Spray coating system and method

Information

  • Patent Grant
  • 9527097
  • Patent Number
    9,527,097
  • Date Filed
    Tuesday, November 5, 2013
    10 years ago
  • Date Issued
    Tuesday, December 27, 2016
    7 years ago
Abstract
A spray coating system has a wash enclosure with an enclosed wash space. A plurality of liquid tanks disperse liquids within the wash space via emitters. A spray enclosure has at least one spray port coupled to an enclosed spray space. A part hanger dimensioned to carry parts, is rotatable about a vertical axis while in the wash space and the spray space. A conveyor may be included, for example, for transporting the part hanger between the wash space and the spray space.
Description
BACKGROUND

Field of the Invention


The invention relates to a system and method for spray coating a part, and more particularly a system and method utilizing compact enclosed wash and spray spaces in which the part is rotated during cleaning and covering.


Description of Related Art


Industrial spray coating systems typically utilize extended conveyors which convey the part(s) to be coated through multiple cleaning, heating, spraying and/or curing stages in a continuous serial process. These systems require a large space and may be relatively inflexible and/or energy inefficient with respect to changes in the type and/or numbers of parts operated upon and/or the specific cleaning and/or coating steps these parts may require.


Where electrostatic powder coating techniques are applied, the part requires a ground path between the part and ground, so that the electrostatically charged powdered coating material is attracted to and retained upon the part. A known issue in this type of coating process is the degradation of the ground path due to accumulated coating material also covering support elements, such as hangers or the like, as the part is conveyed through the coating stage, degrading the ground path through the support elements as additional parts are processed.


Additional process steps to regularly strip such accumulated material from the support elements may consume significant time and expense.


Another known quality and/or cost issue is the proper de-greasing, cleaning and/or pre-treatment of the part, prior to covering with the powdered material. Liquid agents sprayed upon the part during these steps may cross-contaminate one another if not applied separately. Further, these liquid agents may be a significant consumable cost of the process.


Competition in the spray coating industry has focused attention on process flexibility, quality control, labor requirements and overall reductions in manufacturing and installation costs.


Therefore, it is an object of the invention to provide a system and methods that overcome deficiencies in the prior art.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, where like reference numbers in the drawing figures refer to the same feature or element and may not be described in detail for every drawing figure in which they appear and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.



FIG. 1 is a schematic isometric view of an exemplary spray coating system.



FIG. 2 is a schematic top view on an exemplary spray coating system, with tops of the wash and spray enclosures removed for clarity.



FIG. 3 is a schematic isometric view of a part hanger loaded with exemplary parts.



FIG. 4 is a schematic top view of a part hanger positioned engaged with a super structure mounted drive arrangement, for rotation of the part hanger.



FIG. 5 is a schematic isometric partial cut-away view of rotating elements of the part hanger, demonstrating cover clips seated upon hanger holes and mounting points.



FIG. 6 is a schematic isometric view of a wash enclosure, demonstrating a single liquid tank and associated periphery header and risers.



FIG. 7 is a schematic isometric view of a wash enclosure, demonstrating periphery headers and risers for five separate liquid tanks.



FIG. 8 is a schematic isometric angled front view of a spray enclosure.





DETAILED DESCRIPTION

The inventors have recognized that the prior sequential stage linear path conveyor spray coating systems are inherently inefficient and inflexible.


As shown for example in FIGS. 1 and 2, a modular spray coating system 1 includes a wash enclosure 3, a spray enclosure 5 and a conveyor 7 with a part hanger 9 movable along the conveyor 7 between, for example, a load/unload station 11, a wash space 13 of the wash enclosure 3 and a spray space 15 of the spray enclosure 5. Depending on the requirements of the coatings applied, heaters 17 may also be included along the conveyor 7 for drying/pre-heating the part hanger 9 and parts 19 thereon after washing and/or for melt/drying/curing of coatings applied to the parts 19 while in the spray space 15.


The conveyor 7 may be a pathway created from, for example, I-beam rail sections from which the part hanger 9 is slidably suspended. Alternatively, the part hanger 9 may be manually transported between the enclosures. As best shown for example in FIG. 3, the part hanger 9 is rotatable about a vertical axis, for example, suspended from one or more carriage assemblies 21. Portions of the part hanger 9 exposed to the process may be hung from a drop shaft 23 to minimize the potential for rail section fouling from cleaning and/or spray operations performed on the part hanger 9 and parts 19 hung therefrom.


The part hanger 9 may be provided, for example, in a generally circular wheel or polygonal configuration with a plurality of spokes 25 extending from a hub 27 to a rim 29, the spokes 25 and/or rim 29 provided with hanger holes 31 spaced there along. The hanger holes 31 may be dimensioned to receive hangers 33 to which the parts 19 are coupled, for example by hooks, clips, lines or the like. Further mounting points 35 may be provided along the top edges of the rim 29 and/or spokes 25. The many hanger holes 31/mounting points 35, allow for ease of spacing the parts 19 away from one another and/or distributing the parts so that the part hanger 9 may be balanced with respect to its vertical axis, depending upon the size and number of the parts 19 being processed together. Alternatively, where a single large part 19 is being processed, this may be suspended directly from the hub 27 or multiple locations.


Rotation of the part hanger 9 may be driven by engaging a drive surface 37 provided proximate an upper end of the drop shaft 23, provided for example as the outer rim of a drive disk 39 or gear. As best shown in FIG. 4, a drive arrangement 41 coupled to supporting super structure may be dimensioned for securely engaging and rotating the drive disk 39. The drive arrangement 41 may include a retaining wheel 43 mounted upon an actuator 45, the retaining wheel 43 and actuator 45 configured to bias the drive disk against the drive wheel 47 of a motor 49 or the like, when the part hanger 9 has been positioned along the conveyor 7 with respect to the wash or spray space 13, 15. Alternatively, the actuator 45 moves the retaining wheel 43 aside, to allow removal of the part hanger 9 along the conveyor 7.


For electrostatic coating processes, one skilled in the art will appreciate that it is important to provide an electrical ground path between each part to be coated and an earth ground so that the positively charged powdered material in the spray space 15 is attracted to each part. If the ground path is degraded, the attraction between the powdered material and the part 19 may be similarly degraded, reducing the quality and/or coverage of the resulting coating.


The part hanger 9 may be exposed in both the wash and spray spaces 13, 15, resulting in the build-up of material which may degrade the electrical continuity between hangers 33 and the hanger holes 31 or mounting points 35. To extend periods between periodic cleaning of the entire part hanger 9, cover clips 51 may be applied between the part hanger 9 and the hangers 33 the parts 19 are coupled to. As best shown in FIG. 5, the cover clips 51 may be generally U-shaped, dimensioned to grasp the width of the spoke 25 or rim 29 it is mounted upon. Thereby, the ground path between the part 19 and earth ground passes through the hanger 9, the cover clip 51 and part hanger 9 which may itself be coupled to ground, for example, by a wiper 52 engaging the drive surface 37 or the like (see FIG. 4).


As material build-up occurs, the cover clips 51 and/or hangers 33 that become coated may be quickly exchanged for uncoated cover clips 51 and/or hangers 33, saving the system downtime and expense of manually cleaning the entire part hanger 9. The fouled cover clips 51 and hangers 33 may be disposable or cost efficiently cleanable via, for example, solvent immersion or the like, due to their relatively small dimensions, compared to the part hanger 9.


The wash enclosure 3, as best shown in FIGS. 6 and 7, provides an enclosed wash space 13 wherein cleaning agents stored in liquid tanks 53 may be dispersed through emitters 63 to coat/clean the parts 19 rotating with the part hanger 9 within the wash space 13. Cleaning agents may include, for example, high temperature water, steam, acid and/or caustic solutions, phosphates, detergents, degreasers or the like.


To disperse/project the cleaning agents, each cleaning agent may be distributed from its liquid tank 53 via a periphery header 59 which extends around a periphery of the wash space 13 along an inner or outer side of a sidewall of the wash space 13. A plurality of risers 61 are spaced along each of the periphery headers 59. The risers 61 may each include a plurality of emitters 63, such as slots, nozzles and/or spray heads, enabling tuning of the distribution of the respective cleaning agent upon the parts 19 from multiple sides and vertical positions with respect to the wash space 13, as the parts 19 are rotated within the wash space 13 via the rotation of the part hanger 9. Flow rate and/or spray pressure of the cleaning agent may be controlled, for example, by a pump 65 positioned between each liquid tank 53 and its periphery header 59. Depending upon the type of cleaning agent, an inline heater, such as a heat exchanger or the like (not shown) may be applied to enable delivery of heated cleaning agent to the wash space 13.


The wash space 13 may be further enclosed by doors 67 which open to receive the part hanger 9 and an enclosing ceiling provided with a part hanger slot 69 dimensioned to receive the dropshaft 23 there along (See FIGS. 1 and 2).


The cleaning agents may be recovered to their respective liquid tanks 53 through a floor drain 71 of the wash space 13, routed to the proper liquid tank 53 by the orientation of a rotatable drain valve 73 forming a return drain path selectable, for example, between a module outlet 74, such as an external waste drain, and each of the liquid tanks 53, according to a rotation angle of the rotatable drain valve 73. Alternatively, a valve manifold or the like may be applied to open/close a desired return drain path according to the cleaning agent/cycle type that is in use.


Where the liquid tanks 53 are provided in a base 75 of the wash enclosure 3, the return drain path may be configured for liquid flow entirely via gravity, without the need for additional pumping equipment.


The spray enclosure 5, as best shown in FIG. 8, provides a spray space 15 where the parts 19 may be coated as the part hanger 9 is rotated there within, for example by spraying upon the parts 19 through a spray access 77. The spray access 77 may be, for example, the entry passage for the part hanger 9, where one or more human operators 79 (see FIG. 2) may be positioned to manually spray into the spray space 15. The spray enclosure 5 may include additional spray access 77, for example for automated spray guns 81 or the like, requiring the one or more operators 79, if present, to provide only touch up spraying of any uncoated areas of the parts 19 that may be observed.


Although the spray space 15 may be generally open to the surrounding area via the spray access 77 being dimensioned large enough to receive the part hanger 9, without application of additional doors or the like, coating materials sprayed into the spray space 15 upon and around the parts 19 may be generally contained within the spray space 15 by air flow ducting configured to guide airflow through the spray access 77, across the parts 19 and out through an exhaust stack 83 including bag filters or the like.


Further concentration of the spray material around the parts 19 may be obtained by, for example, adding planar air flow inlets 85 along the spray space sidewalls 87. The planar air flow inlets 85 create air currents, similar to an air curtain, swirling about the parts 19, resulting in greater latency of the spray material about the parts 19, before the air carrying any remaining unattached spray material finally moves toward the exhaust stack 83.


A part hanger slot 69 may also be applied to the spray enclosure ceiling to improve containment of the spray space 15, without inhibiting entry/exit of the part hanger 9. Spray material recovery apparatus for gathering spray material not attached to the parts during the spraying may be applied to the floor of the spray space and/or exhaust stack 83 to enable excess spray material collection and/or re-use.


In use, the part hanger 9 may be loaded with parts 19 at a load/unload station 11 and the part hanger 9 moved along the conveyor 7 into the wash enclosure 3 and engagement with the drive arrangement 41 for part hanger 9 rotation. With the doors 67 closed, a cleaning and/or rinse cycle may be applied with a selected program of cleaning agents circulated from and returned to the respective liquid tanks 53 and/or the module outlet 74 for selected flow rates/periods.


The cleaned part hanger 9 and parts 19 may then be moved along the conveyor 7 from the wash enclosure 3 to and/or through a heater 17 operating as a dryer/pre-heater according to the requirements of the spray material being applied.


Dried and/or preheated as desired, the part hanger 9 may then be moved along the conveyor 7 to the spray enclosure 5 and into the spray space 15/engagement with the drive arrangement 41 thereof for part hanger 9 rotation. Spray material is then applied upon the rotating parts 19 through the spray access via automatic and/or manual spraying. As the parts 19 rotate, the various sides of the parts 19 are exposed to each spray access 77, facilitating even and/or complete part 19 coverage with the selected coating material.


Where electrostatic spraying is applied, an electrical ground 54 coupled wiper 52 engaging, for example, the drive surface 37 of the drive disk 39, completes a ground path between the parts 19, hanger 33, cover clip 51 and part hanger 9, so that positively charged powdered material emitted from the sprayer guns 81 is attracted to and retained upon the surface of the parts 19.


The part hanger 9 with coated parts 19 is then moved along the conveyor 7 from the spray space 15 to a heater 17 for melting, drying and/or curing the coating material upon the parts 19. Moved along the conveyor 7 to a load/unload station 11, the coated parts 19 may be unloaded and the part hanger 9 readied for re-use by exchanging the cover clips 51 and/or hangers 33 as need be.


One skilled in the art will appreciate that although the spray coating system 1 figures demonstrate a single part hanger 9 in use, for figure clarity purposes, multiple part hangers 9 may be provided along the conveyor 7 so that while one part hanger 9 and parts 19 thereon is undergoing washing, heating, spraying, final heating/curing and/or loading/unloading, other part hangers 9 may be at other stations along the system, increasing system throughput. Further, the conveyor may include a conveyor transport arrangement for powered/automated travel there along, such as a drive, gear, chain or belt transport system. As these conveyor transport arrangements are well known in the art, further detail of such is not included herein.


From the foregoing, it will be apparent that the spray coating system 1 and methods disclosed enable a significant space, energy consumption and production flexibility improvement over the prior coating systems. In particular, the spray coating system 1 is easily adaptable to operate upon a wide range of different parts and their specific coating requirements, even processing of different types of parts according to custom requirements thereof at different stations of the system, simultaneously.












Table of Parts
















1
spray coating system


3
wash module


5
spray module


7
conveyor


9
part hanger


11
load/unload station


13
wash space


15
spray space


17
heater


19
part


21
carriage assembly


23
drop shaft


25
spoke


27
hub


29
rim


31
hanger hole


33
hanger


35
mounting point


37
drive surface


39
drive disk


41
drive arrangement


43
retaining wheel


45
actuator


47
drive wheel


49
motor


51
cover clip


52
wiper


53
liquid tank


54
electrical ground


55
emitter


59
periphery header


61
riser


63
emitter


65
pump


67
door


69
part hanger slot


71
floor drain


73
drain valve


74
module outlet


75
base


77
spray access


79
operator


81
spray gun


83
exhaust stack


85
planar air flow inlet


87
spray space sidewall









Where in the foregoing description reference has been made to ratios, integers, components or modules having known equivalents then such equivalents are herein incorporated as if individually set forth.


While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.

Claims
  • 1. A spray coating system, comprising: a wash enclosure with an enclosed wash space;a plurality of liquid tanks, each of the liquid tanks coupled to a plurality of emitters arrayed to disperse a liquid from each liquid tank within the enclosed wash space;a spray enclosure with at least one spray access coupled to a spray space;a part hanger rotatable about a vertical axis said part hanger including a spoke and a rim; a hanger configured to couple to a part to be processed;a removable cover clip seated upon a mounting point of the part hanger or a hanger hole of the part hanger, said removable cover clip is located between the part hanger and the hanger,the removable cover clip provided with a U-shaped cross-section, said removable cover clip is mounted to the part hanger with the cover clip grasping a width of the spoke or the rim of the part hanger; contact between the hanger and the removable cover clip and contact between the part hanger and the removable cover clip form an electrical ground path through the hanger, the removable cover clip, and the part hanger to an electrical ground; a plurality of the removable cover clips and a plurality of the hangers applied to the part hanger; and the part hanger transferable between the enclosed wash space and the spray space; wherein the part hanger is rotatable while in the enclosed wash space and the spray space.
  • 2. The system of claim 1, further including a conveyor dimensioned to transfer the part hanger between the enclosed wash space and the spray space.
  • 3. The system of claim 1, wherein the ground path between the plurality of hangers of the part hanger and ground is maintained during rotation of the part hanger by a wiper biased against the part hanger.
  • 4. The system of claim 1, wherein the conveyor includes a track, the part hanger slidable along the track; the part hanger extended from the track by a drop shaft.
  • 5. The system of claim 1, further including a rotatable drain of the wash enclosure; the rotatable drain forming a return drain path selectable between a module outlet and at least one of the liquid tanks, according to a rotation angle of the rotatable drain.
  • 6. The system of claim 1, wherein each of the liquid tanks is coupled to a separate periphery header extending around a periphery of the enclosed wash space, each of the periphery headers coupled to a plurality of risers spaced along each of the periphery headers, the risers extending from each of the periphery headers with a plurality of the emitters projecting therefrom to disperse the liquid of the liquid tank within the enclosed wash space.
  • 7. The system of claim 1, further including a heater; the heater provided along the conveyor between the wash enclosure and the spray enclosure; the heater dimensioned to receive the part hanger.
  • 8. The system of claim 1, wherein the spray enclosure includes a drive arrangement dimensioned to engage with and rotate the part hanger, while the part hanger is within the spray space.
US Referenced Citations (70)
Number Name Date Kind
2445451 Padelford Jul 1948 A
2598466 Tuttle May 1952 A
2858266 Schneider Oct 1958 A
3378018 Lawter Apr 1968 A
3724472 Jenkins et al. Apr 1973 A
3744449 Guttman Jul 1973 A
3843054 Kendall Oct 1974 A
3913523 Probst Oct 1975 A
4009301 Heckman et al. Feb 1977 A
4024923 Broadbent May 1977 A
4037727 Kunkle Jul 1977 A
4155732 Christian et al. May 1979 A
4243146 Davitz Jan 1981 A
4263122 Urquhart Apr 1981 A
4600608 Ankrett Jul 1986 A
4628859 Hines Dec 1986 A
4668358 Ball May 1987 A
4736760 Coberly Apr 1988 A
4930213 Hayakawa et al. Jun 1990 A
4953495 Salisbury Sep 1990 A
5099787 Powers Mar 1992 A
5107789 Salisbury Apr 1992 A
5124177 Kasmark et al. Jun 1992 A
5147050 Cullen Sep 1992 A
5233795 Reas Aug 1993 A
5264255 Salisbury Nov 1993 A
5382306 Plata et al. Jan 1995 A
5439704 Sankaran et al. Aug 1995 A
5462653 Hills Oct 1995 A
5531334 Forby Jul 1996 A
5598099 Castleman Jan 1997 A
5617800 Moreschi et al. Apr 1997 A
5743958 Shutic Apr 1998 A
5769949 Cienkus et al. Jun 1998 A
5782336 Venturelli Jul 1998 A
5882404 Gummer Mar 1999 A
5908120 Yates Jun 1999 A
5989644 Williams Nov 1999 A
6056821 Nihongi May 2000 A
6068702 Bertellotti et al. May 2000 A
6158448 Bahten et al. Dec 2000 A
6203859 Scheufler et al. Mar 2001 B1
6325899 DeWent Dec 2001 B1
6499710 Mizuno Dec 2002 B1
6571968 Cullen Jun 2003 B1
6797066 Yoshino et al. Sep 2004 B2
8356574 Wurster Jan 2013 B2
8517036 Calhoun Aug 2013 B2
8535752 White et al. Sep 2013 B2
20010046551 Falck Nov 2001 A1
20020028299 Yamane et al. Mar 2002 A1
20020088874 Nolen Jul 2002 A1
20020139641 Taeger Oct 2002 A1
20030113473 Mann Jun 2003 A1
20030148029 Rosa Aug 2003 A1
20030170399 Owed Sep 2003 A1
20030196594 Reed Oct 2003 A1
20040137144 Shutic Jul 2004 A1
20060011222 Lee Jan 2006 A1
20060231119 Yi Oct 2006 A1
20070160771 Sarajian Jul 2007 A1
20070199506 Ahmed et al. Aug 2007 A1
20070246071 Streb Oct 2007 A1
20090056623 Crowley Mar 2009 A1
20090211605 Ahmad Aug 2009 A1
20090217943 Raber et al. Sep 2009 A1
20090252880 Kurth Oct 2009 A1
20100101489 Wurster Apr 2010 A1
20100209615 Makover et al. Aug 2010 A1
20100255975 Mauchle Oct 2010 A1
Foreign Referenced Citations (3)
Number Date Country
2002-136899 May 2002 JP
2006-007071 Jan 2006 JP
10-2008-0073995 Aug 2008 KR
Non-Patent Literature Citations (1)
Entry
Sung Gon Kim, International Search Report for PCT Application PCT/US2013/070577, Aug. 8, 2014, Korean Intellectual Property Office, Daejeon Metropolitan City, Republic of Korea.
Related Publications (1)
Number Date Country
20150125609 A1 May 2015 US