The invention relates generally to material application systems, for example but not limited to powder coating material application systems. More particularly, the invention relates to an applicator that reduces cleaning time, color change time and improves convenience of use.
Material application systems are used to apply one or more materials in one or more layers to an object. General examples are powder coating systems, other particulate material application systems such as may be used in the food processing industry, pharmaceuticals, electronics industry and product assembly, liquid spraying systems such as for applying conformal coatings to printed circuit boards or adhesives to surfaces, and liquid paint spraying systems. These are but a few examples of a wide and numerous variety of systems used to apply materials to an object.
The application of dry particulate material is especially challenging on a number of different levels. An example, but by no means a limitation on the use and application of the present invention, is the application of powder coating material to objects using a powder spray gun. Because sprayed powder tends to expand into a cloud or diffused spray pattern, known powder application systems use a spray booth for containment. Powder particles that do not adhere to the target object are generally referred to as powder overspray, and these particles tend to fall randomly within the booth and will alight on almost any exposed surface within the spray booth. Therefore, cleaning time and color change times are strongly related to the amount of surface area that is exposed to powder overspray.
In addition to surface areas exposed to powder overspray, color change times and cleaning are strongly related to the amount of interior surface area exposed to the flow of powder during an application process. Examples of such interior surface areas include all surface areas that form the powder flow path, from a supply of the powder all the way through the powder spray gun. Interior surface areas are typically cleaned by blowing purge air through the powder flow path. Moreover, wear items that have surfaces exposed to material impact, for example a spray nozzle in a typical powder spray gun, can be difficult to clean due to impact fusion of the powder on the wear surfaces. Still further, in known powder spray guns the spray pattern is changed primarily by changing the nozzle or changing the volume and/or flow rate of flow air that pushes the powder through the gun.
Many known material application systems utilize electrostatic charging of the particulate material to improve transfer efficiency. One form of electrostatic charging commonly used with powder coating material is corona charging that involves producing an ionized electric field through which the powder passes. The electrostatic field is produced by a high voltage source connected to a charging electrode that is installed in the electrostatic spray gun. Typically these electrodes are disposed directly within the powder path, adding to the complication of purging the powder path. Moreover, typical electrostatic spray guns have a heavy voltage multiplier located in the gun body near the outlet end of the gun, which can make the gun cumbersome and tiresome to manipulate.
The invention provides apparatus and methods for improving the cleanability of a spray applicator for particulate material, such as, for example but not by way of limitation, powder coating materials. Cleanability refers to, among other things, reducing the quantity of powder overspray that needs to be removed from exterior surfaces of the applicator. Cleanability also can refer to reducing the quantity of powder that needs to be purged or otherwise removed from interior surfaces that define the powder path through the spray applicator. Improving cleanability results in faster color change times by reducing contamination risk and shortening the amount of time needed to remove a first color powder from the applicator prior to introducing a second color powder.
In accordance with one aspect of the invention, cleanability is improved by reducing the effective exterior surface areas of the spray applicator that are exposed to powder overspray. In accordance with another aspect of the invention, the exterior surfaces are contoured or profiled so as to allow the surface areas to more effectively shed powder overspray. In one embodiment, a spray applicator has a housing that is formed to have a narrow rounded upper portion with steeply sloped sides, as compared to a lower portion of the housing.
In accordance with another aspect of the invention, interior surface areas are reduced so as to reduce the amount of surface area exposed to the flow of material. In accordance with another aspect of the invention, wear surfaces and interior surface areas are reduced by providing a spray applicator that eliminates use of a nozzle device. In one embodiment, the material being applied by the applicator exits the applicator body directly from a feed tube that extends through a housing of the applicator.
In further accordance with this aspect of the invention, interior surface areas are reduced by designing the spray applicator to operate with high density low volume powder feed. In this context, high density means that the powder fed to the spray applicator has a substantially reduced amount of entrainment or flow air in the powder as compared to conventional powder flow systems. Low volume simply refers to the use of less volume of flow air needed to feed the powder due to its higher density as compared to conventional powder spray guns. By removing a substantial amount of the air in the powder flow, the associated conduits, such as a powder feed hose and a powder feed tube, can be substantially reduced in diameter, thereby substantially reducing the interior surface area. This also results in an significant reduction in the overall size of the spray applicator, thus further reducing the amount of exterior surface area exposed to powder overspray. For manually operated spray applicators, the invention provides an easily replaceable or removable powder path. In any case, a powder flow path is realized that optionally comprises only a single part.
In accordance with another aspect of the invention, a spray applicator is contemplated that operates with high density low volume powder feed. In one embodiment, a spray contamination risk and shortening the amount of time needed to remove a first color powder from the applicator prior to introducing a second color powder.
In accordance with one aspect of the invention, cleanability is improved by reducing the effective exterior surface areas of the spray applicator that are exposed to powder overspray. In accordance with another aspect of the invention, the exterior surfaces are contoured or profiled so as to allow the surface areas to more effectively shed powder overspray. In one embodiment, a spray applicator has a housing that is formed to have a narrow rounded upper portion with steeply sloped sides, as compared to a lower portion of the housing.
In accordance with another aspect of the invention, interior surface areas are reduced so as to reduce the amount of surface area exposed to the flow of material. In accordance with another aspect of the invention, wear surfaces and interior surface areas are reduced by providing a spray applicator that eliminates use of a nozzle device. In one embodiment, the material being applied by the applicator exits the applicator body directly from a feed tube that extends through a housing of the applicator.
In further accordance with this aspect of the invention, interior surface areas are reduced by designing the spray applicator to operate with high density low volume powder feed. In this context, high density means that the powder fed to the spray applicator has a substantially reduced amount of entrainment or flow air in the powder as compared to conventional powder flow systems. Low volume simply refers to the use of less volume of flow air needed to feed the powder due to its higher density as compared to conventional powder spray guns. By removing a substantial amount of the air in the powder flow, the associated conduits, such as a powder feed hose and a powder feed tube, can be substantially reduced in diameter, thereby substantially reducing the interior surface area. This also results in an significant reduction in the overall size of the spray applicator, thus further reducing the amount of exterior surface area exposed to powder overspray. For manually operated spray applicators, the invention provides an easily replaceable or removable powder path. In any case, a powder flow path is realized that optionally comprises only a single part.
In accordance with another aspect of the invention, a spray applicator is contemplated that operates with high density low volume powder feed. In one embodiment, a spray applicator is provided that includes an air cap positioned at an outlet end of the spray applicator. The air cap permits an air stream to be directed at a high density powder flow that exits a powder feed tube. This arrangement not only eliminates the use of a nozzle, but also adds diffusing or atomizing air into the high density powder stream that exits the feed tube. In an alternative embodiment, an optional exterior electrode is provided in association with the air cap to provide an electrostatic spray applicator. The electrode is disposed exterior the spray applicator housing and powder flow path. In alternative embodiments, the electrode is retained in an electrode holder that is molded about the electrode, and optionally the electrode holder is keyed to the air cap so that the electrode is always optimally positioned with respect to the outlet end of the powder feed tube.
In accordance with another aspect of the invention, use of the air cap allows for spray pattern control by adjusting the flow of air that impinges on the powder stream. In one embodiment, a switch is provided by which an operator can adjust the spray pattern by simple actuation of the switch. Software logic is provided to allow for easy adjustment of the spray pattern.
Other aspects of the invention include providing a spray applicator that is more user friendly by locating a heavy component such as a voltage multiplier in a rearward portion of the applicator housing. For an automatic gun, as contrasted to a manually held gun, the rearward multiplier is realized in one embodiment by the use of an elongated electrical cable that extends from the multiplier output to a resistor and electrode located in a forward portion of the spray applicator. This allows the applicator to be mounted at its heavier rearward end thereby reducing strain and vibration on the elongated applicator when it is installed on a reciprocator or gun mover. In another embodiment, heat sink features are provided to further facilitate use of high density powder flows.
These and other aspects and advantages of the present invention will be apparent to those skilled in the art from the following description of the preferred embodiments in view of the accompanying drawings.
FIGS. 7A-C illustrate an electrode and holder assembly;
The invention contemplates a number of new aspects for a spray applicator for particulate material. The spray applicator is especially useful in combination with a material application system that uses dense phase flow of the particulate material. By “dense phase” is meant that the air present in the particulate flow is about the same as the amount of air used to fluidize the material at the supply such as a feed hopper. As used herein, “dense phase” and “high density” are used to convey the same idea of a low air volume mode of material flow in a pneumatic conveying system where not all of the material particles are carried in suspension. In such a dense phase system, the material is forced along a flow passage by significantly less air volume, with the material flowing more in the nature of plugs that push each other along the passage, somewhat analogous to pushing the plugs as a piston through the passage. With smaller cross-sectional passages this movement can be effected under lower pressures.
In contrast, conventional flow systems tend to use a dilute phase which is a mode of material flow in a pneumatic conveying system where all the particles are carried in suspension. Conventional flow systems introduce a significant quantity of air into the flow stream in order to pump the material from a supply and push it through under positive pressure to the spray application devices. For example, most conventional powder coating spray systems utilize Venturi pumps to draw fluidized powder from a supply into the pump. A Venturi pump by design adds a significant amount of air to the powder stream. Typically, flow air and atomizing air are added to the powder to push the powder under positive pressure through a feed hose and an applicator device. Thus, in a conventional powder coating spray system, the powder is entrained in a high velocity high volume of air, thus necessitating large diameter powder passageways in order to attain usable powder flow rates.
Dense phase flow is oftentimes used in connection with the transfer of material to a closed vessel under high pressure. The present invention, in being directed to material application rather than simply transport or transfer of material, contemplates flow at substantially lower pressure and flow rates as compared to dense phase transfer under high pressure to a closed vessel.
As compared to conventional dilute phase systems having air volume flow rates of about 3 to about 6 cfm (such as with a Venturi pump arrangement, for example), the present invention may operate at about 0.8 to about 1.6 cfm, for example. Thus, in the present invention, powder delivery rates may be on the order of about 150 to about 300 grams per minute.
Dense phase versus dilute phase flow can also be thought of as rich versus lean concentration of material in the air stream, such that the ratio of material to air is much higher in a dense phase system. In other words, in a dense phase system the same amount of material per unit time is transiting a cross-section (of a tube for example) of lesser area as compared to a dilute phase flow. For example, in some embodiments of the present invention, the cross-sectional area of a powder feed tube is about one-fourth the area of a feed tube for a conventional Venturi type system. For comparable flow of material per unit time then, the material is about four times denser in the air stream as compared to conventional dilute phase systems.
The present invention is directed to a spray applicator and various improvements therein, some of which are specific to a low pressure dense phase applicator, but others of which will find application in many types of material flow systems, whether dense phase, low pressure dense phase, or other. Accordingly, the present invention is not specifically concerned with the manner in which a dense phase material flow is created and fed to the applicator. In general, dense phase delivery is performed by a pump that operates to pull material into a chamber under negative pressure and discharge the material under positive pressure with a low air volume as noted above. There are a number of known dense phase pump and transfer systems, including but not limited to the following disclosures: EP Application No. 03/014,661.7; PCT Publication 03/024,613 A1; and PCT Publication 03/024,612 A1; the entire disclosures of which are fully incorporated herein by reference.
With reference to
As is known, the part P is suspended from an overhead conveyor 14 using hangers 16 or any other conveniently suitable arrangements. The booth 12 includes one or more openings 18 through which one or more spray applicators 20 may be used to apply coating material to the part P as it travels through the booth 12. The applicators 20 may be of any number depending on the particular design of the overall system 10. Each applicator can be a manually operated device as in device 20a, or a system controlled device, referred to herein as an automatic applicator 20b, wherein the term “automatic” simply refers to the fact that an automatic applicator is mounted on a support and is triggered on and off by a control system, rather than being manually supported and manually triggered. The present invention is directed to manual and automatic spray applicators.
It is common in the powder coating material application industry to refer to the powder applicators as powder spray guns, and with respect to the exemplary embodiments herein we will use the terms applicator and gun interchangeably. However, it is intended that the invention is applicable to material application devices other than powder spray guns, and hence the more general term spray applicator is used to convey the idea that the invention can be used in many material application systems in addition to powder coating material application systems. Some aspects of the invention are likewise applicable to electrostatic spray guns as well as non-electrostatic spray guns.
The spray guns 20 receive powder from a feed center 22 or other supply through an associated powder feed or supply hose 24. The automatic guns 20b typically are mounted on a support 26. The support 26 may be a simple stationary structure, or may be a movable structure, such as an oscillator that can move the guns up and down during a spraying operation, or a gun mover or reciprocator that can move the guns in and out of the spray booth, or a combination thereof.
The spray booth 12 is designed to contain powder overspray within the booth, usually by a large flow of containment air into the booth. This air flow into the booth is usually effected by a powder reclamation or recovery system 28. The recovery system 28 pulls air entrained powder overspray from the booth, such as for example through a duct 30. In some systems the powder overspray is returned to the feed center 22 as represented by the return line 32. In other systems the powder overspray is either dumped or otherwise reclaimed in a separate receptacle.
Other than the spray applicators, the selected design and operation of the material application system 10, including the spray booth 12, the conveyor 14, the recovery system 28, and the feed center or supply 22, form no part of the present invention and may be selected based on the requirements of a particular coating application. It is preferred although not required that the supply 22 provide a dense phase powder flow to the spray applicators 20. A control system 34 likewise may be a conventional control system such as a programmable processor based system or other suitable control circuit. The control system 34 executes a wide variety of control functions and algorithms, typically through the use of programmable logic and program routines, which are generally indicated in
The control functions for gun operation 38 include but are not limited to gun trigger on and off times, electrostatic parameters such as voltage and current settings and monitoring, and powder flow rates to the guns. These control functions may be conventional as is well known. However, in addition, the present invention does contemplate a new control function for the spray applicators of the present invention, specifically related to spray pattern adjusting and powder atomization air, as will be set forth herein below. This additional gun control function is made available by the present invention in the use of an air assist feature along with the feature of no longer using a nozzle device, used for dense phase powder flow, as contrasted to conventional systems wherein nozzles are commonly used and dense phase powder flow is not used.
While the described embodiments herein are presented in the context of a spray applicator for a powder coating material application system, those skilled in the art will readily appreciate that the present invention may be used in many different dry particulate material application systems, including but not limited in any manner to: talc on tires, super-absorbents such as for diapers, food related material such as flour, sugar, salt and so on, desiccants, release agents, and pharmaceuticals. The specific design and operation of the material application system selected provides no limitation on the present invention except as otherwise expressly noted herein.
While various aspects of the invention are described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects may be realized in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Still further, various alternative embodiments as to the various aspects and features of the invention, such as alternative materials, structures, configurations, methods, devices, software, hardware, control logic and so on may be described herein, but such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the aspects, concepts or features of the invention into additional embodiments within the scope of the present invention even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the invention may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present invention however, such values and ranges are not to be construed in a limiting sense and are only intended to be critical values if so expressly stated.
Even from the general schematic illustration of
With reference to
The spray applicator 20b includes a main housing 100 that encloses most of the applicator components. The housing 100 has a powder inlet end 102 and an outlet end 104. A powder tube 106 extends substantially through the housing 100. The powder tube 106 forms a straight and uninterrupted powder path from an inlet end 106a thereof to an outlet end 106b thereof. The powder tube is preferably a single piece of tubing to minimize joints that can trap powder. This makes the applicator 20b easy to clean and purge internally. The only joint in the powder path within the gun housing 100 is where a powder hose (not shown) is connected to the inlet end 102 of the gun as will be described herein below.
The housing 100 in this embodiment is a three section housing including a front section 100a, an elongated middle section 100b and a back section 100c. The front section 100a includes a boss 108 at its back end that fits inside the forward end of the middle section 100b with preferably a snug friction fit. The back section 100c includes a boss 110 at its forward end that fits inside the rearward end of the middle section 100b with preferably a snug friction fit. The powder tube 106 includes a forward threaded portion 112 that threadably mates with an internally threaded portion of the front section 100a. The powder tube 106 also includes a rearward threaded portion 114 (
A powder tube lock knob 124 is threadably joined to the lock nut 116. A forward end of a powder feed hose 125 is inserted through a bore 126 of the lock knob and bottoms against an inner shoulder 128 formed in the powder tube 106. A lock ring 130 is captured between a forward end of the lock knob 124 and the back edge of the powder tube 106. The lock ring allows easy insertion of a powder feed tube 125 into the inlet end of the gun 20b. The lock ring 130 however grips the outer wall of the feed tube and prevents the feed tube from backing out. The lock ring 130 tightly engages the feed tube 125 when the lock knob 124 is tightened down against the lock nut 116. The powder tube 125 can be easily removed for color change by simply loosening the lock knob 124. A seal 132 is provided to prevent loss of powder. The seal 132 also provides a friction fit so that when the powder tube 125 is removed from the gun, the lock knob 124 does not slide down the length of the powder tube.
It will thus be apparent from
The powder tube 106 extends through the housing 100 and the front end 106b is received in a central bore 136 of an air cap 138 that is retained on the front section 100a by a threaded retaining nut 140. With the powder tube 106 extending all the way through the gun, there is no nozzle device as used in typical prior art powder spray guns. Rather, powder will exit the gun from the front end 106b of the powder tube.
At this point it is noted that the spray applicator 20b will typically be a rather long device, with most of the length of the applicator defined by the middle section 100b. The overall gun length may be several feet, for example, five feet.
The air cap 138 is best illustrated in
The air cap 138 includes a central passage 136 that receives the front end of the powder tube 106. The passage 136 is sized so as to loosely receive the powder tube end. This helps to center the powder stream for proper presentation of the powder stream to the air jets 150. This also allows air to pass around the outside of the tube end to prevent powder from migrating back inside the gun housing. The central passage 136 is defined by a male threaded inner tubular portion 142. The male threads 144 receive a conductive diffuser ring as will be described herein shortly. An outer wall 146 of the air cap is also male threaded as at 148 and mates with the threaded retainer nut 140. The retainer nut 140 is thus threadably joined to the air cap 138 and a threaded end of the front housing section 100a (
As best illustrated in
The air jets 150 open to an annular air passage 154. The annular air passage 154 further communicates with an annular cavity 156. The annular cavity 156 receives a female threaded air diffuser ring 158 (
With reference to FIGS. 7A-C and
In one embodiment, an electrode assembly 160 is provided that includes an electrode conductor 164 and an electrode holder 166. Preferably although not necessarily the holder 166 is molded over the conductor 164. A short portion 164a of the conductor extends out of the holder 166 and a longer portion 164b extends from the opposite end of the holder 166. The holder 166 is formed with an alignment key 168 in the form of a U-shaped boss that is received in a conforming recess 170 formed in the air cap 138 (see
As best illustrated in
With reference to
The electrical cable 188 extends back through the extended housing mid-section 100bThe electrical cable 188 at its back end makes electrical contact with an output contact 190 of the multiplier 162. A nut 192 may be used to secure the electrical cable 188 to the multiplier output 190.
Thus, in accordance with another aspect of the invention, the high voltage multiplier 162 is positioned in a rearward section of the gun housing, preferably near where the gun is mounted. In this manner the major weight of the gun is supported at the back end to significantly reduce the vibration and movement of the forward portion of the gun. If the multiplier were positioned closer to the front of the gun, as in conventional powder guns, the cantilever mounting could cause large bending moments. Thus, the invention contemplates an arrangement of a multiplier in line with an electrical cable coupled to a resistance and the electrode, with the multiplier in a rearward portion of the gun and the resistance positioned near the front of the gun.
The multiplier 162 is mounted to a bracket member 194 by a bolt 196. The bracket is thermally conductive, such as made of aluminum that is also mounted to the heat sink 120 by a pair of screws 198. In this manner the multiplier can be cooled by the heat sink 120. A conventional electrical input connector 121 is used to provide the input drive voltage, typically a low DC voltage, to the multiplier input as is known.
An air tube 200 is pushed onto a nipple 202 formed in the front housing section 100a. The nipple 202 forms an air passage to a main air passage 204 that opens to the annular cavity 156 just behind the conductive ring 158. Air that flows down the air tube 200 thus passes through the holes 161 in the ring 158 and then out the air jets 150 in the air cap 138 as described herein above.
The air tube 200 extends back through the gun housing 100 to a male connector 206. The male connector 206 mates with a first bore 208 that is formed in the front face 210 of the heat sink 120 (see
The exploded views of
In accordance with another aspect of the invention, as best illustrated in
With reference to
The manual gun 250 includes a housing 252 that in this embodiment is a two piece housing including a rear or multiplier section 254 and a front or powder tube section 256 in the form of a barrel. These sections can be releasably secured together by any convenient mechanism such as a set screw for example. There is an air cap 258 that is retained on the outlet end of the front housing 256 by a retainer nut 260. The air cap holds an electrode assembly 262 and also a conductive diffuser ring 263 (shown in
The manual gun 250 further includes an air inlet, such as a fitting 264 that is connectable to an air line (not shown). An electrical connector 266 is provided for connection with an external low voltage power supply to operate the internal high voltage multiplier 268 (shown in dotted line in
Operation of the manual gun 250 is similar to the automatic version except that the manual gun is manually triggered by an operator. Thus the manual gun includes a control trigger device 271. When this trigger 271 is depressed it causes electrical power to be delivered to the multiplier when electrostatic operation is to be used. Actuation of the control trigger 271 also allows air to flow to the air cap 258 via passages that extend through the handle 270 and the housing 252. Air may also be used to cool the multiplier via a heat sink as in the automatic version. The control trigger 271 actuation also causes powder to flow through the gun from a powder feed hose 273 and out the front end of the gun.
Air enters the applicator 250 via the air fitting 264 and into a passage 272 in the handle 270. This air can be used to help cool the multiplier 268. The passage 272 is in fluid communication with an air passage 274 in the front housing section 256. The passage 274 extends through the front housing section and opens to a recess 276 in the air cap 258 that receives the diffuser ring 263.
The electrode 262 makes electrical contact with the diffuser ring 263 in a manner as described herein above. There is also a contact pin 278 that contacts the ring 263. The contact pin 278 is part of an electrical circuit that includes a spring electrode 280 and a resistor assembly 282 and a conductive electrode spacer 282a that is electrically coupled to an output of the multiplier 268. The electrode spacer 282a may for example be made of a conductive Teflon™ material. This electrical circuit may be similar as described herein above in the embodiment of the automatic gun.
The powder feed hose 273 is inserted into a tubular extension 284 of the front housing section 256. A female threaded tube lock knob 286 and a lock ring 288 may be used to retain the feed hose 273 in the tubular extension 284. The lock ring and lock knob may be designed to function in a manner similar to the corresponding parts in the automatic gun described herein before.
The forward end 273a of the feed hose 273 inserts into a hose passageway 290 formed in a powder tube 292. The passageway 290 opens to a powder passage 294 that preferably lies along the central longitudinal axis of the applicator 250. The distal end 294a of the passageway 294 is formed by a tubular portion 296 of the powder tube 292 (see also
The powder tube 292 thus provides an easily removable unit that forms the entire powder flow path for the spray gun 250. This makes the manual gun easy to clean for color change.
In accordance with another aspect of the invention, an adjusting member or control device in the form of a second trigger device 298 is provided. This trigger 298 may be actuated alone or in combination with the control trigger 271. The second trigger 298 is a pattern adjust trigger by which an operator can adjust the flow of air to the air cap 258. By increasing the air flow, the spray pattern is made larger and vice-versa As shown in
With reference to
At step 306 if the trigger 298 is not still on then the program holds that air flow rate at 308 and loops back to wait for the next trigger actuation at step 300.
If at step 304 the system determines that the maximum air flow is being provided, then at step 310 the logic checks if the trigger 298 is still activated. If it is not the program branches to step 308 and holds the air flow rate (and hence the selected pattern). If at step 310 the trigger is still on, then the program resets the air flow back to the minimum air flow rate at 312 and loops back to step 300. Alternatively, at step 312 instead of resetting to the minimum flow rate and waiting for another trigger, the program could branch to step 302 and start incrementing again. This alternative method would allow the operator to keep the trigger depressed and observe the spray pattern as the air flow was adjusted through the maximum air flow rate and them incremented again from the minimum air flow rate.
As another alternative to the “ramp” feature that is described previously for the pattern shaping air, the control function may be programmed to incorporate a “hi/lo” feature. This “hi/lo” feature would use discrete actuation of the trigger 298 to switch between a “high” and a “low” pattern shaping air flow setting. During normal spraying, say the operator is using the high setting, which he controls from the manual gun controller, to give a large fan pattern. He then comes to an area where he needs a narrow fan pattern to better coat the part. He can actuate trigger 298 once, and the controller will change the flow of pattern shaping air to a lower setting, which the operator has previously set to a certain value through the manual gun controller. A second actuation of trigger 298 will revert the pattern shaping air flow back to the “high” setting.
It should be noted that varying the spray pattern by adjusting the air flow can also be implemented in the automatic spray applicator described herein above because the adjustment is essentially a software logic control function. In the automatic gun version the control system could be provided with a switch for the operator to activate to increment the air flow rate to the gun.
The invention has been described with reference to the preferred embodiment. Modifications and alterations will occur to others upon a reading and understanding of this specification and drawings. The invention is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of pending U.S. provisional patent application Ser. Nos. 60/481,250 filed on Aug. 18, 2003, for POWDER APPLICATOR WITH PATTERN ADJUSTMENT; 60/523,012 filed on Nov. 18, 2003 for POWDER SPRAY APPLICATOR; and 60/554,655 filed on Mar. 19, 2004 for POWDER COATING MATERIAL SPRAY GUN, the entire disclosures all of which are fully incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/26887 | 8/18/2004 | WO | 4/29/2005 |
Number | Date | Country | |
---|---|---|---|
60481250 | Aug 2003 | US | |
60523012 | Nov 2003 | US | |
60554655 | Mar 2004 | US |