The present disclosure relates to a spray cleaner head having at least two axes of rotation. Spray cleaner heads having multiple axes of rotation are generally known. One such example is present in U.S. Pat. No. 8,382,915, assigned to NLB Corp.
Such spray cleaner heads are particularly useful for cleaning concrete mixer drums. During use of a concrete mixer drum, residual concrete eventually cures and hardens within the mixer drum, which increases the apparent weight of the mixer drum and lowers the liquid concrete capacity of the drum. The spray cleaner heads are configured to direct a relatively high pressure stream of fluid throughout the interior of the mixer drum to clean liquid and solid concrete from the interior of the mixer drum.
In one aspect of this disclosure, a spray cleaner head includes at least one nozzle rotatable about a first axis and a second axis. The spray cleaner head further includes an inlet shaft provided along the first axis. The inlet shaft is in fluid communication with the at least one nozzle. The spray cleaner head also includes a gear system configured to regulate rotation of the nozzle. The gear system includes a central bore receiving the inlet shaft.
In another aspect of this disclosure, a spray cleaner head includes a nozzle rotatable about a first axis and a second axis. The spray cleaner head further includes an adjustable brake assembly configured to selectively regulate rotation of the nozzle.
In yet another aspect of this disclosure, a spray cleaner head for a cleaning system includes an inlet shaft provided about a first axis, and an outlet shaft provided about a second axis. The outlet shaft has at least one orifice therein. The at least one orifice is in fluid communication with an outlet of the inlet shaft. A first seal and a second seal are provided on opposite axial sides of the at least one orifice.
These and other features of the present disclosure can be best understood from the following drawings and detailed description.
The drawings can be briefly described as follows:
In one example, an interior surface 12 of the vessel 10 is substantially covered by hardened concrete 14. To remove the hardened concrete 14 from the interior surface 12 of the vessel 10, a spray cleaner head 20 according to this disclosure is arranged inside the vessel 10. The spray cleaner head 20 is in communication with a pressurized fluid source 22 via a fluid line 24. The pressurized fluid source 22 in one example is in communication with a control, such as a computer, configured to control operation of the pressurized fluid source 22. The control may be a mechanical control, however, such as a valve (or series of valves).
As will be explained in detail below, fluid from the pressurized fluid source 22 is configured to be ejected from the spray cleaner head 20 to clean the inside of the vessel 10. The pressurized fluid further is configured to rotate the spray cleaner head 20 about a first axis of rotation A1, or inlet axis of rotation, and a second axis of rotation A2, or an outlet axis of rotation.
Each of the nozzles 34A, 34B are offset from the second axis A2 by a distance D1. As high pressure fluid is directed to the nozzles 34A, 34B, the fluid F is expelled outwardly, and generates a thrust, by virtue of the offset distances D1. This translates into rotation of the nozzle block 36 in a generally counter clockwise rotational direction R1 relative to
Referring to
In this example, there are four fasteners 38 and four fasteners 44 connecting the inlet housing assembly 26, the hub assembly 28, and the brake housing assembly 30. It should be understood that any desired number of fasteners could be used, however. Using the disclosed arrangement, the inlet housing assembly 26, the hub assembly 28, and the brake housing assembly 30 are relatively easily disassembled from one another. This allows the inner workings of the hub assembly 28 (e.g., seals, gears, etc.) to be conveniently accessed for repair or replacement simply by removing the fasteners 38, 44.
As illustrated in
The spray cleaner head 20 is generally configured to rotate about the axis A1 (relative to the inlet shaft 32), as generally explained above, by way of a first radial bearing 60, shown in
The outlet shaft 33 is likewise supported at axial ends thereof by radial bearings 64, 66. These radial bearings 64, 66 not only provide rotational support to the outlet shaft 33, but further provide the added feature of preventing incidental damage to the outlet shaft 33.
Turning to
The fluid intersection between the inlet shaft 32 and the outlet shaft 33 is sealed with a plurality of seals. For instance, a first seal 70 is provided at an axial end of the inlet shaft 32, at a point downstream of the bearing 62. Further, first and second seals 72, 74 are provided on opposite sides of the orifices 33O of the outlet shaft 33 at points axially between the bearings 64, 66, relative to the second axis A2. The first and second seals 72, 74 thus serve to contain the pressure from the fluid F flowing inside the spray cleaner head 20, which in turn reduces the load on the bearings 64, 66. These seals 70, 72, 74 are high pressure seals configured for use in applications where the spray cleaner head 20 is in communication with a high pressure fluid F. One example of these high pressure seals is disclosed in U.S. Pat. No. 8,251,301, assigned to NLB Corp., the entirety of which is herein incorporated by reference.
As noted above, the spray cleaner head 20 is easily assembled and disassembled because of the relatively low number of fasteners 38, 44. These fasteners can be removed, and the seals 70, 72, 74 can be replaced relatively quickly. Relative to the seals 72, 74 in particular, the output shaft 33 is maintained in position by an output shaft cover 33C which in turn is maintained in position by a plurality of fasteners (not shown). The output shaft cover 33C can be removed, and the seals 72, 74 can be accessed along the axis A2 (from the right relative to
The speed reduction gear system 48 is further configured to regulate rotation of the nozzle block 36 in the direction R1 and further regulate rotation of the spray cleaner head 20 in the direction R3. In one example, the speed reduction gear system 48 is configured such that the jets expelled from the nozzles 34A, 34B do not cover the same path on an interior 12 of the vessel 10 within too short a time.
In one example, a ratio of rotations of the spray cleaner head 20 around the axis A1 (in rotational direction R3) to rotations of the nozzle block 36 about the axis A2 (in rotational direction R1) is at least 1 to 7.9. In one particular example, the ratio is 1 to 7.942. Other ratios come within the scope of this disclosure, however. For instance, while the speed reduction gear system 48 is a two-stage gear system, a three stage gear system could provide a ratio on the order of 1 to 22. Depending on the particular application, an appropriate ratio can be selected to ensure that the spray cleaner head 20 does not overlap the same cleaning path too soon in the cleaning cycle, which in turn can lead to inefficient cleaning (sometimes known as “striping”). It may be important, in some examples, to consider how evenly the ratio is divided into the number 360 (e.g., whether 360 divided by the ratio—for instance 7.9—would provide an even result). If the result is a whole number, then the striping may be more likely to occur.
As will be explained below, a brake assembly can be adjusted to change the rotational speed of the nozzles 34A, 34B. As this speed is adjusted, the speed reduction gear system 48 is configured to maintain a substantially constant ratio. This provides the same, efficient level of nozzle coverage regardless of rotational speed.
As noted relative to
The brake assembly 58 generally includes a rotor 98 and first and second axially opposed stators 100, 102. As illustrated, the rotor 98 is coupled to the brake shaft 96. The rotor 98 is configured to be rotated about the axis A1 in a direction R3, with rotation of the brake miter gear 54. In one example, the speed of rotation of the rotor 98 is faster than rotation of the brake miter gear 54. The speed increase gear system 56 provides this speed differential by way of the arrangement of the speed increase gear system 56 relative to the brake shaft 96.
In particular, the brake miter gear 54 is coupled to the speed increase gear system 56 (generally illustrated at a point 104), whereas the brake shaft 96 is coupled to the speed increase gear system 56 at an opposite axially axial end (generally illustrated at point 106) of the speed increase gear system 56. The speed increase gear system 56 is arranged substantially similar to the speed reduction gear system 48. Accordingly, for the sake of brevity, the arrangement is not repeated herein.
As the outlet miter gear 52 rotates, the rotation of the outlet miter gear 52 translates into rotation of the rotor 98. Rotation of the rotor 98 can be resisted in various levels based on the relative arrangement of the stators 100, 102.
In one example, the stator 100 is fixed relative to the brake housing assembly 30 via a plurality of fasteners 100F. On the other hand, the stator assembly 102 is capable of being rotated within an angular range, in one example approximately 30 degrees, to provide an adjustable braking force, as will be explained below.
In one example, the rotor 98 is a metallic material, such as copper, that is responsive to a magnetic force. Further, the stators 100, 102 each include a plurality of magnets 108, 110, arranged circumferentially in an alternating north pole (e.g., 108) and south pole pattern (e.g., 110) as illustrated in
In a minimum braking position, a minimum braking force is provided when the magnets 108, 110 of the stator 100 axially face magnets 108, 110 having like poles (e.g., north pole magnets 108 of the stator 100 axially face north pole magnets 108 of the stator 102, and vice versa). This creates a magnetic opposing force between the stators 100, 102. On the other hand, in a maximum braking position, the stators 100, 102 are aligned such that the opposite poles axially face one another (e.g., north pole magnets 108 of the stator 100 axially face south pole magnets 110 of the stator 102, and vice versa). This creates a magnetic attraction force between the stators 100, 102, which in turn resists rotation of the rotor 98.
There may further be one or more intermediate positions (between the minimum and maximum braking positions), which provide an intermediate level of braking, between the minimum and maximum braking positions. A user can select an appropriate braking level depending on the desired application.
Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.