a liner, liquid reservoir, or lid) comprising a liquid (e.g. paint) repellent surface 453 that comprises a fluoropolymer layer, siloxane (e.g. PDMS) polymer layer, or a polymer comprising both fluorinated and silane or siloxane groups 451. In one embodiment, the liquid (e.g. paint) repellent surface 453 can be provided by coating substrate 410 with a coating composition comprising an organic solvent and a fluoropolymer and/or siloxane (e.g. PDMS) polymer, as will subsequently be described. The fluorine and/or siloxane content is typically the same throughout the thickness of the fluoropolymer and/or siloxane layer. In another embodiment, the liquid (e.g. paint) repellent surface 453 can be provided by coextruding substrate 410 together with a fluoropolymer layer and/or siloxane (e.g. PDMS) polymer layer 451 into a sheet and thermal processing the sheet into a liner, liquid reservoir, or lid.


With reference to FIG. 11, article 500 is a substrate or component 510 of a spray application system such as a liner, liquid reservoir, or lid, comprising a fluoropolymer and/or siloxane (e.g. PDMS) polymer. The fluorine and/or siloxane content is typically the same throughout the thickness of the component. The interior and exterior surface of the component typically comprise fluoropolymer and/or siloxane polymer. In one embodiment, the liquid (e.g. paint) repellent surface can be provided by thermal processing a fluoropolymer into a component such as a liner, liquid reservoir, or lid. In another embodiment, the liquid (e.g. paint) repellent surface can be provided by thermal processing a siloxane polymer or a polymer comprising both fluorinated and silane or siloxane groups into a component such as a liner, liquid reservoir, or lid.


In some embodiments, the (e.g. fluorinated) solid material of the liquid-repellent surface is a fluoropolymer.


One commonly known class of fluoropolymer is Teflon™ PTFE resin or in other words polytetrafluoroethylene polymers prepared by the polymerization of the monomer tetrafluoroethylene (“TFE” having the structure CF2═CF2). Teflon™ PTFE resins are described as crystalline materials. Crystalline PTFE resins typically have a density of about 2.2 g/cm3.


It has been found that Teflon™ PTFE does not provide a liquid repellent surface such that the receding contact angle with water is at least 90 degrees and/or difference between the advancing contact angle and the receding contact angle of the surface with water is less than 10. Further, Teflon™ PTFE also does not provide an (e.g. aqueous) paint repellent surface (as determined by the test methods set forth in the examples.)


However, the applicant has found that other fluoropolymers, such as copolymers of TFE can provide a liquid repellent surface such that the difference between the advancing contact angle and the receding contact angle of the surface with water is less than 10 and can provide an (e.g. aqueous) paint repellent surface. Copolymer of TFE comprises polymerized units of TFE and at least one other comonomer. Thus, copolymers include terpolymers.


One suitable fluoropolymer that has been found to provide the desired liquid (e.g. paint) repellency as described herein may be characterized as an amorphous fluoroplastic. Such fluoropolymer is a copolymer comprising polymerized units of TFE and polymerized units of a heterocyclic fluorocarbon monomer. The heterocyclic fluorocarbon monomer typically comprises oxygen atoms, such as in the case of dioxole monomers. In one embodiment, the amorphous fluoropolymer is a copolymer of tetrafluoroethylene and a perfluoroalkyl dioxole such as perfluoro-2,2-dimethyl-1,3-dioxole (PDD) commercially available from Dupont as the trade designation Teflon™ AF depicted as follows:




embedded image


wherein n is the number of polymerized units of perfluoroalkyl dioxole, and m is the number of polymerized units of TFE. This amorphous fluoropolymer has a density less than crystalline PTFE. The density is typically less than 2.1, 2.0, 1.9, or 1.8 g/cm3. In some embodiments, the density is at least 1.65, 1.66, or 1.67 g/cm3 ranging up to 1.75, 1.76, 1.77, or 1.78 g/cm3.


Another suitable fluoropolymer that has been found to provide the desired liquid (e.g. paint) repellency as described herein is a copolymer of tetrafluoroethylene and hexafluoropropylene (“HFP” having the structure CF2═CF—CF3). Such fluoropolymer is also described as fluorinated ethylene propylene (FEP). FEP has the following general formula,




embedded image


wherein n is the number of polymerized units of TFE, and m is the number of polymerized units of HFP. The amount of fluorinated propylene is typically at least 1, 2, 3, 4, or 5 wt.-% and can range up to 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 wt.-%.


FEP is typically melt-processable using conventional injection molding and screw extrusion techniques. This fluoropolymer has a melt point of at least 250, 255, or 260° C. ranging up to 280° C. and a density ranging from at least 2.10 or 2.15 up to 2.20 g/cm3. In typical embodiments, the density is less than crystalline PTFE, i.e. no greater than 2.17 or 2.18 g/cm3. Fluorinated ethylene propylene is sold under the tradenames “TEFLON FEP” from Dupont and “NEOFLON FEP” from Daikin.


Other fluoropolymer copolymers of TFE further comprise hydrogen and specifically —CH2— groups. For example, some fluoropolymers are prepared by the copolymerization of tetrafluoroethylene TFE, HFP, and vinylidene fluoride (“VDF” having the structure CH2═CF2). Such copolymers can be represented by the following formula:




embedded image


wherein m is the number of polymerized units of TFE, n is the number of polymerized units of HFP, and 1 is the number of polymerized units of VDF.


However, it has been found that when the number of polymerized units of VDF is 19 mol %, such TFE copolymer does not provide the desired liquid (e.g. paint) repellency properties as described herein. Hence, such tetrafluoroethylene copolymer generally comprises less than 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 mole % of polymerized units of VDF.


In other embodiments, the (e.g. paint) liquid repellent surface comprises a fluorochemical material and/or siloxane (e.g. PDMS) material and a (e.g. non-fluorinated) organic polymeric binder. In typical embodiments, a major amount of non-fluorinated polymeric binder is combined with a sufficient amount of fluorochemical material and/or siloxane (e.g. PDMS) material that provides the desired repellency properties, as described herein.


In typical embodiments, the amount of fluorochemical material and/or siloxane (e.g. PDMS) material is at least about 0.05, 0.1, 0.25, 0.5, 1.5, 2.0 or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5 or 5 wt.-%. The amount of fluorochemical material and/or siloxane (e.g. PDMS) material is typically no greater than 50, 45, 40, 35, 30, 25, 20, 15, or 10 wt.-% of the sum of the fluorochemical material and non-fluorinated polymeric binder. Thus, the fluorine content of such fluorochemical material-containing polymeric materials is significantly less than the previously described fluoropolymers. It is a surprising result that low fluorine content polymeric materials can provide comparable or improved liquid (e.g. paint) repellency to that of fluoropolymers having a substantially higher fluorine content.


In some embodiments, the fluorochemical material comprises a compound or a mixture of compounds represented by the following Formula IV:





(Rf-L-P)nA


Rf is a fluorinated group;


L is independently an organic divalent linking group;


P is independently a catenary, divalent heteroatom-containing a carbonyl moiety;


A is hydrocarbon moiety;


and n typically ranges from 1 to 3.


In some embodiments, n is preferably 2. When the fluorochemical material comprises a mixture of compounds, the concentration by weight of the fluorochemical compound wherein n is 2 is typically greater than each of the fractions wherein n is not 2 (e.g. n=1 or n=3). Further, the concentration wherein n is 2 is typically at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% by weight or greater of the mixture of compounds. In other embodiments, the fluorinated material can be a single compound wherein n=2.


The fluorinated group, Rf, is typically a fluoroalkyl group that contains at least 3 or 4 carbon atoms and typically no greater than 12, 8, or 6 carbon atoms. The fluoroalkyl group can be straight chain, branched chain, cyclic or combinations thereof. In typical embodiments, the fluoroalkyl group is preferably free of olefinic unsaturation. In some embodiments, each terminal fluorinated group contains at least 50, 55, 60, 65, or 70% to 78% fluorine by weight. Such terminal groups are typically perfluorinated. In some embodiments, Rf is CF3(CF2)3— or in other words C4F9— for at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% by weight or greater of the mixture of compounds. In other embodiments, the fluorinated material can be a single compound wherein Rf is


CF3(CF2)3—. In another embodiment, the fluorinated group, Rf, is a perfluoroheteroalkyl group, such as a perfluoroether or perfluoropolyether. The organic divalent linking group, L, can be a covalent bond, a heteroatom (e.g., O or S), or an organic moiety. The organic divalent linking group typically contains no greater than 20 carbon atoms, and optionally contains oxygen-, nitrogen-, or sulfur-containing groups or a combination thereof. L is typically free of active hydrogen atoms. Examples of L moieties include straight chain, branched chain, or cyclic alkylene, arylene, aralkylene, oxy, thio, sulfonyl, amide, and combinations thereof such as sulfonamidoalkylene. Below is a representative list of suitable organic divalent linking groups.

    • SO2N(R′)(CH2)k
    • CON(R′)(CH2)k
    • (CH2)k
    • (CH2)kO(CH2)k
    • (CH2)kS(CH2)k
    • (CH2)kSO2(CH2)k
    • (CH2)kOC(O)NH—
    • (CH2)SO2N(R′)(CH2)k
    • (CH2)kNR′—
    • (CH2)kNR′C(O)NH—


For the purpose of this list, each k is independently an integer from 1 to 12. R′ is hydrogen, phenyl, or an alkyl of 1 to about 4 carbon atoms (and is preferably methyl). In some embodiments, k is no greater than 6, 5, 4, 3, or 2. In some embodiments, the linking group has a molecular weight of at least 14 g/mole, in the case of —CH2—, or at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or 110 g/mole. The molecular weight of the linking group is typically no greater than 350 g/mole and in some embodiments no greater than 300, 250, 200, or 150 g/mole.


The aforementioned moiety, A, can be a straight chain, branched chain, or cyclic hydrocarbon, or a combination thereof. Typical A moieties include alkylene, alkene, arylene, and aralkylene having 4-50 carbon atoms. In some embodiments, A is preferably a saturated hydrocarbon moiety or in other words an alkylene group (i.e. when n is 2 or 3) or alkyl group (i.e. when n is 1) averaging at least 4, 6, 8, 10, 12, 14, 16, or 18 carbon atoms. In some embodiments, the alkylene or alkyl group averages no greater than 45, 40, 35, 30, 25 or 20 carbon atoms. In typical embodiments, A is a hydrocarbon portion of a dicarboxylic acid or fatty acid.


The divalent carbonyl moiety, P, is typically a residue of a dicarboxylic or fatty acid and thus carbonyloxy (—C(O)O—) or in other words an ester group.


The fluorochemical material can be prepared by various methods known in the art such as described in U.S. Pat. No. 6,171,983. The fluorochemical is most typically prepared by esterifying a fluorinated alcohol with a dicarboxylic acid or a fatty acid. Particularly when a fatty acid is utilized as a starting material the resulting fluorochemical material typically contains a mixture of compounds.


Suitable dicarboxylic acids include adipic acid, suberic acid, azelaic acid, dodecanedioic acid, octadecanedioic acid, eicosanedioic acid, and the like that provide the A group as previously described. Derivatives of dicarboxylic acid can also be employed such as halides and anhydrides.


Suitable unsaturated fatty acids include for example palmitoleic acid, linoleic acid, linolenic acid, oleic acid, rinoleic acid, gadoleic acid, eracic acid or mixtures thereof. Polymerized fatty acids can contain a higher number of carbon atoms such that the fluorochemical material averages 30, 35, 40, 45 or 50 carbon atoms.


Suitable saturated fatty acids include caprylic acid, CH3(CH2)6COOH; capric acid, CH3(CH2)8COOH; lauric acid, CH3(CH2)10COOH; myristic acid, CH3(CH2)12COOH; palmitic CH3(CH2)14COOH; stearic acid CH3(CH2)16COOH; arachidic acid, CH3(CH2)18COOH; behenic acid CH3(CH2)20COOH; lignoceric acid, CH3(CH2)22COOH; and cerotic acid CH3(CH2)24COOH.


Representative examples of useful fluorine-containing monoalcohols include the following wherein Rf is a fluorinated group as previously described.















RfSO2N(CH3)CH2CH2OH,
CF3(CF2)3SO2N(CH3)CH2CH2OH,


CF3(CF2)3SO2N(CH3)CH(CH3)CH2OH,
CF3(CF2)3SO2N(CH3)CH2CH(CH3)OH,


C3F7CH2OH,
RfSO2N(H)(CH2)2OH,


RfSO2N(CH3)(CH2)4OH,
C4F9SO2N(CH3)(CH2)4OH


C6F13SO2N(CH3)(CH2)4OH,
RfSO2N(CH3)(CH2)11OH,


RfSO2N(C2H5)CH2CH2OH,
CF3(CF2)3SO2N(C2H5)CH2CH2OH,


C6F13SO2N(C2H5)CH2CH2OH
RfSO2N(C2H5)(CH2)6OH,


C3F7CONHCH2CH2OH,
RfSO2N(C3H7)CH2OCH2CH2CH2OH,


RfSO2N(CH2CH2CH3)CH2CH2OH,
RfSO2N(C4H9)(CH2)4OH,


RfSO2N(C4H9)CH2CH2OH,









Other fluorine-containing monoalcohols are described in U.S. Pat. No. 6,586,522; incorporated herein by reference.


In some embodiments, the monofunctional fluoroaliphatic alcohols useful in preparing the fluorochemical materials include the N-alkanol perfluoroalkylsulfonamides described in U.S. Pat. No. 2,803,656 (Ahlbrecht et al.), which have the general formula Rf SO2 N(R)R1 CH2 OH wherein Rf is a perfluoroalkyl group having 3 to 6 and preferably 4 carbon atoms, R1 is an alkylene radical having 1 to 12 carbon atoms, and R is a hydrogen atom or an alkyl group containing 1 to 4 carbon atoms and is preferably methyl. In some embodiments, R1 is an alkylene radical having no greater than 8, 7, 6, 5, 4, 3 or 2 carbon atoms. These monofunctional alcohols can be prepared by reactions of an acetate ester of halohydrin with a sodium or potassium salt of the corresponding perfluoroalkylsulfonamide.


In some embodiments, the fluorochemical compound has one of the following formulas





C4F9SO2N(CH3)(CH2)kOC(O)-A-C(O)O(CH2)kN(CH3)SO2C4F9  (IVa)





or





C4F9SO2N(CH3)(CH2)kOC(O)-A  (IVb)


wherein k and A are the same as previously described.


In another embodiment, the fluorochemical material comprises an ester compound or oligomer as described in U.S. Pat. No. 6,753,380; incorporated herein by reference. The ester compounds and oligomers may be represented by the following formulas:





RfQO—[C(O)R1C(O)OR2O]n[C(O)R1C(O)]m-OQRf  (V)


when RfQO— is derived from a fluorinated alcohol, —OR2O—is derived from a fluorinated polyol, and —C(O)R1C(O)— is derived from a dicarboxylic acid;





RfQC(O)—[OR2OC(O)R1C(O)]n[OR2O]m—(O)CQRf  (VI)


when RfQC(O)— is derived from a fluorinated acid, —C(O)R1C(O)— is derived from a dicarboxylic acid, and —OR2O— is derived from a fluorinated polyol; or


wherein in each of Formulas V-VI;


n is a number or a range selected from the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;


m is 1;


Rf is a fluorinated group, as previously described;


Q is a divalent linking group;


R1 is a polyvalent (e.g. divalent) hydrocarbon moiety; and


R2 is a divalent organic group having a pendent fluorinated group, Rf, such as a perfluoroalkyl group, perfluoroheteroalkyl group, or a mixture thereof.


R1, can be a straight chain, branched chain, or cyclic hydrocarbon, or a combination thereof. Typical R1 moieties include alkylene, alkene, arylene, and aralkylene having 4-50 carbon atoms. In some embodiments, R1 is preferably a saturated hydrocarbon moiety or in other words an alkylene group (i.e. when n is 2 or 3) or alkyl group (i.e. when n is 1) averaging at least 4, 6, 8, 10, 12, 14, 16, or 18 carbon atoms. In some embodiments, the alkylene or alkyl group averages no greater than 45, 40, 35, 30, 25, or 20 carbon atoms. In typical embodiments, R1 is a hydrocarbon portion of a dicarboxylic acid or diol. In another embodiment, the hydrocarbon moiety may further comprise one or more heteroatoms or other substituents.


It will be understood that mixtures of compounds and oligomers corresponding to the general formula may be represented, in addition to single compounds. In the case of mixtures, m and n may average a non-integral value. The mixture of compounds and oligomers may comprise a small concentration (e.g. less than 5, 4, 3, 2, or 1 wt.-% of the compound or oligomer) of other compounds and oligomers. For example, the mixture may comprise species wherein m is 0 and the terminal oxygen atom of unit n is bonded to a hydrogen such that the unit terminates with a hydroxyl group or acid group.


Q is typically the organic divalent linking group, L, as previously described.


As depicted in Formula V, R1 is typically a residue of a polyacyl compound; whereas R2 is typically a residue of a polyol. In this embodiment, the fluorochemical ester oligomer typically comprises the condensation reaction products of one or more fluorinated polyols (such as FBSEE—C4F9SO2N(C2H4OH)2), one or more polyacyl compounds (e.g. dicarboxylic acid) and one or more monofunctional fluorine-containing compounds (such as MeFBSE —C4F9SO2N(CH3)CH2CH2OH).


One representative compound according to Formula V is depicted as follows:




embedded image


wherein n ranges from 1 to 10.


Other representative compounds are described in U.S. Pat. No. 6,753,380.


Polyols, suitable for use in preparing the fluorochemical ester compositions polyols that have an average hydroxyl functionality of greater than 1 (preferably about 2 to 3; most preferably, about 2, as diols are most preferred). The hydroxyl groups can be primary or secondary, with primary hydroxyl groups being preferred for their greater reactivity.


Representative examples of suitable fluorinated polyols include RfSO2N(CH2CH2OH)2 such as N-bis(2-hydroxyethyl)perfluorobutylsulfonamide; RfOC6H4SO2N(CH2CH2OH)2; RfSO2N(R′)CH2CH(OH)CH2OH such as C6F13SO2N(C3H7)CH2CH(OH)CH2OH; RfCH2CON(CH2CH2OH)2; RfCON(CH2CH2OH)2; CF3CF2(OCF2CF2)3OCF2CON(CH3)CH2CH(OH)CH2OH; RfOCH2CH(OH)CH2OH such as C4F9OCH2CH(OH)CH2OH; RfCH2CH2SC3H6OCH2CH(OH)CH2OH; RfCH2CH2SC3H6CH(CH2OH)2; RfCH2CH2SCH2CH(OH)CH2OH; RfCH2CH2SCH(CH2OH)CH2CH2OH; RfCH2CH2CH2SCH2CH(OH)CH2OH such as C5F11(CH2)3SCH2CH(OH)CH2OH; RfCH2CH2CH2OCH2CH(OH)CH2OH such as C5F11(CH2)3OCH2CH(OH)CH2OH; RfCH2CH2CH2OC2H4OCH2CH(OH)CH2OH; RfCH2CH(CH3)OCH2CH(OH)CH2OH; Rf(CH2)4SC3H6CH(CH2OH)CH2OH; Rf(CH2)4SCH2CH(CH2OH)2; Rf(CH2)4SC3H6OCH2CH(OH)CH2OH; RfCH2CH(C4H9)SCH2CH(OH)CH2OH; RfCH2OCH2CH(OH)CH2OH; RfCH2CH(OH)CH2SCH2CH2OH; RfCH2CH(OH)CH2SCH2CH2OH; RfCH2CH(OH)CH2OCH2CH2OH; RfCH2CH(OH)CH2OH; ((CF3)2CFO(CF2)2(CH2)2SCH2)2C(CH2OH)2; 1,4-bis(1-hydroxy-1,1-dihydroperfluoroethoxyethoxy)perfluoro-n-butane (HOCH2CF2OC2F4O(CF2)4OC2F4OCF2CH2OH); 1,4-bis(1-hydroxy-1,1-dihydroperfluoropropoxy)perfluoro-n-butane (HOCH2CF2CF2O(CF2)4OCF2CF2CH2OH); fluorinated oxetane polyols made by the ring-opening polymerization of fluorinated oxetane such as Poly-3-Fox™ (available from Omnova Solutions, Inc., Akron, Ohio); polyetheralcohols prepared by ring opening addition polymerization of a fluorinated organic group substituted epoxide with a compound containing at least two hydroxyl groups as described in U.S. Pat. No. 4,508,916 (Newell et al); and perfluoropolyether diols such as Fomblin™ ZDOL (HOCH2CF2O(CF2O)8-12(CF2CF2O)8-12CF2CH2OH, available from Ausimont); wherein Rf is a fluorinated group such as a perfluoroalkyl group as previously described.


Preferred fluorinated polyols include N-bis(2-hydroxyethyl) perfluorobutylsulfonamide; fluorinated oxetane polyols made by the ring-opening polymerization of fluorinated oxetane such as Poly-3-Fox™ (available from Omnova Solutions, Inc., Akron Ohio); polyetheralcohols prepared by ring opening addition polymerization of a fluorinated organic group substituted epoxide with a compound containing at least two hydroxyl groups as described in U.S. Pat. No. 4,508,916 (Newell et al); perfluoropolyether diols such as Fomblin™ ZDOL (HOCH2CF2O(CF2O)8-12(CF2CF2O)8-12CF2CH2OH, available from Ausimont); 1,4-bis(1-hydroxy-1,1-dihydroperfluoroethoxyethoxy)perfluoro-n-butane (HOCH2CF2OC2F4O(CF2)4OC2F4OCF2CH2OH); and 1,4-bis(1-hydroxy-1,1-dihydroperfluoropropoxy)perfluoro-n-butane (HOCH2CF2CF2O(CF2)4OCF2CF2CH2OH).


More preferred polyols comprised of at least one fluorine-containing group include N-bis(2-hydroxyethyl)perfluorobutylsulfonamide; 1,4-bis(1-hydroxy-1,1-dihydroperfluoropropoxy)perfluoro-n-butane (HOCH2CF2CF2O(CF2)4OCF2CF2CH2OH).


Suitable non-fluorinated polyols include those that comprise at least one aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aromatic, heteroaromatic, or polymeric moiety.


Non-fluorinated polyols include for example alkylene glycols such as 1,2-ethanediol; 1,2-propanediol; 3-chloro-1,2-propanediol; 1,3-propanediol; 1,3-butanediol; 1,4-butanediol; 2-methyl-1,3-propanediol; 2,2-dimethyl-1,3-propanediol (neopentylglycol); 2-ethyl-1,3-propanediol; 2,2-diethyl-1,3-propanediol; 1,5-pentanediol; 2-ethyl-1,3-pentanediol; 2,2,4-trimethyl-1,3-pentanediol; 3-methyl-1,5-pentanediol; 1,2-, 1,5-, and 1,6-hexanediol; 2-ethyl-1,6-hexanediol; bis(hydroxymethyl)cyclohexane; 1,8-octanediol; bicyclo-octanediol; 1,10-decanediol; tricyclo-decanediol; norbornanediol; and 1,18-dihydroxyoctadecane.


R1 is typically a residue of a polyacyl compound(s). The polyacryl compound is typically a carboxylic acid, or a derivative thereof. Suitable dicarboxylic acids include adipic acid, suberic acid, azelaic acid, dodecanedioic acid, octadecanedioic acid, eicosanedioic acid, and the like that provide the R1 group as previously described.


Useful fluorine-containing monofunctional compounds include compounds of the following formula:





Rf-Q′  (VII)


wherein:


Rf is a fluorinated group, preferably a fluoroalkyl or (e.g. C4) perfluoroalkyl group as previously described; and


Q′ is a moiety comprising a functional group that is reactive toward the terminal acyl (of the polyacyl compound) or hydroxyl groups (of the polyol).


It will be understood that the compound RfQ′ reacts with the polyol or acyl compounds to provide the terminal moiety RfQ-


RfQ′ typically comprises fluorine-containing monoalcohols as previously described. Various fluorine-containing monoalcohols are also described in previously cited U.S. Pat. No. 6,753,380.


The fluorochemical monofunctional compound RfQ′ may comprise a fluorine-containing monocarboxylic acid, or a derivative thereof. Various fluorine-containing monocarboxylic acids are described in previously cited U.S. Pat. No. 6,753,380.


If desired, (e.g. a small concentration of) non-fluorinated monofunctional compounds, such as monoalcohol(s) or monocarboxylic acid(s) can be utilized.


In another embodiment, the fluorochemical material comprises a urethane compound or oligomer as described in U.S. Pat. No. 6,803,109. The urethane compounds and oligomers may be represented by the following formulas:





RfQO—C(O)NHR1NHC(O)—OQRf  (VIII)


when RfQO- is derived from a fluorinated alcohol and —C(O)NHR1NHC(O)— is derived from a diisocyanate; or





RfQO—[C(O)NHR1NHC(O)OR2O]n[C(O)NHR1NHC(O)]m-OQRf  (IX)


when RfQO— is derived from a fluorinated alcohol, —OR2O— is derived from a fluorinated polyol, and —C(O)NHR1NHC(O)— is derived from a diisocyanate;


wherein in Formulas VIII and IX:


n is a number or a range selected from the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;


m is 1;


Rf is a fluorinated group, as previously described;


Q is a divalent linking group, as previously described; and


R1 and R2 are as previously described.


It will be understood that mixtures of compounds and oligomers corresponding to the general formula may be represented, in addition to single compounds. In the case of mixtures, m and n may average a non-integral value. The mixture of compounds and oligomers may comprise a small concentration (e.g. less than 5, 4, 3, 2, or 1 wt.-% of the compound or oligomer) of other compounds and oligomers. For example, the mixture may comprise species wherein m is 0 and the terminal oxygen atom of unit n is bonded to a hydrogen such that the unit terminates with a hydroxyl group.


Representative compounds are described in U.S. Pat. No. 6,803,109; incorporated herein by reference.


As depicted in Formula IX, the fluorochemical urethane oligomer typically comprises the condensation reaction products of one or more fluorinated polyols (such as FBSEE —C4F9SO2N(C2H4OH)2, one or more polyisocyanate compounds, and one or more monofunctional fluorine-containing compounds (such as MeFBSE —C4F9SO2N(CH3)CH2CH2OH)).


In another embodiment, a fluorine-containing polyol can be chain extended with a diisocyanate which is then reacted with a polyol comprising R′. In this embodiment, the oligomer would have the following formula:





RfQO—[C(O)NHZR2ZNHC(O)OR1O]n[C(O)NHZR2ZNHC(O)]m-OQRf  (X)


wherein n, m, Rf, R1, and R2 are the same as previously described;


—C(O)NHZR2ZNHC(O)— is a residue of the chain extended fluorine-containing polyol and Z is a residue of a diisocyanate, such as a C4-C6 hydrocarbon (e.g. alkylene).


Useful fluorinated polyols for the preparation of the urethane compounds and oligomers are the same as previously described.


Various polyisocyanate compounds are useful in preparing the urethane compounds and oligomers. The polyisocyanate compounds generally comprise isocyanate radicals attached to a multivalent organic group that can comprise a multivalent aliphatic, alicyclic, or aromatic moiety (R1); or a multivalent aliphatic, alicyclic or aromatic moiety attached to a biuret, an isocyanurate, or a uretdione, or mixtures thereof. Preferred polyfunctional isocyanate compounds contain an average of two isocyanate (—NCO) radicals. Compounds containing two —NCO radicals are preferably comprised of divalent aliphatic, alicyclic, araliphatic, or aromatic groups to which the —NCO radicals are attached. Linear aliphatic divalent groups are preferred.


Representative examples of suitable polyisocyanate compounds include isocyanate functional derivatives. Examples of derivatives include for example ureas, biurets, allophanates, dimers and trimers (such as uretdiones and isocyanurates) of isocyanate compounds, and mixtures thereof. Any suitable organic polyisocyanate, such as an aliphatic, alicyclic, araliphatic, or aromatic polyisocyanate, may be used either singly or in mixtures of two or more. The aliphatic polyisocyanate compounds generally provide better light stability than the aromatic compounds. Aromatic polyisocyanate compounds, on the other hand, are generally more economical and reactive toward polyols than are aliphatic polyisocyanate compounds. Suitable aromatic polyisocyanate compounds include, for example, 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, an adduct of TDI with trimethylolpropane (available as Desmodur™ CB from Bayer Corporation, Pittsburgh, Pa.), the isocyanurate trimer of TDI (available as Desmodur™ IL from Bayer Corporation, Pittsburgh, Pa.), diphenylmethane 4,4′-diisocyanate (MDI), diphenylmethane 2,4′-diisocyanate, 1,5-diisocyanato-naphthalene, 1,4-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1-methyoxy-2,4-phenylene diisocyanate, 1-chlorophenyl-2,4-diisocyanate, and mixtures thereof.


Examples of useful alicyclic polyisocyanate compounds include, for example, dicyclohexylmethane diisocyanate (H12MDI, commercially available as DesmodurTMW, available from Bayer Corporation, Pittsburgh, Pa.), 4,4′-isopropyl-bis(cyclohexylisocyanate), isophorone diisocyanate (IPDI), cyclobutane-1,3-diisocyanate, cyclohexane 1,3-diisocyanate, cyclohexane 1,4-diisocyanate (CHDI), 1,4-cyclohexanebis(methylene isocyanate) (BDI), dimmer acid diisocyanate (available from Bayer),1,3-bis(isocyanatomethyl)cyclohexane (H6XDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and mixtures thereof.


Examples of useful aliphatic polyfunctional isocyanate compounds include, for example, tetramethylene 1,4-diisocyanate, hexamethylene 1,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12-diisocyanatododecane, 2,2,4-trimethyl-hexamethylene diisocyanate (TMDI), 2-methyl-1,5-pentamethylene diisocyanate, dimer diisocyanate, the urea of hexamethylene diisocyanate, the biuret of hexamethylene 1,6-diisocyanate (HDI) (Desmodur™ N-100 and N-3200 from Bayer Corporation, Pittsburgh, Pa.), the isocyanurate of HDI (available as Desmodur™ N-3300 and Desmodur™ N-3600 from Bayer Corporation, Pittsburgh, Pa.), a blend of the isocyanurate of HDI and the uretdione of HDI (available as Desmodure™ N-3400 available from Bayer Corporation, Pittsburgh, Pa.), and mixtures thereof.


Examples of useful araliphatic polyisocyanates include, for example, m-tetramethyl xylylene diisocyanate (m-TMXDI), p-tetramethyl xylylene diisocyanate (p-TMXDI), 1,4-xylylene diisocyanate (XDI), 1,3-xylylene diisocyanate, p-(1-isocyanatoethyl)phenyl isocyanate, m-(3-isocyanatobutyl)phenyl isocyanate, 4-(2-isocyanatocyclohexyl-methyl)phenyl isocyanate, and mixtures thereof.


Preferred polyisocyanates include tetramethylene 1,4-diisocyanate, hexamethylene 1,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12-diisocyanatododecane, and the like, and mixtures thereof.


Useful fluorochemical monofunctional compounds include those of the following formula:





Rf-Q″  (XI)


wherein:


Rf is a fluorinated group, preferably a fluoroalkyl of (e.g. C4) perfluoroalkyl group, as previously described; and


Q″ is a moiety comprising a functional group that is reactive toward the terminal isocyanate or hydroxy groups.


It will be understood that the compound RfQ″ reacts to provide the terminal moiety RfQ—. Examples of useful reactive functional group Q″ are described in previously cited U.S. Pat. No. 6,803,109.


RfQ″ typically comprises a fluorine-containing monoalcohol as previously described. Various fluorine-containing monoalcohols are also described in previously cited U.S. Pat. No. 6,803,109.


If desired, (e.g. a small concentration of) non-fluorinated monofunctional compounds, such as monoalcohol(s) or monocarboxylic acid(s) can be utilized.


The materials of Formulas V, VI, IX, and X can be characterized as fluorinated oligomers or polymers comprising terminal fluorinated (e.g. C4 perfluoroalkyl) groups and pendent fluorinated (e.g. C4 perfluoroalkyl) groups. The materials of Formulas IV, V, VI, VIII, IX, and X also typically comprise contiguous alkylene (or alkyl in the case of Formula IV) groups averaging at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.


The fluorinated oligomers may have a molecular weight (Mn) of at least 1500 or 2000 g/mole. The fluorinated oligomer typically has a molecular weight (Mn) no greater than 10,000, 9000, 8000, or 7000 g/mole as measured by Gel Permeation Chromatography using polystyrene standards. The fluorinated polymer typically has a molecular weight (Mn) greater than 10,000; 15,000; or 20,000 g/mole. In some embodiments, the molecular weight of the fluorinated polymer is no greater than 50,000; 40,000 or 30,000 g/mole as measured by Gel Permeation Chromatography using polystyrene standards.


In some embodiments, the repellent surface or coating comprises both a fluorochemical compound (e.g. of Formulas IV or VIII-X) and a fluorochemical oligomer (e.g. of Formulas I, II, V, and VI. The weight ratio of fluorochemical compound to fluorochemical oligomer can range from 1:10 to 10:1. In some embodiments, the weight ratio ranges from 1:4 to 4:1. In other embodiments, the weight ratio ranges from 1:3 to 3:1. In other embodiments, the weight ratio ranges from 1:2 to 2:1.


In some typical embodiments, the fluorochemical material comprises less than 2% of fluorinated groups having greater than 6 carbon atoms. Further, the fluorochemical material typically comprises less than 25% of fluorinated groups having greater than 4 carbon atoms. In favored embodiments, the fluorochemical material as previously described is free of fluorinated (e.g. fluoroalkyl) groups, Rf, having at least 8 carbon atoms. In some embodiments, the fluorochemical material is free of fluorinated (e.g. fluoroalkyl) groups, Rf, having at least 5, 6, or 7 carbon atoms. In some embodiments, the repellent surface or repellent coating is free of fluorinated (e.g. fluoroalkyl) groups, Rf, having at least 8 carbon atoms. In some embodiments, the repellent surface or repellent coating is free of fluorinated (e.g. fluoroalkyl) groups, Rf, having at least 5, 6, or 7 carbon atoms.


Fluorochemical compounds according to the formulas described herein are not fluoroalkyl silsesquioxane materials having the chemical formula [RSiO3/2]n, wherein R comprises a fluoroalkyl or other fluorinated organic group. Fluorochemical compounds according to the formulas described herein are also not (e.g. vinyl terminated) polydimethylsiloxanes. In typical embodiments, the fluorochemical material is free of silicone atom as well as siloxane linkages.


In some embodiments, the fluorochemical material (e.g. additive) has a fluorine content of at least 25 wt.-%. In some embodiments, the fluorine content of the fluorochemical material is at least 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, or 37 wt.-% and typically no greater than 58, 57, 56, 55, 54, 53, 52, 51, or 50 wt.-%.


In other embodiments, the (e.g. paint) liquid repellent surface comprises a siloxane (e.g. PDMS) material. In some embodiments, the siloxane (e.g. PDMS) material is a solid rather than a liquid (e.g. lubricant) at 25° C. and at temperatures ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.). In typical embodiments the siloxane (e.g. PDMS) material is free of fluorinated groups and thus free of fluorine atoms. However, in other embodiments, a predominantly siloxane (e.g. PDMS) material may further comprise one or more fluorinated groups. Likewise, a predominantly fluorochemical material may further comprise a one or more siloxane (e.g. silane or siloxane) groups. Although it is most common to utilize a fluorochemical material or a siloxane (e.g. PDMS) material, combinations of such materials can be utilized.


In some embodiments, a major amount of non-fluorinated polymeric binder or thermally processible polymer is combined with a sufficient amount of siloxane (e.g. PDMS) material that provides the desired repellency properties, as described herein.


In some embodiments, the silicone material is a compound, oligomer or polymer having a polysiloxane backbone and more typically a polydimethylsiloxane backbone. The polysiloxane backbone may further comprise other pendent groups, such as hydrocarbon (e.g. preferably alkyl) groups. The silicone material typically does not comprise vinyl groups or other polymerizable group that would results in the silicone material forming a crosslinked network.


In some embodiments, the siloxane (e.g. PDMS) material (e.g. oligomer or polymer) comprises at least 50, 55, 60, 65, 70, 75, 80, 85, 90 or 95 wt.-% polydimethylsiloxane backbone. The siloxane (e.g. PDMS) material may further comprise pendent longer chain hydrocarbon (e.g. preferably alkyl) groups in an amount of at least 5, 10, 15, 20, 25, 30, or 35 wt-% of the siloxane (e.g. PDMS) material.


The siloxane (e.g. PDMS) oligomer may have a molecular weight (Mn) of at least 1500 or 2000 g/mole as measured by GPC. The siloxane oligomer typically has a molecular weight (Mn) no greater than 10,000, 9000, 8000, or 7000 g/mole. The siloxane (e.g. PDMS) polymer typically has a molecular weight (Mn) greater than 10,000; 15,000; or 20,000 g/mole. In some embodiments, the molecular weight of the siloxane polymer is no greater than 100,000; 75,000; or 50,000 g/mole.


In some embodiments, the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms. In some embodiments, the siloxane (e.g. PDMS) material comprises pendent longer chain hydrocarbon (e.g. preferably alkyl) groups wherein the longer chain hydrocarbon (e.g. preferably alkyl) groups average greater than 20 carbons atoms such as at least 25, 30, 35, or 40. The pendent longer chain hydrocarbon (e.g. preferably alkyl) groups typically average no greater than 75, 70, 65, 60, or 50 carbon atoms.


In some embodiments, the siloxane (e.g. PDMS) material may be characterized as an alkyl dimethicone. The alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 8, 10, or 12 carbon atoms such as lauryl dimethicone, depicted as follows:




embedded image


In some embodiments, the alkyl dimethicone comprises at least one linear, branched, or cyclic alkyl group averaging at least 14, 16, or 18 carbon atoms such as cetyl dimethicone and stearyl dimethicone.


These materials are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a pendent (e.g. linear) alkyl group.


Preferred alkyl dimethicones typically have the structure:




embedded image


wherein the sum of (a+b+c) is between about 100 and 1000, for example between about 200 and 500 or between about 300 and 400; the ratio of a to the sum of (b+c) is about 99.9:0.1 to 80:20, or about 99:1 to 85:15, or about 99:1 to 90:10, or about 99:1 to 92:8, or about 98:2 to 93:7 or about or about 98:2 to 94:6; R1 is a linear, branched, or cyclic alkyl group having between 20 and 50 carbon atoms, for example about 22 to 46 carbon atoms, or about 24 to 40 carbon atoms; R2 is a linear, branched, or cyclic alkyl or alkaryl group having between 2 and 16 carbons, for example about 4 to 16, or about 5 to 12, or about 6, to 10, or about 8 carbon atoms; and the structure is a random, block, or blocky structure. In some embodiments, the ratio of a to (b+c) in conjunction with the number of carbons in the R1 and R2 groups result in an alkyl dimethicones having greater than about 50 wt % dimethyl siloxane (a) units, or in embodiments greater than about 60 wt % dimethyl siloxane units. In some embodiments, c is 0. In some embodiments, the sum of (a+b+c) is about 300 to 400 and the ratio of a to the sum of (b+c) is about 98:2 to 94:6. In embodiments, the alkyl dimethicone is a blend of two or more species thereof, wherein the species differ in terms of the sum of (a+b+c), the ratio of a to the sum of (b+c), the value of c, or in two or more such parameters. In some embodiments, the alkyl dimethicone is a random structure. In some embodiments, R1 is a linear alkyl group. In some embodiments, R2 is a linear alkyl group.


The alkyl dimethicone materials of Formula XII are characterized by having a (e.g. linear) polysiloxane backbone having terminal alkyl (C1-C4, typically methyl) silane groups and a plurality of pendent (e.g. linear) alkyl groups.


Methods of synthesizing dimethicone are known in the art. See for example U.S. Pat. No. 9,187,678; incorporated herein by reference.


While the structure of alkyl dimethicones are generally preferably linear structures, it will be understood by those of skill that such structures as synthesized or purchased can include an (e.g. small) amount of branching. Such branching, using terminology understood by those of skill, is referred to as “T” and “Q” functionality. In any of the embodiments herein, a substantially linear alkyl dimethicone structure can contain an amount of T branching, Q branching, or both.


In some embodiments, the siloxane (e.g. alkyl dimethicone) material has a melting temperature (e.g. peak endotherm as measured by DSC) of at least 140 or 150° F. ranging up to 170, 175, or 180° F.


Various organic polymeric binders can be utilized. Although fluorinated organic polymeric binders can also be utilized, fluorinated organic polymeric binders are typically considerably more expensive than non-fluorinated binders. Further, non-fluorinated organic polymeric binders can exhibit better adhesion to polymeric components (e.g. reservoir, liner, or lid) of the spray application system.


Suitable non-fluorinated binders include for example polystyrene, atactic polystyrene, acrylic (i.e. poly(meth)acrylate), polyester, polyurethane (including polyester type thermoplastic polyurethanes “TPU”), polyolefin (e.g. polyethylene), and polyvinyl chloride. Many of the polymeric materials that the component (e.g. reservoir, liner, or lid) of the spray application system can be thermally processed from, as will subsequently be described, can be used as the non-fluorinated organic polymeric binder of an (e.g. organic solvent) coating composition. However, in typical embodiments, the non-fluorinated organic polymeric binder is a different material than the polymeric material of the component. In some embodiments, the organic polymeric binder typically has a receding contact angle with water of less than 90, 80, or 70 degrees. Thus, the binder is typically not a siloxane (e.g. PDMS) material.


In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is a film-grade resin, having a relatively high molecular weight. Film-grade resins can be more durable and less soluble in an organic solvent that may be present in the liquid (e.g. paint) being repelled. In other embodiments, the (e.g. non-fluorinated) organic polymeric binder can be a lower molecular weight film-forming resin. Film-forming resins can be more compliant and less likely to affect the collapsibility of a liquid (e.g. paint) reservoir or liner. Viscosity and melt flow index are indicative of the molecular weight. Mixtures of (e.g. non-fluorinated) organic polymeric binder can also be used.


In some embodiments, the film-grade (e.g. non-fluorinated) organic polymeric binder typically has a melt flow index of at least 1, 1.5, 2, 2.5, 3, 4, or 5 g/10 min at 200° C./5 kg ranging up to 20, 25, or 30 g/10 min at 200° C./5 kg. The melt flow index can be determined according to ASTM D-1238. The tensile strength of the (e.g. non-fluorinated) organic polymeric binder is typically at least 40, 45, 50, 55, or 60 MPa. Further, the (e.g. non-fluorinated) organic polymeric binder can have a low elongation at break of less than 10% or 5%. The tensile and elongation properties can be measured according to ASTM D-638.


In other embodiments, the (e.g. non-fluorinated) organic polymeric binders have a lower molecular weight and lower tensile strength than film-grade polymers. In one embodiment, the melt viscosity of the (e.g. non-fluorinated) organic polymeric binders (as measured by ASTM D-1084-88) at 400° F. (204° C.) ranges from about 50,000 to 100,000 cps. In another embodiment, the molecular weight (Mw) of the (e.g. non-fluorinated) organic polymeric binder is typically at least about 1000, 2000, 3000, 4000, or 5000 g/mole ranging up to 10,000; 25,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000, or 500,000 g/mole. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has a tensile strength of at least 5, 10, or 15 MPa ranging up to 25, 30 or 35 MPa. In other embodiments, the (e.g. non-fluorinated) organic polymeric binder has a tensile strength of at least 40, 45, or 50 MPa ranging up to 75 or 100 MPa. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has an elongation at break ranging up 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000% or higher.


In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has a Shore A hardness of at least 50, 60, 70, or 80 ranging up to 100.


In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is selected such that it is compliant at the use temperature of the coated substrate or article.


In this embodiment, the (e.g. non-fluorinated) organic polymeric binder has a glass transition temperature (Tg) as can be measured by DSC of less than 0° C. or 32° F. In some embodiments, the (e.g. non-fluorinated) organic polymeric binder has a glass transition temperature (Tg) of less than 20° F., 10° F., 0° F., −10° F., −20° F., −30° F., −40° F., −50° F., −60° F., −70° F., or −80° F. In some embodiments, the (e.g. non- fluorinated) organic polymeric binder has a Tg of at least −130° C. The selection of (e.g. non-fluorinated) organic polymeric binder can contribute to the durability of the repellent surface.


In typical embodiments, the non-fluorinated organic polymeric binder does not form a chemical (e.g. covalent) bond with the fluorochemical material as this may hinder the migration of the fluorochemical material (e.g. compound) to the outermost surface layer. Likewise, the non-fluorinated organic polymeric binder typically does not form a chemical bond with the siloxane (e.g. PDMS) material as this may hinder the migration of the siloxane (e.g. PDMS) material to the outermost surface layer.


In some embodiments, the (e.g. non-fluorinated) organic polymeric binder is not curable, such as in the case of alkyd resins. An alkyd resin is a polyester modified by the addition of fatty acids and other components. They are derived from polyols and a dicarboxylic acid or carboxylic acid anhydride. Alkyds are the most common resin or “binder” of most commercial “oil-based” paints and coatings.


In some embodiments, the selection of the non-fluorinated polymeric binder can affect the concentration of fluorochemical material and/or siloxane (e.g. PDMS) material that provides the desired liquid (e.g. paint) repellency properties. For example when the binder is atactic polystyrene, having a molecular weight of 800-5000 kg/mole, the concentration of fluorochemical material was found to exceed 2.5 wt.-% in order to obtain the desired liquid (e.g. paint) repellency properties. Thus, for some non-fluorinated polymeric binders, the concentration of fluorochemical material may be at least 3, 3.5, 4, or 5 wt.-% of the total amount of fluorochemical material and (e.g. non-fluorinated) polymeric binder.


The fluoropolymers or compositions comprising a fluorochemical material and a non-fluorinated organic polymeric binder can be dissolved, suspended, or dispersed in a variety of organic solvents to form coating compositions suitable for use in coating the compositions onto a substrate or component of a spray application system. Likewise, the siloxane (e.g. PDMS) polymers or compositions comprising a siloxane (e.g. PDMS) material and a non-fluorinated organic polymeric binder can be dissolved, suspended, or dispersed in a variety of organic solvents to form coating compositions suitable for use in coating the compositions onto a substrate or component of a spray application system. The organic coating compositions typically contain at least about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% organic solvent or greater, based on the weight of the coating composition. The coating compositions typically contain at least about 0.01%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15% or greater solids of fluoropolymer or (e.g. non-fluorinated) organic polymeric binder and fluorochemical and/or siloxane (e.g. PDMS) material, based on the total weight of the coating composition. However, the coating composition can be provided as a concentrate with an even higher amount of solids, e.g. 20, 30, 40, or 50 wt.-% solids. Suitable solvents include for example alcohols, esters, glycol ethers, amides, ketones, hydrocarbons, chlorohydrocarbons, hydrofluorocarbons, hydrofluoroethers, chlorocarbons, and mixtures thereof. In some embodiments, the coating composition is an aqueous suspension, emulsion, or solution comprising at least 50 wt.-% or greater water and an organic cosolvent.


The coating compositions may contain one or more additives provided the inclusion of such does not detract from the liquid (e.g. paint) repellent properties.


The coating compositions can be applied to a substrate or component by standard methods such as, for example, spraying, padding, dipping, roll coating, brushing, or exhaustion (optionally followed by the drying of the treated substrate to remove any remaining water or organic solvent). The substrate can be in the form of sheet articles that can be subsequently thermally formed into a liquid (e.g. paint) reservoir, liner or lid. When coating flat substrates of appropriate size, knife-coating or bar-coating may be used to ensure uniform coatings of the substrate.


The moisture content of the organic coating composition is preferably less than 1000, 500, 250, 100, 50 ppm. In some embodiments, the coating composition is applied to the substrate at a low relative humidity, e.g. of less than 40%, 30% or 20% at 25° C.


The coating compositions can be applied at an amount sufficient to achieve the desired repellency properties. Coatings as thin as 250, 300, 350, 400, 450, or 500 nm ranging up to 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 microns can provide the desired repellency. However, thicker coatings (e.g., up to about 10, 15, 20 microns or more) can also be used. Thicker coatings can be obtained by applying to the substrate a single thicker layer of a coating composition that contains a relatively high concentration of solids. Thicker coatings can also be obtained by applying successive layers to the substrate.


In another embodiment, the fluorochemical and/or siloxane (e.g. PDMS) material can be combined with a thermally processible (e.g. thermoplastic) polymer and then melt processed into a surface layer, substrate, or component such as a liquid (e.g. paint) repellent reservoir, liner or lid. In this embodiment, the fluorochemical material typically migrates to the surface forming a surface layer with a high concentration of fluorochemical material relative to the total amount of fluorochemical material and thermally processible polymer. Further, the siloxane (e.g. PDMS) material typically migrates to the surface forming a surface layer with a high concentration of siloxane material relative to the total amount of siloxane material and thermally processible polymer.


In typical embodiments, the amount of fluorochemical material and/or siloxane (e.g. PDMS) material is at least about 0.05, 0.1, 0.25, 0.5, 1.5, 2.0 or 2.5 wt.-% and in some embodiments, at least about 3.0, 3.5, 4.0, 4.5 or 5 wt.-%. The amount of fluorochemical or siloxane material is typically no greater than 25, 20, 15, or 10 wt.-% of the sum of the fluorochemical material and/or siloxane (e.g. PDMS) material (melt additive) and thermally processible polymer.


To form a polymer blend by melt processing, the fluorochemical material or siloxane material can be, for example, mixed with pelletized, granular, powdered or other forms of the thermally processible polymer and then melt processed by known methods such as, for example, molding or melt extrusion. The fluorochemical material can be mixed directly with the polymer or it can be mixed with the polymer in the form of a “master batch” (concentrate) of the fluorochemical material in the polymer. Likewise, the siloxane (e.g. PDMS) material can be mixed directly with the thermally processible polymer or it can be mixed with the polymer in the form of a “master batch” (concentrate) of the siloxane (e.g. PDMS) material in the polymer. If desired, an organic solution of the fluorochemical material and/or siloxane (e.g. PDMS) material can be mixed with powdered or pelletized polymer, followed by drying (to remove solvent) and then melt processing. Alternatively, the fluorochemical and/or siloxane (e.g. PDMS) composition can be added to the polymer melt to form a mixture or injected into a molten polymer stream to form a blend immediately prior to extrusion or molding into articles.


In some embodiments, the melt processible (e.g. thermoplastic) polymer is a polyolefin, polyester, polyamide, polyurethane, or polyacrylate. The thermoplastic polymer preferably is a polyolefin, mixture or blend of one or more polyolefins, a polyolefin copolymer, mixture of polyolefin copolymers, or a mixture of at least one polyolefin and at least one polyolefin copolymer.


The thermoplastic polymer is more preferably a polyolefin polymer or copolymer wherein the polymer unit or copolymer unit is ethylene, propylene or butylene or mixtures thereof. Thus the polyolefin is preferably polypropylene, polyethylene, polybutylene or a blend or copolymer thereof. Oher polyolefins include poly-α-olefins, and copolymers thereof, including low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), ultra-high density polyethylene (UHDPE), and polyethylene-polypropylene copolymers, as well as polyolefin copolymers having non-olefin content (that is, content derived from monomers that are not olefins). The non-olefin content of polyolefin polymers employed in some embodiments is not particularly limited, but includes, for example, 1-5 wt % of acrylic acid, or methacrylic acid functionality, including sodium, zinc, or calcium salts of the acid functionality; 1-5 wt % of an anhydride functionality, such as maleic anhydride, or the corresponding ring-opened carboxylate functionality; and the like. In some embodiments, blends of polyolefins containing non-polyolefin content are blended at various ratios with polyolefins in order to provide a targeted level of non-olefin content.


In one embodiment, the thermoplastic polymer is polyethylene having a melting point ranging from 90-140° C. such as available from Chevron Phillips under the trade designation “MarFlex 1122 Polyethylene”.


The fluorochemical and/or siloxane melt additives are generally a solid at room temperature (e.g. 25° C.) and at the use temperature of the spray application system component, which commonly ranges from 40° F. to 120° F. The fluorochemical material and/or siloxane (e.g. PDMS) material and thermally processible polymer are selected such that the fluorochemical material and/or siloxane material is typically molten at the melt processing temperature of the mixture. In some embodiments, the fluorochemical material and/or siloxane material has a melt temperature no greater than 200, 190, 180, 170, or 160° C.


Extrusion can be used to form polymeric films. In film applications, a film forming polymer is simultaneously melted and mixed as it is conveyed through the extruder by a rotating screw or screws and then is forced out through a slot or flat die, for example, where the film is quenched by a variety of techniques known to those skilled in the art. The films optionally are oriented prior to quenching by drawing or stretching the film at elevated temperatures.


Molded articles are produced by pressing or by injecting molten polymer from a melt extruder as described above into a mold where the polymer solidifies. Typical melt forming techniques include injection molding, blow molding, compression molding and extrusion, and are well known to those skilled in the art. The molded article is then ejected from the mold and optionally heat-treated to effect migration of the polymer additives to the surface of the article.


After melt processing, an annealing step can be carried out to enhance the development of repellent characteristics. The annealing step typically is conducted below or above the melt temperature of the polymer for a sufficient period of time. The annealing step can be optional.


The TFE copolymers can also be thermally processed into a component of a spray application system such as a liquid (e.g. paint) repellent reservoir, liner or lid at temperatures above the melt point of the fluoropolymer.


The repellent surface layer such as the porous layer impregnated with lubricant as well as the other (e.g. solid) liquid (e.g. paint) repellent materials described herein can be provided on a wide variety of organic or inorganic components.


In some embodiments, different components are coated with different solid materials. In other embodiments, the surface of one portion of a component can comprise one type of a solid liquid (e.g. paint) repellent material and another surface portion can comprise a different type of solid material. Likewise, the surface of one portion of a component can comprise one type of a solid liquid (e.g. paint) repellent material and another surface portion can comprise a lubricant impregnated into pores of a porous layer.


In typical embodiments, the entire surface of the component (e.g. reservoir, liner or lid) of the spray application system that normally comes in contact with a liquid (e.g. paint) comprises a liquid (e.g. paint) repellent surface as described herein. In other embodiments, only a portion of the surface of the component (e.g. reservoir, liner or lid) of the spray application system that normally comes in contact with a liquid (e.g. paint) comprises a liquid (e.g. paint) repellent surface as described herein. This latter embodiment is still beneficial relative to components lacking a liquid (e.g. paint) repellent surface.


Suitable polymeric materials for components include, but are not limited to, polyesters (e.g., polyethylene terephthalate or polybutylene terephthalate), polycarbonates, acrylonitrile butadiene styrene (ABS) copolymers, poly(meth)acrylates (e.g., polymethylmethacrylate, or copolymers of various (meth)acrylates), polystyrenes, polysulfones, polyether sulfones, epoxy polymers (e.g., homopolymers or epoxy addition polymers with polydiamines or polydithiols), polyolefins (e.g., polyethylene and copolymers thereof or polypropylene and copolymers thereof), polyvinyl chlorides, polyurethanes, fluorinated polymers, cellulosic materials, derivatives thereof, and the like.


In some embodiments, where increased transmissivity is desired, the polymeric component can be transparent. The term “transparent” means transmitting at least 85 percent, at least 90 percent, or at least 95 percent of incident light in the visible spectrum (wavelengths in the range of 400 to 700 nanometers). Transparent components may be colored or colorless.


Suitable inorganic substrates include metals and siliceous materials such as glass. Suitable metals include, for example, pure metals, metal alloys, metal oxides, and other metal compounds. Examples of metals include, but are not limited to, chromium, iron, aluminum, silver, gold, copper, nickel, zinc, cobalt, tin, steel (e.g., stainless steel or carbon steel), brass, oxides thereof, alloys thereof, and mixtures thereof.


The combination of the porous layer and impregnated lubricant, as well as the other (e.g. solid) materials described herein can render the coated surface hydrophobic. The terms “hydrophobic” and “hydrophobicity” refer to a surface on which drops of water or aqueous liquid exhibit an advancing and/or receding water contact angle of at least 50 degrees, at least 60 degrees, at least 70 degrees, at least 80 degrees, at least 90 degrees, at least 95 degrees, or at least 100 degrees.


In some embodiments, the advancing and/or receding contact angle of the repellent surface of the substrate or component with water may increase, relative to the substrate or component lacking a liquid (e.g. paint) repellent surface, by at least 10, 15, 20, 25, 30, 35, 40 degrees. In some embodiments, the receding contact angle with water may increase by at least 45, 50, 55, 60, or 65 degrees.


In some embodiments, surface treatment and impregnated lubricant, as well as the other (e.g. solid) materials described herein, provide a surface that exhibits an advancing and/or receding contact angle with water of at least 105, 110, or 115 degrees. The advancing and/or receding contact angle with water is typically no greater than 135, 134, 133, 132, 131, or 130 degrees and in some embodiments, no greater than 129, 128, 127, 126, 125, 124, 123, 122, 121, or 120 degrees. The difference between the advancing and/or receding contact angle with water of the liquid repellent surface layer can be at least 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 degrees. Favorably the difference between the advancing and receding contact angle with water of the surface treated hydrophobic lubricant impregnated porous surface, as well as the other (e.g. solid) materials described herein is no greater than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 degree. As the difference between the advancing and/or receding contact angle with water increases, the tilt angle needed to slide or roll off a (e.g. water or paint) droplet from a planar surface increases. One of ordinary skill appreciates that deionized water is utilized when determining contact angles with water.


The contact angle of the liquid (e.g. paint) repellent surface of the substrate or component can also be evaluated with other liquids instead of water. For example, since paints often comprise 2-n-butoxyethanol, the contact angle of the liquid (e.g. paint) repellent surface with a solution of 10% by weight 2-n-butoxyethanol and 90% by weight deionized water can also be of importance. In some embodiments, the advancing contact angle with such 2-n-butoxyethanol solution is at least 45, 56, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 degrees and in some embodiments at least 75 or 80 degrees. In some embodiments, the receding contact angle with such 2-n-butoxyethanol solution is at least 40, 45, 50, 55, 60, 65, or 70 degrees. In some embodiments, the advancing and/or receding contact angle of the liquid (e.g. paint) repellent surface of the substrate or component with a solution of 10% by weight 2-n-butoxyethanol and 90% by weight deionized water is no greater than 100, 95, 90, 85, 80, or 75 degrees.


In another embodiment, the contact angle of the liquid (e.g. paint) repellent surface of the substrate or component with hexadecane is at least 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, or 75 degrees. The advancing contact angle with hexadecane is typically at least 45, 50, 55, 60, 65, 70, 75, 80, or 84 degrees. In typical embodiments, the receding or advancing contact angle with hexadecane is no greater than 85 or 80 degrees.


The combination of the porous layer and impregnated lubricant as well as the other (e.g. solid) materials described herein can be used to impart or enhance (e.g. aqueous) liquid repellency of a variety of substrates.


The term “aqueous” means a liquid medium that contains at least 50, 55, 60, 65, or 70 wt-% of water. The liquid medium may contain a higher amount of water such as at least 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100 wt-% water. The liquid medium may comprise a mixture of water and one or more water-soluble organic cosolvent(s), in amounts such that the aqueous liquid medium forms a single phase. Examples of water-soluble organic cosolvents include for example methanol, ethanol, isopropanol, 2-methoxyethanol, (2-methoxymethylethoxy)propanol, 3-methoxypropanol, 1-methoxy-2-propanol, 2-butoxyethanol, ethylene glycol, ethylene glycol mono-2-ethylhexylether, tetrahydrofuran, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, tetraethylene glycol di(2-ethylhexoate), 2-ethylhexylbenzoate, and ketone or ester solvents. The amount of organic cosolvent does not exceed 50 wt-% of the total liquids of the coating composition. In some embodiments, the amount of organic cosolvent does not exceed 45, 40, 35, 30, 25, 20, 15, 10 or 5 wt-% organic cosolvent. Thus, the term aqueous includes (e.g. distilled) water as well as water-based solutions and dispersions such as paint.


In some embodiments, the aqueous (e.g. paint) “ready to spray” dispersions, e.g. paint, described herein may comprise at least 5, 10, or 15 wt-% solids with the remainder being aqueous liquid medium. In some embodiments, the aqueous (e.g. paint) “ready to spray” dispersions, e.g. paint, described herein may comprise at least 20, 25, 30, or 35 wt-% solids with the remainder being aqueous liquid medium. Further, in some embodiments, the aqueous (e.g. paint) dispersions may be a concentrate comprising at least 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85 wt-% solids with the remainder being aqueous liquid medium. Such concentrates are generally diluted to prepare an aqueous (e.g. paint) “ready to spray” dispersion.


In some embodiments, the porous layer and impregnated lubricant, as well as the other (e.g. solid) materials described herein can impart a degree of aqueous liquid repellency such that no greater than 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or 1% of the repellent surface area comprises an aqueous test liquid, such as paint, after use of the spray application system or after holding the repellent surface vertically for a specified duration of time (e.g. 30 seconds-5 minutes) and visually determining (in the absence of a microscope) the aqueous liquid (e.g. paint).


In some embodiments, the porous layer impregnated lubricant, as well as the other (e.g. solid) materials described herein can impart a degree of liquid repellency such that the mass of retained aqueous liquid (e.g. paint) is no greater than 0.01 g/cm2, 0.005 g/cm2, 0.001 g/cm2, or 0.0005 g/cm2.


The paint repellency can be evaluated according to any one or combination of test methods described herein utilizing a test paint. Various aqueous-based automotive paints were found to be repelled by the surfaces described herein such as PPG ENVIROBASE HIGH PERFORMANCE T409, SIKKENS AUTOWAVE, SPIES HECKER PERMAHYD HI-TEC BASE COAT 480, and GLASURIT ADJUSTING BASE 93-E3. Unless specified otherwise, the test paint for determining paint repellency according to the test methods described herein was PPG Envirobase automobile paint mixed to specification containing 90 weight % ENVIRONBASE HIGH PERFORMANCE T409 DEEP BLACK and 10 weight % ENVIRONBASE HIGH PERFORMANCE T494 PAINT THINNER, available from PPG Industries, Pittsburgh Pa. or available from 3M, St. Paul, Minn.


The liquid (e.g. paint) repellent surface is preferably durable such that the liquid (e.g. paint) repellency is retained for a sufficient amount of time (e.g. the normal duration of time a (e.g. disposable) liquid (e.g. paint) reservoir or liner is utilized). In some embodiments, the liquid (e.g. paint) repellency is retained after surface abrasion testing (according to the test method described in the examples). In some embodiments, the liquid (e.g. paint) repellency may diminish to some extent, yet remains highly repellent after surface abrasion testing. Thus, after surface abrasion testing the contact angles or paint repellency meets the criteria previously described.


The spray application system described herein can be utilized to apply an aqueous liquid mixture, such as paint.


As used herein, the term “paint” refers to a composition having an aqueous liquid medium, as previously described, and a polymeric (e.g. latex) binder dispersed in the aqueous liquid medium. Common polymeric binders utilized in paint include acrylic polymers, alkyd polymers, urethane polymers, epoxy polymers, and combinations thereof. In some embodiments, the (e.g. base coat) paint may comprise a combination of acrylic and alkyd polymers. In other embodiments, the (e.g. clear coat) paint may comprise hexamethylene isocyanate oligomers and/or cyclohexyl isocyanate oligomers at concentrations ranging from about 20 to 40 wt-% for “ready to spray” compositions.


In the absence of opacifying pigment(s), such as titanium dioxide, silica, carbon black, etc. or other colorant (i.e. pigment or dye other than black or white) the paint may be characterized as a “clear coat”. Paints that further comprise opacifying pigment(s), yet not colored pigments may be characterized as primers. Further, paints that further comprise both opacifying pigment(s) and colorant(s) may be characterized as base coats.


Whereas clear coats are generally free of opacifying pigments and colorants, primers and base coats typically comprise at least 10, 15, 20, 25 or 30 wt-% or greater of opacifying pigment(s) such as titanium dioxide. Base coats further comprise colorants at various concentrations. In some embodiments, the paint comprises 5 to 25 wt-% of colorants.


The liquid medium may comprise relatively small concentrations of volatile organic solvents. For example, the volatile organic content of water-based flat architectural paint, water-based automobile primer, and water-based clear coat is typically no greater than 250 grams/liter and in some embodiments no greater than 200 grams/liter, 150 grams/liter, 100 grams/liter, or 50 grams/liter. The VOC content may be higher, ranging from at least 275, 300, or 325 grams/liter up to 500 grams/liter, particularly for automobile base coat. In some embodiments, the VOC content is no greater than 450 or 425 grams/liter. Paint referred to as no-VOC typically may contain 5 grams/liter or less of volatile organic solvents. As used herein, VOC is any organic compound having a boiling point less than or equal to 250° C. measured at a standard atmospheric pressure of 101.3 kPa.


As the concentration of colored pigment(s) increases, the concentration of (e.g. volatile) organic solvents present for the purpose of dissolving and dispersing such colored pigment(s) can also increase. Further, (e.g. volatile) organic solvents can also be utilized to lower the viscosity of the paint. Viscosity will vary with the thinner level chosen. However, in some embodiments, the viscosity of the “ready to spray” paint at 20° C. ranges from 50 to 100 cps.


The paint may comprise water-soluble organic solvents such as alcohols (e.g. alkylene glycol alkyl ether). For example, the paint may comprise 2-butoxyethanol (ethylene glycol monobutyl ether), having a boiling point of 171° C. (340° F.); butoxypropan-2-ol (propylene glycol n-butyl ether), having a boiling point of 171° C. (340° F.); 2-(2-butoxyethoxy)ethanol (diethylene glycol monobutyl ether), having a boiling point of 230° C. (446° F.); and combinations thereof. The paint may comprise one or more of such alcohols at a total concentration of at least 5 wt-% ranging up to 10, 15, 20, or 25 wt-%.


The paint may further comprise other solvents that may be characterized as “exempt” solvents, i.e. not causing the formation of ground level ozone (smog), according to environmental chemists. Representative examples include acetone, ethyl acetate, tertiary butyl acetate (TBAc), and isopropanol.


When the spray application system described herein is utilized to apply an aqueous liquid mixture, such as paint, the method may comprise applying more than one coat of the same or different paint compositions. For example, in one embodiment, the method may comprise applying one or more coats of a primer or sealer. In another embodiment, the method may comprise applying one or more coats of a (e.g. colored) base coat. In another embodiment, the method may comprise applying one or more coats of a clear coat. The method may comprise applying a combination of primer, sealer, base coat, and/or clear coat. The method is particularly advantageous for use with (e.g. automobile) base coats that are substantially more expensive than primers, sealers and clear coats.


In some embodiments, 3-4 coats may be applied (e.g. to an automobile panel) wherein each coat, or in other words “film build per wet coat” ranges in thickness from 0.80 to 1.0 mils. Upon drying this can produce a dried film build ranging from about 0.10 to 0.20 mils.


In some embodiments, each coat of the method utilizes an aqueous paint. In other embodiments, at least one coat may be an organic solvent based paint, i.e. a paint comprising greater than 50 wt-% organic solvent that may not form a single phase with water. Organic solvent-based paints typically do not contain any water. For example, solvent-based clear coats may contain organic polar and non-polar solvents such as xylene, acetone, naphtha, alkyl benzene, toluene, heptan-2-one, and the like at a total organic solvent concentration ranging from at least 50 wt-%, or 60 wt-% up to about 75 wt-% or greater.


In one embodied method, a solvent based clear coat is applied to a dried water based base coat.


When the paint comprises organic solvent, the lubricant (or the combination of lubricant and hydrophobic layer) may be selected such that the lubricant (or the combination of lubricant and hydrophobic layer) has no solubility or only trace solubility with the organic solvent(s) of the paint, e.g., a solubility of 0.01 grams/liter or 0.001 grams/liter or less. Further, when the paint comprises an organic solvent, the non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material, or fluoropolymer may be selected to exhibit no solubility or only trace solubility with the organic solvent(s) of the paint, e.g., a solubility of 0.01 grams/liter or 0.001 grams/liter or less.


Alternatively or in combination with having trace solubility, the lubricant (or the combination of lubricant and hydrophobic layer) as well as the non-fluorinated polymeric binder, fluorochemical material, and/or fluoropolymer may be selected such that it is compatible with the paint and paint application methods. Likewise the siloxane (e.g. PDMS) material may be selected such that it is compatible with the paint and paint application methods. The lubricant (or the combination of lubricant and hydrophobic layer), non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material and/or fluoropolymer may be present in the paint at higher concentrations, i.e. greater than 0.01 grams/liter, or greater than 0.1 grams/liter, or greater than 0.25 grams/liter, or greater than 0.5 grams/liter; yet still be compatible with the paint and paint application methods. In some embodiments, the lubricant (or the combination of lubricant and hydrophobic layer), non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material and/or fluoropolymer may function as a paint additive and be present in the paint at concentrations ranging from about 0.5 grams/liter to 1, 1.5, 2, 2.5, or 3 wt-% of the paint.


There are various approaches that can be taken to determine the compatibility of the lubricant (or the combination of lubricant and hydrophobic layer), non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material, and/or fluoropolymer with the paint.


In one approach the lubricant (or the combination of lubricant and hydrophobic layer) may be sufficiently (e.g. chemically) compatible with the paint such that the lubricant (or the combination of lubricant and hydrophobic layer) does not migrate to a surface of the paint. This can be evaluated by comparing the concentration of lubricant (or the combination of lubricant and hydrophobic layer) of the dried paint at one major surface relative to an underlying or opposing major surface layer of the dried paint. When opposing major surface layers of the dried paint comprise substantially the same concentration (difference of less than 10, 5 or 1% relative to the major surface having the higher concentration) of lubricant (or the combination of lubricant and hydrophobic layer), the lubricant (or the combination of lubricant and hydrophobic layer) can be characterized as chemically compatible. Likewise, when opposing major surface layers of the dried paint comprise substantially the same concentration (difference of less than 10, 5 or 1% relative to the major surface having the higher concentration) of non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material, and/or fluoropolymer, such materials can be characterized as chemically compatible with the paint.


In another approach, the lubricant (or the combination of lubricant and hydrophobic layer) may be sufficiently compatible with the paint such that the lubricant (or the combination of lubricant and hydrophobic layer) does not affect the inter-layer adhesion of a painted substrate. This can be evaluated according to Standard Test Method for Measuring Adhesion by Tape Test (ASTM D3359-09). When the cross-hatch adhesion is substantially the same relative to a control of the same paint in the absence of the lubricant (or the combination of lubricant and hydrophobic layer), the presence of the lubricant (or the combination of lubricant and hydrophobic layer) can be characterized as not affecting the inter-layer adhesion. Typically, 90, 95, or 100% of the paint is retained after cross-hatch adhesion testing according to ASTM D3359-09. Likewise, the non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. (PDMS) material, and/or fluoropolymer may be sufficiently compatible with the paint such that the presence thereof does not affect the inter-layer adhesion of a painted substrate.


In yet another approach, the lubricant (or the combination of lubricant and hydrophobic layer), non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material, and/or fluoropolymer may be sufficiently compatible with the paint such that the lubricant (or the combination of lubricant and hydrophobic layer), non-fluorinated polymeric binder, fluorochemical material, siloxane (e.g. PDMS) material and/or fluoropolymer does not affect the method of applying the paint. For example, additional coats of the same paint can be uniformly applied at a sufficient film build as previously described. In yet another example, additional coats of a different paint (e.g. a clear coat applied to a dried base coat) can be uniformly applied at a sufficient film build as previously described. Lack of uniformity across the painted panel or substrate can typically be visually detected by observing the occurrence of “fisheyes” or other incompatibility-related coating defects while applying the paint and/or by uneven gloss and/or color that can be measured after the applied paint has dried.


The liquid repellent surface of the component (e.g. liquid reservoir, liner, or lid) can be provided by one of the embodied materials previously described or any suitable combination of such materials. For example, the component (e.g. liner) may comprise a thermally processible polymer and a fluorochemical melt additive and further comprise a coating of a fluorochemical material and non-fluorinated organic binder. Further, one of the components can have a different embodied material than another component. For example, the lid may comprise Teflon™ AF; whereas the liner comprises a thermally processible polymer and a siloxane or fluorochemical melt additive.


Unless specified otherwise, the following definitions are applicable to the presently described invention.


The recitation of any numerical range by endpoints is meant to include the endpoints of the range, all numbers within the range, and any narrower range within the stated range.


The term “a”, “an”, and “the” are used interchangeably with “at least one” to mean one or more of the elements being described.


The term “and/or” means either or both. For example, the expression “A and/or B” means A, B, or a combination of A and B.


The term “alkyl” refers to a monovalent group that is a radical of an alkane and includes groups that are linear, branched, cyclic, bicyclic, or a combination thereof. The alkyl group typically has 1 to 30 carbon atoms. In some embodiments, the alkyl group contains 1 to 20 carbon atoms, 1 to 10 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms.


The term “alkylene” refers to a divalent group that is a radical of an alkane and includes groups that are linear, branched, cyclic, bicyclic, or a combination thereof. The alkylene group typically has 1 to 30 carbon atoms. In some embodiments, the alkylene group has 1 to 20 carbon atoms, 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.


The term “alkoxy” refers to refers to a monovalent group having an oxy group bonded directly to an alkyl group.


The term “aryl” refers to a monovalent group that is aromatic and carbocyclic. The aryl has at least one aromatic ring and can have one or more additional carbocyclic rings that are fused to the aromatic ring. Any additional rings can be unsaturated, partially saturated, or saturated. Aryl groups often have 6 to 20 carbon atoms, 6 to 18 carbon atoms, 6 to 16 carbon atoms, 6 to 12 carbon atoms, or 6 to 10 carbon atoms.


The term “arylene” refers to a divalent group that is aromatic and carbocyclic. The arylene has at least one aromatic ring and can have one or more additional carbocyclic rings that are fused to the aromatic ring. Any additional rings can be unsaturated, partially saturated, or saturated. Arylene groups often have 6 to 20 carbon atoms, 6 to 18 carbon atoms, 6 to 16 carbon atoms, 6 to 12 carbon atoms, or 6 to 10 carbon atoms.


The term “hydrolyzable group” refers to a group that can react with water having a pH of 1 to 10 under conditions of atmospheric pressure. The hydrolyzable group is often converted to a hydroxyl group when it reacts. The hydroxyl group often undergoes further reactions. Typical hydrolyzable groups include, but are not limited to, alkoxy, aryloxy, aralkyloxy, acyloxy, or halo. As used herein, the term is often used in reference to one or more groups bonded to a silicon atom in a silyl group.


The term “aryloxy” refers to a monovalent group having an oxy group bonded directly to an aryl group.


The term “aralkyloxy” refers to a monovalent group having an oxy group bonded directly to an aralkyl group. Equivalently, it can be considered to be an alkoxy group substituted with an aryl group.


The term “acyloxy” refers to a monovalent group of formula —O(CO)Rb where Rb is alkyl, aryl, or aralkyl. Suitable alkyl Rb groups often have 1 to 20 carbon atoms, 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Suitable aryl Rb groups often have 6 to 12 carbon atoms such as, for example, phenyl. Suitable aralkyl Rb groups often have an alkyl group with 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms that is substituted with an aryl having 6 to 12 carbon atoms such as, for example, phenyl.


The term “halo” refers to a halogen atom such as fluoro, bromo, iodo, or chloro. When part of a reactive silyl, the halo group is often chloro.


The term “silyl” refers to a monovalent group of formula —Si(W)3 where Rc is hydroxyl, a hydrolyzable group, or a non-hydrolyzable group. In many embodiments, the silyl group is a “reactive silyl” group, which means that the silyl group contains at least one Rc group that is a hydroxyl group or hydrolyzable group. Some reactive silyl groups are of formula —Si(R2)3-x(R3)x where each group R2 is independently hydroxyl or a hydrolyzable group and each group R3 is independently a non-hydrolyzable group. The variable x is an integer equal to 0, 1, or 2.


The term “non-hydrolyzable group” refers to a group that cannot react with water having a pH of 1 to 10 under conditions of atmospheric pressure. Typical non-hydrolyzable groups include, but are not limited to alkyl, aryl, and aralkyl. As used herein, the term is often used in reference to one or more groups bonded to a silicon atom in a silyl group.


The term “fluorinated” refers to a group or compound that contains at least one fluorine atom attached to a carbon atom. Perfluorinated groups, in which there are no carbon-hydrogen bonds, are a subset of fluorinated groups.


The term “perfluorinated group” refers to a group having all C—H bonds replaced with C—F bonds. Examples include monovalent or divalent radicals of a perfluoropolyether, perfluoroether, or perfluoroalkane.


The term “perfluoroether” refers to ether in which all of the C—H bonds are replaced with C—F bonds. It refers to a group or compound having two perfluorinated groups (e.g., a perfluoroalkylene and/or perfluoroalkyl) linked with an oxygen atom. That is, there is a single catenated oxygen atom. The perfluorinated groups can be saturated or unsaturated and can be linear, branched, cyclic, or a combination thereof.


The term “perfluoropolyether” refers to a polyether in which all of the C—H bonds are replaced with C—F bonds. It refers to a group or compound having three or more perfluorinated groups (e.g., a perfluoroalkylene and/or perfluoroalkyl) linked with oxygen atoms. That is, there are two or more catenated oxygen atoms. The perfluorinated groups can be saturated or unsaturated and can be linear, branched, cyclic, or a combination thereof.


The term “perfluoroalkyl” refers to an alkyl with all the hydrogen atoms replaced with fluorine atoms. Stated differently, all of the C—H bonds are replaced with C—F bonds.


The term “perfluoroalkane” refers to an alkane with all the C—H bonds replaced with C—F bonds.


The term “agglomerate” refers to a weak association between primary particles which may be held together by charge or polarity and can be broken down into smaller entities.


The term “primary particle size” refers to the mean diameter of a single (non-aggregate, non-agglomerate) particle.


The term “aggregate” with respect to particles refers to strongly bonded or fused particles where the resulting external surface area may be significantly smaller than the sum of calculated surface areas of the individual components. The forces holding an aggregate together are strong forces, for example covalent bonds, or those resulting from sintering or complex physical entanglement. Thus aggregates cannot be broken down into smaller entities such as discrete primary particles.


Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.


The invention includes but is not limited to the following embodiments:


Embodiment 1 is a component of a spray application system, the component comprising a liquid repellent surface such that the difference between the advancing contact angle and the receding contact angle with water is less than 10.


Embodiment 2 is the component of embodiment 1 wherein the liquid repellent surface comprises a surface layer of a fluorochemical material.


Embodiment 3 is the component of previous embodiments wherein the liquid repellent surface layer further comprises a non-fluorinated organic polymeric binder.


Embodiment 4 is the component of embodiment 3 wherein the fluorochemical material is a compound having the formula:





(Rf-L-P)nA


Rf is a fluorinated group;


L is independently an organic divalent linking group;


P is a catenary, divalent heteroatom-containing carbonyl moiety, such as —C(O)O—;


A is a hydrocarbon moiety;


and n typically ranges from 1 to 3.


Embodiment 5 is the component of embodiment 4 wherein L is a hydrocarbon moiety comprising 4 to 40 carbon atoms.


Embodiment 6 is the component of previous embodiments wherein L is —SO2N(CH3)(CH2)n— and n ranges from 1-4.


Embodiment 7 is the component of previous embodiments wherein Rf is CF3[CF2]3— for at least 50 wt.-% of the fluorochemical material.


Embodiment 8 is the component of previous embodiments wherein the hydrocarbon moiety is a saturated alkylene moiety.


Embodiment 9 is the component of previous embodiments wherein the fluorochemical material has a fluorine content of at least 25 wt-%.


Embodiment 10 is the component of previous embodiments wherein n averages at least 2.


Embodiment 11 is the component of previous embodiments wherein the hydrocarbon moiety averages no greater than 25 carbon atoms.


Embodiment 12 is the component of previous embodiments wherein the non-fluorinated organic polymeric binder is selected from polystyrene, acrylic, polyester, polyurethane, polyolefin, and polyvinyl chloride.


Embodiment 13 is the component of previous embodiments wherein the fluorochemical material does not form a covalent bond with the non-fluorinated polymeric binder.


Embodiment 14 is the component of previous embodiments wherein the liquid repellent surface comprises a fluoropolymer.


Embodiment 15 is the component of embodiment 14 wherein the fluoropolymer is a copolymer of tetrafluoroethylene (TFE).


Embodiment 16 is the component of embodiment 15 wherein the copolymer has a density less than 2.18 g/cm3.


Embodiment 17 is the component of previous embodiments wherein the fluoropolymer comprises polymerized units of heterocyclic fluorocarbon groups.


Embodiment 18 is the component of embodiment 17 wherein the heterocyclic fluorocarbon groups comprise oxygen atoms.


Embodiment 19 is the component of previous embodiments wherein the fluoropolymer is a copolymer of tetrafluoroethylene and perfluoroalkyl dioxole.


Embodiment 20 is the component of previous embodiments wherein the fluoropolymer is a copolymer of tetrafluoroethylene and hexafluroropropylene.


Embodiment 21 is the component of previous embodiments wherein the fluoropolymer further comprises less than 19 mole % of polymerized units of vinylidene fluoride.


Embodiment 22 is the component of embodiments 1-2 wherein the component comprises a thermally processible polymer and a fluorochemical material melt additive.


Embodiment 23 is the component of embodiments 22 wherein the fluorochemical material melt additive is according to any one or combination of embodiments 4-11.


Embodiment 24 is a component of a spray application system, the component comprising a liquid repellent surface layer, wherein the liquid repellent surface layer comprises a porous layer and a lubricant impregnated into pores of the porous layer.


Embodiment 25 is the component of previous embodiments wherein the component is a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof.


Embodiment 26 is the component of previous embodiments wherein the component comprises a thermoplastic polymeric material.


Embodiment 27 is the component of previous embodiments wherein the component is a removable liquid reservoir liner.


Embodiment 28 is the component of previous embodiments wherein the component is a collapsible liquid reservoir or liner.


Embodiment 29 is the component of previous embodiments wherein the spray application system further comprises a gravity-fed spray gun.


Embodiment 30 is the component of previous embodiments wherein the liquid repellent surface layer repels water-based paint having a volatile organic solvent of at least 5, 10, 15, 20, or 25 g/liter.


Embodiment 31 is the component of embodiment 30 wherein the volatile organic solvent is water-soluble.


Embodiment 32 is the component of previous embodiments wherein the organic solvent comprises one or more alcohol.


Embodiment 33 is the component of previous embodiments wherein the organic solvent comprises an alkylene glycol alkyl ether.


Embodiment 34 is the component of previous embodiments wherein the organic solvent comprises 2-butoxyethanol, butoxypropan-2-ol, 2-(2-butoxyethoxy)ethanol, and mixtures thereof. Embodiment 35 is a component of a spray application system, the component comprising a liquid repellent surface such that the mass of retained water-based paint is no greater than 0.01 g/cm2 after use of the spray application system or according to the Test Method 3 or 5 for paint repellency evaluation.


Embodiment 36 is a component of a spray application system, the component comprising a liquid repellent surface such that the receding contact angle with water ranges from 90 degrees to 135 degrees.


Embodiment 37 is a component of a spray application system, the component comprising a liquid repellent surface such that the receding contact angle with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water is at least 40 or 45 degrees.


Embodiment 38 is a component of a spray application system, the component comprising a liquid repellent surface, such that a drop of paint slides off the surface when the liquid repellent surface orientated vertically.


Embodiment 39 is the component of embodiments 35-38 wherein the component is further characterized by any one or combination of embodiments 1-34.


Embodiment 40 is a spray application system comprising a spray gun, a liquid reservoir that attaches to the spray gun, optionally a liner for the liquid reservoir, and a lid for the liquid reservoir and/or liner; wherein at least the liquid reservoir and/or liner comprises a liquid repellent surface layer comprising a porous layer and a lubricant impregnated into pores of the porous layer or a liquid repellent surface according to embodiments 1-24.


Embodiment 41 is the component or spray application system of previous embodiments wherein the liquid repellent surface comprises a surface layer comprising a silane or siloxane material.


Embodiment 42 is the component or spray application system of previous embodiments wherein the liquid repellent surface is not a lubricant impregnated surface.


Embodiment 43 is the component or spray application system of previous embodiments wherein the liquid repellent surface comprises a solid liquid repellent material.


Embodiment 44 is the component or spray application system of previous embodiments wherein the siloxane material comprises a polysiloxane backbone and hydrocarbon side chains averaging at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.


Embodiment 45 is the component or spray application system of previous embodiments wherein at least the liquid repellent surface of the component comprises a thermally processible polymer and a silioxane (e.g. PDMS) material melt additive.


Embodiment 46 is the component or spray application system of previous embodiments wherein the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser.


Embodiment 47 is the component or spray application system of previous embodiments wherein the liquid repellent surface comprises a fluorochemical material having a Mn of at least 1500 g/mole.


Embodiment 48 is the component or spray application system of previous embodiments wherein the fluorochemical material has a Mn of no greater than 50,000 g/mole.


Embodiment 49 is the component or spray application system of previous embodiments wherein the fluorochemical material has a melt temperature no greater than 200° C.


Embodiment 50 is the component or spray application system of previous embodiments wherein the liquid repellent surface comprises a fluorochemical material comprising terminal perfluoroalkyl group, pendent perfluoroalkyl groups, and contiguous alkylene groups averaging at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.


Embodiment 51 is a component of a spray application system, the component comprising a liquid repellent surface comprising a solid liquid-repellent material and a non-fluorinated organic polymer binder such that the receding contact angle with water ranges from 90 degrees to 135 degrees and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser.


Embodiment 52 is the component of embodiment 51 wherein the solid liquid-repellent material comprises a siloxane material.


Embodiment 53 is the component of embodiment 51 wherein the liquid repellent surface comprises a fluorochemical material having a Mn of at least 1500 g/mole.


Embodiment 54 is the component of embodiment 53 wherein the fluorochemical material has a Mn of no greater than 50,000 g/mole.


Embodiment 55 is the component of embodiment 53 wherein the fluorochemical material has a melting temperature no greater than 200° C.


Embodiment 56 is the component of embodiments 51 and 53-55 wherein the liquid repellent surface comprises a fluorochemical material comprising terminal perfluoroalkyl group, pendent perfluoroalkyl groups, and contiguous alkylene groups averaging at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.


Embodiment 57 is a component of a spray application system, the component comprising a liquid repellent surface comprising a solid liquid-repellent siloxane material such that the receding contact angle with water ranges from 90 degrees to 135 degrees.


Embodiment 58 is the component of embodiments 52 or 57 wherein the siloxane material comprises a siloxane backbone and hydrocarbon side chains averaging at least 8, 10, 12, 14, 16, 18, or 20 carbon atoms.


Embodiment 59 is a component of a spray application system, the component comprising a liquid repellent surface comprising a solid liquid-repellent fluorochemical material such that the receding contact angle with water ranges from 90 degrees to 135 degrees wherein the solid liquid-repellent fluorochemical material has a Mn of at least 1500 g/mole and a Mn of no greater than 50,000 g/mole or a melting temperature no greater than 200° C.


Embodiment 60 is the component of embodiments 51-59 wherein the non-fluorinated organic polymeric binder is selected from polystyrene, acrylic, polyester, polyurethane, polyolefin, and polyvinyl chloride.


Embodiment 61 is the component of embodiments 51, 52, 57, 58, wherein at least the liquid repellent surface of the component comprises a thermally processible polymer and a siloxane material melt additive.


Embodiment 62 is the component of embodiments 51, 53-56, and 59, wherein at least the liquid repellent surface of the component comprises a thermally processible polymer and a fluorochemical material melt additive.


Embodiment 63 is the component of embodiments 51-62 wherein the component is a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof.


Embodiment 64 is the component of embodiments 51-63 wherein the component comprises a thermoplastic polymeric material.


Embodiment 65 is the component of embodiments 63-64 wherein the component is a removable liquid reservoir liner.


Embodiment 66 is the component of embodiments 63-65 wherein the component is a collapsible liquid reservoir or liner.


Embodiment 67 is the component of embodiments 51-66 wherein the spray application system further comprises a gravity-fed spray gun.


Embodiment 68 is the component of embodiments 51-67 wherein the liquid repellent surface layer repels water-based paint having a volatile organic solvent of at least 5, 10, 15, 20, or 25 g/liter.


Embodiment 69 is the component of embodiment 68 wherein the volatile organic solvent is water-soluble.


Embodiment 70 is the component of embodiments 68-69 wherein the volatile organic solvent comprises one or more alcohols.


Embodiment 71 is the component of embodiment s 68-69 wherein the volatile organic solvent comprises an alkylene glycol alkyl ether.


Embodiment 72 is the component of embodiment 71 wherein the volatile organic solvent comprises 2-butoxyethanol, butoxypropan-2-ol, 2-(2-butoxyethoxy)ethanol, and mixtures thereof.


Embodiment 73 is a component of a spray application system, the component comprising a liquid repellent surface such that the mass of retained paint is no greater than 0.01 g/cm2; wherein the liquid repellent surface comprises


a) a solid liquid repellent material and a non-fluorinated organic polymer binder and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser,


b) a solid silicone liquid repellent material, or


c) a solid fluorochemical liquid repellent material having a Mn of at least 1500 g/mole and a Mn of no greater than 50,000 g/mole or a melting temperature no greater than 200° C.


Embodiment 74 is a component of a spray application system, the component comprising a liquid repellent surface such that the difference between the advancing contact angle and the receding contact angle of the liquid repellent surface with water is less than 15 or 10;


wherein the liquid repellent surface comprises


a) a solid liquid repellent material and a non-fluorinated organic polymer binder and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser,


b) a solid silicone liquid repellent material, or


c) a solid fluorochemical liquid repellent material having a Mn of at least 1500 g/mole and a Mn of no greater than 50,000 g/mole or a melting temperature no greater than 200° C.


Embodiment 75 is a component of a spray application system, the component comprising a liquid repellent surface such that the receding contact angle with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water is at least 40 degrees;


wherein the liquid repellent surface comprises


a) a solid liquid repellent material and a non-fluorinated organic polymer binder and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser,


b) a solid silicone liquid repellent material, or


c) a solid fluorochemical liquid repellent material having a Mn of at least 1500 g/mole and a Mn of no greater than 50,000 g/mole or a melting temperature no greater than 200° C.


Embodiment 76 is a component of a spray application system, the component comprising a liquid repellent surface such that a drop of paint slides off the surface when orientated vertically; wherein the liquid repellent surface comprises


a) a solid liquid repellent material and a non-fluorinated organic polymer binder and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser,


b) a solid silicone liquid repellent material, or


c) a solid fluorochemical liquid repellent material having a Mn of at least 1500 g/mole and a Mn of no greater than 50,000 g/mole or a melting temperature no greater than 200° C.


Embodiment 77 is the component of embodiments 73-76 wherein the liquid repellent surface or component is further characterized by any one or combination of embodiments 51-72.


Embodiment 78 is a spray application system comprising a spray gun, a liquid reservoir that attaches to the spray gun, optionally a liner for the liquid reservoir, and a lid for the liquid reservoir and/or liner; wherein at least the liquid reservoir and/or liner comprises a liquid repellent surface according to embodiments 51-77.


Examples of Liquid Repellent Surfaces Comprising a Porous Layer and Impregnated Lubricant
Materials:














Material




designation
Description
Obtained from







NALCO 1115
Silica sol, particle size of 4 nm and
Nalco Company, Naperville, IL



16.2 wt % solids
under trade designation




“NALCO 1115”


NALCO 2329
Silica sol, particle size of 75 nm and
Nalco Company, Naperville, IL



40.5 wt %
under trade designation




“NALCO 2329”


NALCO 1056
Alumina-Coated-Silica sol, particle
Nalco Company, Naperville, IL



size of 20 nm, 4 wt % Al2O3 and 26
under trade designation



wt % SiO2
“NALCO 1056”


NALCO 8676
Alumina sol, particle size of 2 nm and
Nalco Company, Naperville, IL



10 wt % solids
under trade designation




“NALCO 8676”


SNOWTEX
Silica sol, elongated silica particles,
Nissan Chemical America


UP
particle size of 9-15 nm × 40-100 nm,
Corp., Houston TX under trade



21.3 wt %
designation “SNOWTEX UP”


CAB-O-
An aqueous dispersion of CAB-O-
Cabot Corp., Billerica, MA


SPERSE
SIL ® M-5 fumed silica
under trade designation “CAB-


2020K

O-SPERSE 2020K”


AEROSIL 200
Fumed silica powder with a specific
Evonik Industries, Piscataway,



surface area of 200 m2/g,
NJ under trade designation



aggregate particle size 0.2-0.3
“AEROSIL 200”



microns (with 90 seconds of




sonication)



MEK
Methyl ethyl ketone
Avantor Performance




Materials, Center Valley, PA




under the trade designation “J T




Baker”


IPA solvent
Isopropanol
BDH Chemicals/VWR,




Radnor, PA


2-amino-1,3-
H2NCH—(CH2OH)2
TCI America, Portland, OR


propane diol




HFE 7100
methoxy-nonafluorobutane, (C4F9OCH3),
3M Company, St. Paul, MN under


solvent
is a clear, colorless and
trade designation “3M NOVEC



low-odor fluid
7100 ENGINEERED FLUID”


HFPO Silane
a compound of formula
Synthesized using technique


Hydrophobic
F(CF(CF3)CF2O)aCF(CF3)—
described below


Surface
CONH(CH2)3Si(OCH3)3 where the



Treatment
variable a is in the range of 4 to 20



Compound




Alpha-Omega
a compound of formula
Synthesized using technique


HFPO Silane
(CH3O)3Si(CH2)3NHC(O)
described below


Hydrophobic
OCH2CH2NHC(O)CF(CF3)CF2O(CF



Surface
(CF3)CF2O)bCF(CF3)—



Treatment
C(O)NHCH2CH2OC(O)



Compound
NH(CH2)3Si(OCH3)3 where the




variable a is in the range of 5 to 19



Dipodal HFPO
a compound of formula
Synthesized using technique


Silane
F(CF(CF3)CF2O)aCF(CF3)—
described below


Hydrophobic
CONHCH[CH2OC(O)NH(CH2)3Si



Surface
(OCH3)3]2 where the variable a is in the



Treatment
range of 4 to 20



Compound




Hydrocarbon
13-(chlorodimethylsilylmethyl)-
Gelest Inc.


silane
heptacosane
Morrisville, PA


Hydrocarbon
triacontyldimethylchlorosilane
Gelest Inc.


silane

Morrisville, PA


Hydrocarbon
Trimethoxy(octadecyl)silane
Sigma-Aldrich Chemical


trimethoxy

Company, St. Louis, MO


silane




THV 221
a fluoroplastic composed of
3M Company, St. Paul, MN



tetrafluoroethylene,
under trade designation “3M



hexafluoropropylene, and vinylidene
THV 221AZ”



fluoride



S159-500
Silicone oil, poly(dimethylsiloxane),
Fisher Scientific, Pittsburgh,


Lubricant
500 mPa
PA


FOMBLIN Y
Perfluoropolyether
Sigma-Aldrich Chemical


14/6

Company, St. Louis, MO


Lubricant




FOMBLIN Y
Perfluoropolyether
Sigma-Aldrich Chemical


6/6

Company, St. Louis, MO


Lubricant




Lubricant
2-octyl-1-dodecanol
Sigma-Aldrich Chemical




Company, St. Louis, MO


Lubricant
Mineral Oil
Vi-Jon




Smyrna, TN


PRIPOL 2033
Dimer diol, C36 branched
Croda, Edison, NJ


Lubricant




GENIOSIL
3-isocyanatopropyl
Evonik Industries, Piscataway,


GF-40
trimethoxysilane
NJ under trade designation




“GENIOSIL GF 40”


DBU
1,8-diazabicyclo[5.4.0]undec-7-ene
Shanghai Rongrong Chemical




Co., Ltd., Shanghai, China


DBTDL
dibutyltin dilaurate
Sigma-Aldrich Chemical




Company, St. Louis, MO


HNO3 NH4OH
Nitric acid
EMD Millipore, Billerica, MA


MgSO4
Ammonium hydroxide




Anhydrous magnesium sulfate



DS-10
sodium dodecylbenzenesulfonate
Sigma-Aldrich Chemical


SURFACTANT

Company, St. Louis, MO


Solvent
Ethyl acetate, methyl-t-butyl ether
VWR, Radnor, PA


PET Film
2 mil (51 micrometers) polyethylene
3M Company, St. Paul, MN



terephthalate film



Glass slides
1.5 inches × 3 inches (3.8 cm × 7.62
Fisher Scientific, Pittsburgh,



cm)
PA


PPG
Automotive paint mixed to
PPG Industries, Pittsburgh, PA


Envirobase
manufacturers specifications.









Test Methods

IR data was obtained using a Nicolet 6700 Series FT-IR spectrometer (Thermo Scientific, Waltham, Mass.).


Method for Water Contact Angle Measurements

Water contact angles were measured using a Ramé-Hart goniometer (Ramé-Hart Instrument Co., Succasunna, N.J.). Advancing (θadv) and receding (θrec) angles were measured as water was supplied via a syringe into or out of sessile droplets (drop volume ˜5 μL. Measurements were taken at 2 different spots on each surface, and the reported measurements are the averages of the four values for each sample (a left-side and right-side measurement for each drop).


Test Method 1 for Paint Repellency Evaluation

Test surfaces were submerged in the PPG Envirobase paint and allowed to sit overnight. The test substrates where then removed from the paint and held vertically for 5 min to allow the paint to potentially flow off of the coating. The fraction (expressed as a percentage) of the surface that was still longer covered by paint was estimated by visual inspection.


Synthesis of Hexafluoropropyleneoxide (HFPO) Silane

HFPO silane is a compound of formula F(CF(CF3)CF2O)aCF(CF3)—CONH(CH2)3Si(OCH3)3 where the variable a is in the range of 4 to 20. This material was prepared by charging HFPO —COOCH3 (20 g, 0.01579 mole) and NH2CH2CH2CH2CH2—Si(OCH3)3 (2.82 g, 0.01579 mole) under a N2 atmosphere into a 100 mL 3-necked, round bottom flask equipped with a magnetic stir bar, nitrogen (N2) inlet, and reflux condenser. The reaction mixture was heated at 75° C. for 12 h. The reaction was monitored by infrared (IR) spectroscopy; after the disappearance of the ester peak, the resulting clear, viscous oil was kept under vacuum for another 8 h and used as such,


Synthesis of Alpha-Omega Hexafluoropropyleneoxide (HFPO) Silane

The alpha omega HFPO dimethyl ester CH3OC(O)—HFPO—C(O)OCH3 was prepared by a method similar to Preparation No. 26 of U.S. Pat. No. 7,718,264


The starting diol HOCH2CH2NHC(O)—HFPO—C(O)NHCH2CH2OH was prepared using 100 g (0.0704 mol, 1420 MW) of divalent alpha omega HFPO dimethyl ester (CH3OC(O)—HFPO—C(O)OCH3) described above and 11.18 g (0.1831 mole) ethanolamine by a procedure similar to the Preparation No. 27 of U.S. Pat. No. 7,718,264.


A 30 mL jar equipped with stirbar was charged with 10 g (0.006766 mol, 1478 MW) HOCH2CH2NHC(O)—HFPO—C(O)NHCH2CH2OH and 2.78 g (0.013532 eq) Geniosil GF-40, and 75 microliters of a 10% solution of DBTDL in MEK. The jar was sealed and placed in a 75° C. bath with magnetic stirring, and heated for 2 h. At the end of 2 h, FTIR analysis of the reaction showed no residual —NCO peak at about 2265 cm1 to provide the product (CH3O)3Si(CH2)3NHC(O)OCH2CH2NHC(O)—HFPO—C(O)NHCH2CH2OC(O) NH(CH2)3Si(OCH3)3.


Synthesis of Dipodal Hexafluoropropyleneoxide (HFPO) Silane

The starting diol HFPO—CONHCH[CH2OH]2 was prepared by charging a 500 mL roundbottom equipped with stirbar with 100 g (0.0704 mol, 1420 MW) HFPO—C(O)OCH3 and 8.34 g (0.0915 mol) 2-amino-1,3-propane diol and heating for 2 h at 75° C. To the reaction was added 200 g of methyl-t-butyl ether, and a yellow oil (likely unreacted 2-amino-1,3-propane diol) separated from the reaction. The reaction was then poured into a separatory funnel, not adding the yellow oil. The reaction was washed with 20 mL of 2N aqueous HCl and allowed to separate overnight. The organic layer was washed with 20 mL 1N ammonium hydroxide, allowed to separate for 30 min, washed with 20 mL water, and allowed to separate for 30 min, then dried over anhydrous magnesium sulfate, filtered and concentrated at up to 95° C. for ˜1.5 h to provide the diol HFPO—CONHCH[CH2OH]2.


A 30 mL jar equipped with stirbar was charged with 12.79 g (0.0086 mol) HFPO—CONHCH[CH2OH]2 and 2.78 g (0.013532 eq) Geniosil GF-40, and 75 microliters of a 10% solution of DBTDL in MEK, was sealed and placed in a 75° C. bath with magnetic stirring, and heated for about 24 h. At the end of 2 h, FTIR analysis of the reaction showed no residual —NCO peak at about 2265 cm−1 to provide the product HFPO—CONHCH[CH2OC(O)NH(CH2)3Si(OCH3)3]2


Synthesis of Dimer Diol Silane

A 25 mL jar equipped with a stirbar was charged with 10 g (570 MW, 285 MW, 0.035 leq) Pripol 2033, 7.20 g (205.29 MW, 0.0351 mol) Geniosil GF-40, and 100 microliters of a 10% solution of DBTDL in MEK. This jar was sealed and placed in a 75° C. bath with magnetic stirring, and heated for 2 h. At the end of 2 h, FTIR analysis of the reaction showed no residual —NCO peak at about 2265 cm−1.


Preparative Examples 1-13 (PE1-PE13)

PE1 coating formulation was prepared by first diluting a dispersion of NALCO 1115 to a solids content of 5 wt. % by adding appropriate amount of distilled (DI) water. Then, 1M HNO3 catalyst was added to the diluted dispersion to adjust the pH of the dispersion to 2.


PE2-PE16 coating formulations were prepared in the same manner as PE1 except that the silica, silica/alumina, or alumina dispersion was varied. PE6-PE8 coating formulations containing AEROSIL 200 were prepared by adding AEROSIL 200 to a diluted dispersion of NALCO 1115 at the desired ratio and adjusting the solids content (by adding DI water) to 5 wt. %.


PE17 and PE18 were prepared in the same manner as PE1 except that the silica dispersion was varied and DBU catalyst was added to the silica dispersion instead of HNO3 catalyst to adjust the pH of the dispersion to 12. PE10 and PE11 coating formulations further contained 0.05 wt. % of a DS-10 surfactant.


PE19 and PE20 coating formulations were prepared in the same manner as PE18 and PE-19, respectively, except that no DBU or HNO3 was added to the formulation.


PE21 coating formulation was prepared by adding AEROSIL 200 powder to distilled water until the solids content reached 5 wt.-%. This formulation further contained 0.05 wt. % of a DS-10 surfactant.


PE22 coating formulation was prepared by first diluting a dispersion of NALCO 8676 to a solids content of 5 wt. % by adding an appropriate amount of distilled (DI) water. Then, DS-10 surfactant was added until the formulation contained a 0.05 wt. % DS-10 surfactant.


Table 1, below, summarizes the coating formulations for PE1-PE23.













TABLE 1









Amount of






DS-10


Ex-



added


ample
Porous Coating Formulation
Catalyst
pH
(wt. %)



















PE1
NALCO 1115
HNO3
2



PE2
70% NALCO 1115 + 30%
HNO3
2




NALCO 2329





PE3
30% NALCO 1115 + 70%
HNO3
2




NALCO 2329





PE4
70% NALCO 1115 + 30%
HNO3
2




SNOWTEX UP





PE5
30% NALCO 1115 + 70%
HNO3
2




SNOWTEX UP





PE6
70% NALCO 1115 + 30%
HNO3
2




AEROSIL 200





PE7
30% NALCO 1115 + 70%
HNO3
2




AEROSIL200





PE8
 2% NALCO 1115 + 98%
HNO3
2




AEROSIL 200





PE9
70% NALCO 1115 + 30%
HNO3
2




CAB-O-SPERSE 2020K





PE10
30% NALCO 1115 + 70%
HNO3
2




CAB-O-SPERSE 2020K





PE11
10% NALCO 1056 + 90%
HNO3
2




NALCO 1115





PE12
50% NALCO 1056 + 50%
HNO3
2




NALCO 1115





PE13
90% NALCO 1056 + 10%
HNO3
2




NALCO 1115





PE14
10% NALCO 8676 + 90%
HNO3
2




NALCO 1115





PE15
50% NALCO 8676 + 50%
HNO3
2




NALCO 1115





PE16
90% NALCO 8676 + 10%
HNO3
2




NALCO 1115





PE17
30% NALCO 1115 + 70%
DBU
12
0.05



NALCO 2329





PE18
70% NALCO 1115 + 30%
DBU
12
0.05



AEROSIL 200





PE19
30% NALCO 1115 + 70%

10
0.05



NALCO 2329





PE20
70% NALCO 1115 + 30%

10
0.05



AEROSIL 200





PE21
AEROSIL 200

5
0.05


PE22
NALCO 8676

5
0.05









The PE1-PE23 coating formulations were then coated on PET films (PE1-PE19) or glass slides (PE20-23) using a Mayer Rod #4 (PE1-PE16, PE18-PE23) or Mayer Rod #25 (PE17), corresponding to a wet thickness of approximately 9.1 micrometers or 57.1 micrometers, respectively.


All of the samples coated on PET films were allowed to air dry for 3-10 minutes and were then placed in a 150° C. oven for 10 minutes to sinter the particles. Since the coated substrates had a tendency to curl during thermal annealing, microscope slides were placed on top of the edges of the coated substrates to prevent them from curling.


The coated glass microscope slides were allowed to air dry for 3-10 minutes, placed in a 550° C. furnace for 1 h to thermally sinter the particles, and then cooled to room temperature.


The coated PE1-PE23 samples with a porous layer were then subjected to a surface modification treatment. In some embodiments, various reactive species were used to form a hydrophobic layer as follows: to treat with HFPO Silane, a 0.5 wt. % solution of HFPO Silane in HFE 7100 (98 wt %) and IPA (1.5 wt. %) was dropped on the coated PE1-PE23 sample and the sample was left overnight to evaporate the solvents.


To treat the coated PE3 sample with HMDS, the coated sample was placed on a sealed vacuum desiccator alongside a vial containing 5 mL of HMDS and allowed to sit overnight.


To treat the coated PE3 or PE7 sample with 13-(chlorodimethylsilylmethyl) heptacosane, triacontyldimethylchlorosilane, or Dimer Diol Silane, a solution comprising 1 wt.-% of the desired silane, 9 wt. % deionized water, and 90 wt. % isopropanol was allowed to stir overnight. The coated PE3 or PE7 sample was dipped into this solution and allowed to dry overnight.


To treat the coated PE3 with trimethoxy(octadecyl)silane, dipodal HFPO silane, or alpha-omega HFPO silane, a solution of 2 wt % of the desired silane in 98% IPA:H2O (95:5 v/v) was allowed to stir overnight. The coated PE3 sample was dipped into this solution and allowed to dry overnight.


To treat with THV221, a 0.1 wt. % solution of THV221 in MEK was dropped on the coated PE7 sample and the sample was left overnight to evaporate the solvents.


Examples 24-66 (EX24-EX66) and Comparative Examples A-E (CE.A-CE.E)

EX24-EX66 samples were prepared by impregnating various lubricants into surface treated porous PE1-PE23 samples described above. This was accomplished by dropping the desired lubricant onto the PE1-PE23 samples and allowing the lubricant to spread until the entire surface treated porous layer was coated followed by holding the samples vertically overnight to drain off excess lubricant.


Table 2, below summarizes the coating formulations, hydrophobic surface treatments, and lubricants as well as the measured water contact angles.













TABLE 2








Porous


Water



Coating
Hydrophobic

Contact Angle



Formu-
Surface

(degrees)












Example
lation
Treatment
Lubricant
θadv
θrec















CE. A
none
none
none
77
52


CE. B
PE5
none
none
<10
<10


CE. C
none
none
Fomblin Y 14/6
75
61


CE. D
PE5
none
Fomblin Y 14/6
25
<10


CE. E
PE5
HFPO Silane
none
123
76


EX24
PE1
HFPO Silane
Fomblin Y 14/6
107
103


EX25
PE2
HFPO Silane
Fomblin Y 14/6
108
100


EX26
PE3
HFPO Silane
Fomblin Y 14/6
110
105


EX27
PE4
HFPO Silane
Fomblin Y 14/6
107
101


EX28
PES
HFPO Silane
Fomblin Y 14/6
108
104


EX29
PE6
HFPO Silane
Fomblin Y 14/6
103
98


EX30
PE7
HFPO Silane
Fomblin Y 14/6
108
103


EX31
PE8
HFPO Silane
Fomblin Y 14/6
97
96


EX32
PE9
HFPO Silane
Fomblin Y 14/6
105
99


EX33
 PE10
HFPO Silane
Fomblin Y 14/6
105
101


EX34
 PE11
HFPO Silane
Fomblin Y 14/6
95
93


EX35
 PE12
HFPO Silane
Fomblin Y 14/6
92
89


EX36
 PE13
HFPO Silane
Fomblin Y 14/6
96
94


EX37
 PE14
HFPO Silane
Fomblin Y 14/6
94
91


EX38
 PE15
HFPO Silane
Fomblin Y 14/6
100
98


EX39
 PE16
HFPO Silane
Fomblin Y 14/6
99
93


EX40
 PE17
HFPO Silane
Fomblin Y 14/6
115
114


EX41
 PE 18
HFPO Silane
Fomblin Y 14/6
110
104


EX42
 PE19
HFPO Silane
Fomblin Y 14/6
100
97


EX43
 PE20
HFPO Silane
Fomblin Y 14/6
102
99


EX44
 PE21
HFPO Silane
Fomblin Y 14/6
103
99


EX45
 PE22
HFPO Silane
Fomblin Y 14/6
102
100


EX46
PE3
13-
2-octyl-1-
93
88




(chlorodimethyl-
dodecanol






silylmethyl)







heptacosane





EX47
PE3
triacontyl-
2-octyl-1-
90
86




dimethyl-
dodecanol






chlorosilane





EX48
PE3
Dimer Diol
Dimer Diol
59
54




Silane





EX49
PE 7
Dimer Diol
Dimer Diol
57
53




Silane





EX50
PE3
HMDS
Silicone Oil
101
99


EX51
PE7
THV221
Fomblin Y 14/6
119
112


EX52
PE3
Trimethoxy
Mineral oil
93
88




(octadecyl)







silane





EX53
PE3
Dipodal
Fomblin Y 6/6
107
103




HFPO Silane





EX54
PE3
alpha-omega
Fomblin Y 6/6
106
98




HFPO silane












The difference between the advancing and receding contact angle for all of the lubricant-impregnated samples (EX24-EX51) was lower than 10°, consistent with facile movement of contacting water droplets. The Comparative Examples, in contrast, were characterized by water contact angle hysteresis above 10°, indicative of more resistance to drop motion. Note that CE.B was characterized by no difference between the advancing and receding contact angle because contacting water droplets instantly spread on the porous layer. This sheet of water was not easily removed by tilting, however, meaning CE. B was not repellent to water. Table 3, below summarizes the paint repellency (according to Test Method 1) for various examples.













TABLE 3









% of



Porous
Hydrophobic

Surface



Coating
Surface

Covered by


Example
Formulation
Treatment
Lubricant
Paint







CE. A
none
none
none
100% 


CE. B
PE5
none
none
100% 


CE. C
none
none
Fomblin Y 14/6
90%


CE. D
PE5
none
Fomblin Y 14/6
70%


CE. E
PE5
HFPO Silane
none
80%


EX24
PE1
HFPO Silane
Fomblin Y 14/6
 5%


EX25
PE2
HFPO Silane
Fomblin Y 14/6
10%


EX26
PE3
HFPO Silane
Fomblin Y 14/6
 5%


EX27
PE4
HFPO Silane
Fomblin Y 14/6
20%


EX28
PE5
HFPO Silane
Fomblin Y 14/6
20%


EX29
PE6
HFPO Silane
Fomblin Y 14/6
10%


EX30
PE7
HFPO Silane
Fomblin Y 14/6
 0%


EX32
PE9
HFPO Silane
Fomblin Y 14/6
15%


EX33
 PE10
HFPO Silane
Fomblin Y 14/6
 5%


EX40
 PE17
HFPO Silane
Fomblin Y 14/6
15%


EX41
 PE18
HFPO Silane
Fomblin Y 14/6
 5%


EX42
 PE19
HFPO Silane
Fomblin Y 14/6
 0%


EX43
 PE20
HFPO Silane
Fomblin Y 14/6
 5%









CE.A and EX34 were examined under a microscope. The paint was uniformly disposed over the surface for CE.A. For EX34, the surface did not have any paint except for a few beads of paint covering less than 10% of the surface area.


Test Method 2 for Paint Repellency Evaluation—


Pieces of PET film measuring approximately 4 cm×4 cm with and without the lubricant impregnated porous surface layer were prepared as previously described and the initial mass was measured. The PPG Envirobase paint was pipetted onto these film pieces until the entire surface was covered with paint. The painted film samples were then turned vertically for 5 minutes to allow paint to drain off of the surface. The masses of the drained film pieces were measured to determine the mass of paint residue remaining on the surface. The drained pieces were also visually inspected to estimate the fraction (expressed as a percentage) of the film surface that remains coated by the paint. This test results are as follows:


















Mass Paint on Surface
Fraction of Surface



Example
(g/cm2)
Coated with Paint




















CE. A
0.021
  100%



EX28
0.00045
 <1%



EX30
0.0011
 ~10%










Example 31—Liquid Repellent Surface Layer on a Spray Application System Component

A thermoformed low density polyethylene (LDPE) PPS' liner (400 ml) was manufactured by 3M.


The liner was first treated with air plasma using a Diener instrument (Atto Version 1 Model) by pumping the chamber down to a pressure of 0.2 mbar, setting the power to full (reading of 100), setting the air at a flow rate of 35±25 NI/h, to plasma treat the inside of the liner for 5 minutes.


The liner was removed from the plasma chamber and the 5 wt % of porous coating formulation of PE 5 (as previously described) was immediately applied to the insides of the liner using a pipette. The liner was manually rotated to obtain complete wetting by the coating formulation, and excess coating was drained by flipping the container upside down. The coated liner was then dried at 75° C. for 15 minutes.


A hydrophobic layer was applied to the porous layer in the same manner using the previously described HFPO Silane solution. The solvents were allowed to evaporate overnight.


The Fomblin Y 14/6 lubricant was then coated onto the surface treated porous layer in the same manner until approximately ⅓ of the interior surface was covered with lubricant. The liner was then placed onto rollers for 30 minutes to allow the lubricant to spread and impregnate the pores. The liner was removed from the rollers and held vertically for ˜3 weeks to drain off excess lubricant such that the liner now had a repellent interior surface.


Test Method 3 for Paint Repellency Evaluation:

The liner having the repellent interior surface as just described and a comparative liner (CE.F) that was the same liner without the repellent interior surface were each weighed. 70 g of PPG Envirobase automotive paint was poured into the liner having the repellent interior surface and a comparative liner (CE. F) that was the same liner without the repellent interior surface. The liners were manually shaken and rotated to ensure that the paint contacted all of the container side walls. The paint was then poured out of the liners, and the liners were placed upside down for 5 minutes (liner with repellent interior) or about 3 hours (CE.F) to allow more of the paint to drain. The liners were each reweighed and the mass of retained paint was calculated. The test results were as follows:

















Drainage
Mass
Mass of Paint




Time
Empty
Retention Following
Mass Per Surface


Example
(mins)
Liner (g)
Drainage (g)
Area Calculation



















CE. F
~180
5.69
5.74
0.022


Liner with
5
5.77
1.40
0.005


Repellent



(77% less paint


Surface Layer



retained*)





*(0.022 − 0.005)/0.022 × 100%






Additional Examples of Liquid Repellent Surfaces
Materials

All the fluorochemical compounds, non-fluorinated binders, and fluoropolymers utilized in this the following example set are solid at 25° C. and temperature ranging from 40° F. (4.44° C.) to 130° F. (54.4° C.).














Material




designation
Description
Obtained from







MEK
Methyl ethyl ketone
Avantor Performance


MIBK
Methyl isobutyl ketone
Materials, Center




Valley, PA







Non-fluorinated Polymeric Binder









PS
Atactic polystyrene beads with
Alfa Aesar, Ward



formula weights of 800-5000 g/mol
Hill, MA



(PS5) or 125-250 kg/mol (PS250),



Styron
Polystyrene resin beads
American Styrenics,


685D

The Woodlands, TX


PMMA
Poly(methyl methacrylate)
Alfa Aesar, Ward



(PMMA) powder with a melting
Hill, MA



point > 150° C.



PVC
Poly(vinylchloride)with an inherent
Aldrich Chemical



viscosity of 1.115 dL/g
Co., Milwaukee, WI


Elvacite
Acrylic resin, under trade
Lucite International,


1010
designation “ELVACITE 1010”
Mississauga, Ontario,




Canada


Estane 5703
Polyurethane resin, under trade
Lubrizol Advanced



designation “ESTANE 5703”
Materials, Inc.,


Comparative
Terpolymer of tetrafluoroethylene,
Cleveland, OH


Fluoro-
hexafluoropropylene and



polymer
19 mol % of vinylidine fluoride



Teflon AF
Amorphous fluoroplastic, under trade
DuPont, Wilmington,



designation “DUPONT TEFLON AF”
DE


FC 40
A non-conductive, thermally and
3M Company, St.



chemically stable fluid, under trade
Paul, MN



designation “3M FLUORINERT




ELECTRONIC FLUID FC-40”









Synthesis of Fluorochemical Compound 1 (FC-1)

MEFBSE (C4F9SO2N(CH3)C2H4OH), a fluorochemical alcohol having an equivalent weight of 357, was made in two stages by reacting perfluorobutanesulfonyl fluoride (PBSF) with methylamine to form MEFBSA (C4F9SO2N(CH3)H), followed by reaction with ethylenechlorohydrin, using a procedure essentially as described in Example 1 of U.S. Pat. No. 2,803,656 (Ahlbrecht, et al.).


Fluorochemical 1 was then prepared using the protocol described in U.S. Pat. No. 7,396,866 (Jariwala et al.) by esterifying the MEFBSE with octadecanedioic acid at a molar ratio of 2:1 as follows: to a three-necked round bottom flask was added 25 g (0.0793 moles) of Emerox 118 (available from Cognis Corporation, Cincinnati, Ohio), 56.7 g (0.159 moles) of MEFBSE, 100 g toluene and 1 g (0.007 moles) of 70 wt % solution of methanesulfonic acid. The contents of the flask were refluxed using a Dean-Stark trap and a condenser at 112° C. for 12 h. The solution was then cooled to 80° C. To this solution was added 1.08 g (0.007 moles) of triethanol amine and the solution was stirred at 80° C. for 1 h. This toluene solution was then washed with 75 g hot water (80° C.) three times. After the last wash the organic bottom layer was distilled to remove the toluene. The residue remaining the flask was the diester product, which was poured into a jar and allowed to crystallize on cooling to room temperature.




embedded image


Synthesis of Fluorochemical Compound 2 (FC-2)

Fluorochemical 2 was made by the esterification of a long chain hydrocarbon acid (Unicid 350, C25 average), and MEFBSE (C4F9SO2N(CH3)C2H4OH) in the same manner as the synthesis Fluorochemical 1.




embedded image


Test Method 4 for Paint Repellency Evaluation:

A single drop of the (e.g. PPG Envirobase) paint, approximately 0.2 mL, was applied at 21° C. to a central portion of the (e.g. repellent surface of the) sample (7.5 cm by 5.0 cm coated glass microscope slide). The sample (e.g. glass slide) was immediately orientated vertically. If the paint drop slid down the glass slide, it was denoted “Pass”, if not “Fail”.


Test Method 5 for Paint Repellency Evaluation:

The entire non-repellent surface of the sample (i.e. uncoated side of the 7.5 cm by 5.0 cm glass slide) was masked with tape, obtained from 3M Company under the trade designation “SCOTCH-BLUE PAINTERS TAPE”. The sample (glass slide) was then immersed in the (e.g. PPG Envirobase) paint to a depth of 3.5 cm for 10 minutes at 21° C. (or in other words about half the coated surface was immersed). The sample (glass slide) was removed from the diluted paint, orientated vertically for 30 seconds, and the masking tape removed. The paint remaining on the immersed coated surface was then visually estimated and expressed as percentage of retained paint coverage.


Test Method 6 for Paint Repellency Evaluation:

A sample of sufficient size (2.8 by 3.2 cm) was weighed. The entire non-repellent surface of the sample (i.e. uncoated side) was masked with tape the “SCOTCH-BLUE PAINTERS TAPE”. The repellent surface of the sample was entirely submerged (e.g. 30 g) in the (e.g. PPG Envirobase) paint for 10 minutes at 21° C. The sample was then removed from the paint, the masking tape removed, and the sample orientated vertically by means a binder clip for 1 minute. The bottom edge of the sample was contacted with a paper towel to wick away paint that may have pooled along the bottom edge of the material. The weight of each sample was again measured and the amount of paint remaining per area was calculated. The paint remaining on the coated surface was visually estimated and expressed as percentage of retained paint coverage.


Preparative Examples 32-56 (PE32-56PE)

PE32-PE56 coating solutions containing polymeric binder and fluorinated additives were prepared to be used in Examples (EX) and Comparative Examples (CE) described below.


To prepare PE32-PE56 coating solutions, 2 g of FC-2 or FC-1 powder and 48 g of MEK or MIBK solvent were added to a jar. This mixture was stirred and heated to 60° C. until the solid powder dissolved and was no longer visible. This hot coating solution was mixed at the appropriate ratio with a 60° C. solution of binder polymer in MEK or MIBK. The polymeric binder/fluorinated additive solutions were then cooled to room temperature. The compositions of the coating solutions are summarized are follows:




















Polymeric







Binder/







Fluorinated




Pre-


Additive

Weight


parative
Polymeric
Fluorinated
Weight

%


Example
Binder
Additive
Ratio
Solvent
Solids







PE32
Styron 685D

100/0 
MEK
4


PE33
Styron 685D
FC-1
97.5/2.5 
MEK
4


PE34
Styron 685D
FC-1
95/5 
MEK
4


PE35
Styron 685D
FC-1
90/10
MEK
4


PE36
Styron 685D
FC-1
85/15
MEK
4


PE37
Styron 685D
FC-1
95/5 
MIBK
4


PE38
PS5
FC-1
95/5 
MEK
4


PE39
PS5
FC-1
90/10
MEK
4


PE40
PS5
FC-1
85/15
MEK
4


PE41
PS250
FC-1
95/5 
MEK
4


PE42
PS250
FC-2
95/5 
MEK
4


PE43
PMMA
FC-1
95/5 
MEK
4


PE44
Elvacite 1010
FC-1
95/5 
MEK
4


PE45
PVC
FC-1
95/5 
MEK
4


PE46
Estane 5703
FC-1
95/5 
MEK
5


PE47
Teflon ® AF

100/0 
3M FC40
1


PE48
Comparative

100/0 
MEK
4



Binder-PS250






PE49
Comparative

100/0 
MEK
4



Fluoropolymer






PE50
Comparative

100/0 
MEK
4



Binder-PS5






PE51
Comparative

100/0 
MEK
4



Binder-PMMA






PE52
Comparative

100/0 
MEK
4



Binder-







Elvacite 1010






PE53
Comparative

100/0 
MEK
4



Binder-PVC






PE54
Comparative

100/0 
MEK
4



Binder-







Estane 5703






PE55
PS250
FC-2
90/10
MEK
4


PE56
PS250
FC-2
85/15
MEK
4









Examples CE57-CE81

Glass microscope slide (7.5×5.0 cm with a thickness of 0.1 cm thick obtained from Fisher) were cleaned with acetone and wiped dry with a WYPALL paper towel. The cleaned glass slides were place on a flat surface and approximately 0.5 mL of each coating composition was evenly coated onto the cleaned glass microscope slide by means of a #52 Mayer rod and dried for approximately 2 h at 21° C. This provides a coating that is about 133 microns initially and about 5 microns after evaporation of the solvent.


CE82 was a bare PTFE sheet obtained from ePlastics (San Diego, Calif.) used as the substrate without any coating.


Samples were assessed for paint repellency after 72 h using the test method described above.


Water contact angle and paint repellency were evaluated as follows:


















Water
Paint



Preparative
Contact Angles
Repellency














Example of


CAH
Test
Test



Previous


adv
Method
Method


Example
Table
θadv
θrec
θrec)
4
5%
















CE57
PE32
93
74
19
Fail
100


EX58
PE33
110
103
7
Pass
15


EX59
PE34
112
105
7
Pass
15


EX60
PE35
114
106
7
Pass
10


EX61
PE36
114
112
2
Pass
20


EX62
PE37
116
110
6
Pass
5


EX63
PE38
114
106
7
Pass
2


EX64
PE39
116
108
7
Pass
2


EX65
PE40
116
108
8
Pass
5


EX66
PE41
118
112
6
Pass
2


EX67
PE42
120
1112
8
Pass
90


EX68
PE43
119
112
7
Pass
5


EX69
PE44
118
110
8
Pass
40


EX70
PE45
115
108
7
Pass
20


EX71
PE46
117
113
4
Pass
1


EX72
PE47
116
107
9
Pass
1


CE73
PE48
103
82
21
Fail
100


CE74
PE49
105
80
25
Fail
95


CE75
PE50
91
72
19
Fail
100


CE76
PE51
74
57
17
Fail
100


CE77
PE52
71
55
16
Fail
100


CE78
PE53
87
64
23
Fail
100


CE79
PE54
86
45
41
Fail
100


CE80
PE55
121
102
19
Pass
95


CE81
PE56
121
109
12
Pass
95


CE82
PTFE
111
87
24
Fail
85



Sheet









Comparative Examples 83-84 (CE83-CE84) and Examples 85-86 (EX85-EX86)

CE 83 was an LDPE PPS 400 ml container used “as is” without applying any coating solutions to its interior walls.


To prepare CE84, EX85 and EX86 coating solutions were applied to the inside walls of the spray gun paint container using a pipette as follows: the bottom of an LDPE PPS container was first wet with the coating solution, and the solvent was allowed to evaporate under ambient conditions. The container was then tilted 90° and a pipette was used to coat a strip of the interior side wall of the container. Next, the container was manually rotated to obtain complete wetting of the entire interior sidewall by the coating solution. Excess coating solution was drained by flipping the container upside down, and the solvent was allowed to evaporate under ambient conditions for at least 30 minutes. Paint repellency was determined according to Test Method 3 as follows:



















Weight of Paint
Weight of Paint



Preparative
Weight of
Residue
Residue per Unit Area



Example of
Empty
Following
Following Drainage


Example
Previous Table
Container (g)
Drainage (g)
(g/cm2)



















CE83
none
5.82
5.96
0.021


CE84
PE48
5.94
7.57
0.027



Binder - PS250


EX85
PE41
5.83
0.20
0.00070



PS250/FC-1



95/5


EX86
PE47
5.83
0.60
0.0021



Teflon ® AF









The liner of EX85 was utilized with the spray application equipment to spray PPG Envirobase paint followed by a coat of clear coat obtained from PPG Industries, Inc. as the trade designation HIGH VELOCITY CLEARCLOAT DC3000. The paint could be uniformly applied at a sufficient film build. There was no evidence of “fisheyes” or other incompatibility-related coating defects while applying the paint and/or by uneven gloss and/or color.


Comparative Example 87 (CE87)

CE87 was a sample cut out of the bottom of a “Earlex L0190”1 quart (946 mL) PTFE Coated Metal Paint Container” (obtained from Home Depot USA Inc., Atlanta, Ga.). The cut out sample was rectangular with dimensions of 2.8 cm×3.2 cm. The paint repellency and water contact angles were evaluated as follows:












Paint Repellency










Test Method 4
Test Method 5







Fail
95%




















Water Contact Angles











CAH


θadv
θrec
adv − θrec)





111
80
31









Example 88

A Norton™ FEP Beaker Liner was obtained from Welch Fluorocarbon, Inc., Dover N.H. The paint repellency and water contact angles were evaluated as follows:












Paint Repellency










Test Method 4
Test Method 5







Pass
5%




















Water Contact Angles











CAH


θadv
θrec
adv − θrec)





119
114
5









Example 91 (EX91)

EX91 was prepared by coating the surface of a PPS liner by pipetting the PE41 solution into the liner and rotating the liner until the solution wet the entire interior of the container. The coated container was then turned upside down to drain any excess coating solution, and dried in this inverted position for 2 hours at room temperature. Pieces of the coated liner were then cut from the side and used in the paint repellency testing. The paint repellency was evaluated with 4 different paints according to Test Method 6.


The PPG Envirobase paint was the same as previously described. The other paints were as follows:


Spies Hecker: 70% by volume WT389 Platinum Silver Permahyd Hi-TEC Base Coat 480 and 30% by volume Hi-TEC WT 6050


Glasurit: 50% by volume Jet Black 90-1250 Base Coat and 50% by volume 90 Adjusting Base 93-E3


Sikkens: 70% by volume Jet Black Autowave 391096 and 30% by volume Autowave WB 391196


The test results were as follows:




















Mass per






Surface Area
Retained





of Retained
Paint





Paint
Coverage



Example
Test Paint
(g/cm2)
(%)





















CE83
PPG Envirobase
0.020
>95%



No Coating
Spies Hecker
0.016
>95%




Glasurit
0.0046
>95%




Sikkens
0.0035
>95%



CE87
PPG Envirobase
0.020
>95%



Earlex
Spies Hecker
0.015
>95%



L0190″
Glasurit
0.0081
>95%




Sikkens
0.0023
>95%



EX91
PPG Envirobase
0.001
 <5%




Spies Hecker
<0.001
 <5%




Glasurit
0.001
 10%




Sikkens
<0.001
 <5%







Note:



The samples with “<0.001” are listed as such because the precision of the laboratory balance was not high enough to measure a change.






Comparative Example 92 (CE92) and Examples 93-95 (EX93-EX95)

CE92 was cut pieces from the sides of a PPS Liner without any treatments. The cut samples had a dimension of 5 cm×5 cm.


EX93-EX95 were prepared by melt compounding at a temperature ranging from 260° C.-280° C. FC1 and Marflex 1122 in desired ratios (0.1, 0.5, 5 wt. % FC1 for EX93-EX95, respectively) and then extruding the mixture into a 40 mils (about 1 mm) thick film using a co-rotating 18MM twin screw extruder obtained from Leistritz, Germany equipped with an 8″ die obtained from Cloeren Incorporated, Eau Claire, Wis. Then the extruded films were annealed at 110° C. for 5 minutes and cut to pieces 5 cm×5 cm in dimension water contact angles and paint repellent testing as follows:















Paint Repellency









Retained Paint











Water Contact Angle
Test
Coverage











Example
θadv
θrec
Method 4
Test Method 5














CE92
105
95




EX93
119
110
Pass
20% 


EX94
119
117
Pass
5%


EX95
123
116
Pass
5%









The 40 mils (about 1 mm) thick film in the absence of the film being annealed was thermoformed into a disposable liner. The liner was substantially the same as the commercially available PPS™ liner except for the composition of liner material. Pieces were cut from the sides for contact angle testing with water with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water instead of deionized water. The results were as follows:
















Water
10% (by wt.)



Contact Angles
aqueous 2-n-













Concentration


CAH
butoxyethanol



of FC-1 Melt


adv
Contact Angles













Example
Additive
θadv
θrec
θrec)
θadv
θrec

















EX96
0.5
wt. %
120
107
13
73
50


EX97
1
wt. %
119
106
13
75
52


EX98
2
wt. %
120
112
8
78
62


EX99
5
wt %
122
107
15
78
54









Several Examples and Comparative Examples prepared as described above were tested for their contact angle in the same manner as previously described except using a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water instead of deionized water.
















10% (by wt.) aqueous




2-n-butoxyethanol



Contact Angles











Sample
θadv
θrec















CE83
51
21



PPS Liner without any Treatments



CE87
47
27



“Earlex L0190”



CE82
51
39



Teflon PTFE Sheet



CE74
59
37



Comparative Fluoropolymer



EX88
70
56



Norton ™ FEP Beaker Liner



EX72
81
69



Teflon ® AF



EX67
76
28



EX91
78
72



PPS Liner with PE41



PS250/FC-1



95/5



EX94
74
63



Melt compounded Marflex 1122 and



0.5 wt. % FC1



EX30
71
69



Lubricant impregnated porous layer










Example 100 (EX100)—Preparation of Film with Siloxane Melt Additive

A siloxane melt additive (alkyl dimethicone) was synthesized as described in Example 14 of U.S. Pat. No. 9,187,678. The alkyl dimethincone was compounded into NA217000 LDPE (Lyondell Basell, Houston, Tex.) at a loading of 15 wt % using a 25 mm twin screw extruder held at 190° C. The alkyl dimethicone was delivered to the extruder as a liquid at 120° C. by means of a heated gear pump and transfer line. The masterbatch melt was extruded through a stranding die into a chilled water bath and pelletized at a rate of 13.6 Kg/hour.


These 15 wt % alkyl dimethicone masterbatch pellets were then admixed with NA217000 LDPE pellets at a ratio which yielded a pellet mixture comprising 3 wt % alkyl dimethicone in LDPE. This 3 wt % alkyl dimethicone mixture was extrusion coated sequentially onto both sides of 2 mil thick PET film (primed on both sides, 3M Company) using the following procedure. The pellet blend was fed, via a single feed hopper, at a rate of 20 lbs/hr into an extruder and die operating at a temperature of 500° F. The composite extrudate exited the drop die opening and traveled approximately 10 cm to a nip where the composite was contacted with the primed PET and solidified through a two roll nip equipped with a rubber and a steel roller. The alkyl dimethicone/LDPE layer contacted a smooth chilled steel roll which was used to accelerate the solidification of the layers. The line speed was 50 ft/min, yielding an extruded layer thickness of 1 mil. The final film construction consisted of a 2 mil thick PET film sandwiched between 1 mil thick layers comprising 3 wt % alkyl dimethicone in LDPE.


Synthesis of Fluorochemical Polyester Additive (FC-3)

To a round-bottomed reaction flask equipped with a stirrer, heater and a Dean-Stark trap was added octadecanedioic acid (ODDA, 30 g, 0.095 moles), FBSEE (27.5 g, 0.071 moles), MeFBSE (17.01 g, 0.048 moles), toluene (100 g) and methanesulfonic acid (1 g). The resulting mixture was allowed to reflux for 15 hours at 115° C. When the desired amount of water (3 g) was collected, the temperature was reduced to 80° C. Then K2CO3 (2 to 3 g) was added and the mixture was stirred for an additional 30 minutes. FTIR analysis showed the absence of any hydroxyl peak. The mixture was hot filtered and the solvent was removed by rotary evaporation. The molecular weight was measured using GPC and polystyrene standards and was determined to be Mn 2800 g/mole and Mw 5400 g/mole.




embedded image


Preparation of Coating Solution:

In one flask, Estane 5703 (5 g) was added to MEK (95 g) and the mixture was stirred until the Estane dissolved. In a separate flask, a mixture of FC-3(5 g) and MEK (95 g) was stirred and heated to 65° C. until the fluorochemical dissolved. The coating solution was prepared by mixing 19 grams of the 5 wt % solution with 1 gram of the hot (65° C.) 5 wt % FC-3 solution.


EX101-EX102

The (Estane 5703/FC-3) coating solution was applied to PET film (3M Company) by means of a #13 Mayer rod (RD Specialties). The coated PET film was dried at either 21° C. for at least 30 minutes (EX101) or at 110° C. for 10 minutes (EX102).


EX103

The (Estane 5703/FC-3) coating solution (˜5 mL) was applied to the insides of the liner using a pipette. The liner was manually rotated to obtain complete wetting by the coating formulation, and excess coating was drained by flipping the container upside down. The coated liner was then dried at 21° C. for at least 2 hours.


The contact angles of EX100-102 were determined in the same manner as previously described. The paint repellency of the EX100-102 was evaluated in the same manner as Test Method 4 (except that the surface of the film was directly tested since the material was not coated on a glass microscope slide). The results were as follows:
















10% (by wt.)




aqueous 2-n-












Water
butoxyethanol




Contact Angles
Contact Angles
Paint

















CAH


CAH
Repellency





adv


adv
Test


Example
θadv
θrec
θrec)
θadv
θrec
θrec)
Method 4

















EX100
112
97
15
56
47
9
Pass


EX101
120
99
21
77
55
22
Pass


EX102
119
102
17
78
56
22
Pass









The paint repellency of EX100-102 was also evaluated according to Test Method 2 as previously described. The results were as follows:


















Mass Paint on
Fraction of Surface Coated



Example
Surface (g/cm2)
with Paint




















EX100
0.00074
5%



EX101
0.00074
5%



EX102
0.0013
5%










The paint repellency of EX100-102 was also evaluated according to Test Method 6 as previously described using a 4 cm×4 cm sample size. The results were as follows:


















Mass Paint on
Fraction of Surface Coated



Example
Surface (g/cm2)
with Paint









EX100
0.0035
15%



EX101
0.0031
10%



EX102
0.0090
 5%










The paint repellency of EX103 was evaluated according to Test Method 3. The coated liners were each reweighed after 10 and 60 minutes, respectively, and the mass of retained paint was calculated. The test results were as follows:



















Mass of Paint
Mass Per



Drainage
Mass
Retention
Surface Area



Time
Empty
Following
Calculation


Example
(mins)
Liner (g)
Drainage (g)
(g/cm2)



















PPS Liner
10
5.83
6.47
0.024


without any
60
5.83
3.51
0.013


Treatments


EX103
10
5.93
1.75
0.0066



60
5.93
0.28
0.0011









Surface Abrasion Test

A sample of sufficient size (e.g., 6 cm by 2 cm) was prepared and mounted on a Taber Abraser (Taber Industries 5750 Linear Abraser). A crockmeter square (AATC Crockmeter Square from Testfabrics, Inc.) was attached to the abraser head by means of a rubber band. No additional weights were placed on top of the abraser head. The cycle speed was set to 15 cycles/min, and each substrate was subjected to 2 abrasion cycles (or in otherwords the abraser head passed back and forth twice).


Contact angles with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water and paint repellency were tested after being subjected to this surface abrasion.
















10% (by wt.) aqueous




2-n-butoxyethanol



Contact Angles



After Abrasion
Paint Repellency














CAH
After Abrasion


Example
θadv
θrec
adv − θrec)
Test Method 4














EX100
53
45
8
Pass


EX101
77
50
27
Pass


EX102
77
56
21
Pass


EX97
72
32
40
Fail









The repellency of EX100-102 after abrasion was also evaluated by measuring the contact angles with water as previously described. The results were as follows:















Water Contact Angles



After Abrasion















CAH



Example
θadv
θrec
adv − θrec)
















EX100
109
99
10



EX101
119
85
34



EX102
120
90
30










The paint repellency of EX100-EX102 after abrasion was also evaluated according to Test Method 2 with the PPG paint as previously described, except 2.2 cm×3.2 cm substrates were used in place of 4 cm×4 cm samples. The results were as follows:


















Mass Paint on
Fraction of Surface Coated




Surface (g/cm2)
with Paint



Example
After Abrasion
After Abrasion









EX100
0.00040
<5% 



EX101
0.00064
5%



EX102
0.00065
5%










The paint repellency of EX100-EX102 after abrasion were also evaluated according to Test Method 6 with PPG paint as previously described, except 2.2 cm×3.2 cm substrates were used in place of 4 cm×4 cm samples. The results were as follows:


















Mass Paint on
Fraction of Surface Coated



Example
Surface (g/cm2)
with Paint









EX96
0.0018
10%



EX101
0.0022
30%



EX102
0.0017
10%









Claims
  • 1-40. (canceled)
  • 41. A component of a spray application system, the component comprising a liquid repellent surface such that the receding contact angle with water ranges from 90 degrees to 135 degrees; wherein the liquid repellent surface comprises a surface layer comprising a silane or siloxane material.
  • 42. The component of claim 41 wherein the liquid repellent surface is not a lubricant impregnated surface.
  • 43. The component of claim 42 wherein the liquid repellent surface comprises a solid liquid repellent material.
  • 44. The component of claim 41 wherein the siloxane material comprises a siloxane backbone and hydrocarbon side chains averaging at least 8 carbon atoms.
  • 45. The component of claim 41 wherein at least the liquid repellent surface of the component comprises a thermally processable polymer and a siloxane material melt additive.
  • 46. The component of claim 41 wherein the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser.
  • 47. A component of a spray application system, the component comprising a liquid repellent surface such that the receding contact angle with water ranges from 90 degrees to 135 degrees; wherein the liquid repellent surface comprises a fluorochemical material having a Mn of at least 1500 g/mole.
  • 48. The component of claim 47 wherein the fluorochemical material has a Mn of no greater than 50,000 g/mole.
  • 49. The component of claim 47 wherein the fluorochemical material has a melt temperature no greater than 200° C.
  • 50. The component of claim 47 wherein the liquid repellent surface comprises a fluorochemical material comprising terminal perfluoroalkyl group, pendent perfluoroalkyl groups, and contiguous alkylene groups averaging at least 8 carbon atoms.
  • 51. A component of a spray application system, the component comprising a liquid repellent surface comprising a solid liquid-repellent material and a non-fluorinated organic polymer binder such that the receding contact angle with water ranges from 90 degrees to 135 degrees and the liquid repellent surface is liquid repellent after 2 abrasion cycles at 15 cycles/minute with a Taber Linear Abraser.
  • 52. The component of claim 51 wherein the solid liquid-repellent material comprises a siloxane material.
  • 53. The component of claim 51 wherein the liquid repellent surface comprises a fluorochemical material having a Mn from 1500 g/mole to 50,000 g/mole.
  • 54. (canceled)
  • 55. The component of claim 53 wherein the fluorochemical material has a melting temperature no greater than 200° C.
  • 56. The component of claim 51 wherein the liquid repellent surface comprises a fluorochemical material comprising terminal perfluoroalkyl group, pendent perfluoroalkyl groups, and contiguous alkylene groups averaging at least 8 carbon atoms.
  • 57-60. (canceled)
  • 61. The component of claim 51 wherein at least the liquid repellent surface of the component comprises a thermally processible polymer and a siloxane material melt additive or fluorochemical material melt additive.
  • 62. (canceled)
  • 63. The component of claim 51 wherein the component is a liquid reservoir, a liquid reservoir liner, a lid for a liquid reservoir or liner, or a combination thereof.
  • 64. The component of claim 51 wherein the component comprises a thermoplastic polymeric material.
  • 65-67. (canceled)
  • 68. The component of claim 51 wherein the liquid repellent surface layer repels water-based paint having a volatile organic solvent of at least 10 g/liter, wherein the volatile organic solvent is water-soluble.
  • 69-72. (canceled)
  • 73. The component of a spray application system, of claim 51 wherein the component comprises a liquid repellent surface such that the mass of retained paint is no greater than 0.01 g/cm2; orthe difference between the advancing contact angle and the receding contact angle of the liquid repellent surface with water is less than 15; orthe receding contact angle with a solution containing 10% by weight of 2-n-butoxyethanol and 90% by weight deionized water is at least 40 degrees; ora drop of paint slides off the surface when orientated vertically.
  • 74-78. (canceled)
PCT Information
Filing Document Filing Date Country Kind
PCT/US16/58166 10/21/2016 WO 00
Provisional Applications (2)
Number Date Country
62327783 Apr 2016 US
62069512 Oct 2014 US
Continuations (1)
Number Date Country
Parent PCT/US15/57686 Oct 2015 US
Child 15769464 US