The invention pertains to an easily cleanable spray gun.
Spray guns for paints, lacquers, adhesives or other flowable materials require careful cleaning of the material-conducting areas after each use or before each change of material, if a cartridge, i.e. exchangeable inserts, preferably designed as a disposable item, is not used for material conduction. Such an advantageous spray gun with a handle region and with a head equipped with a cartridge, wherein the cartridge has an inlet area for a material-conducting channel that ends in an outlet area and wherein the inlet area of the cartridge is or can be connected to a supply container for the material to be sprayed and wherein the cartridge preferably guides at least one material-conducting component of the spray gun, is known from DE 3016419 C2, for example. This spray gun has a divided head with an area at the rear and an area located at the front in the spraying direction. The rear end of the front area of the divided head is equipped with a plug-in receptacle for a cartridge having a tubular material-conducting channel extending in the spray jet direction, in the interior of which a nozzle or paint needle is arranged. The nozzle can be moved backward and forward in the spray jet direction by means of a lever and spring mechanism, so that the material to be sprayed can pass through a nozzle arranged in the outlet area for processing. The cartridge is retained in the head by means of plug pin connections. After use, the pin connections can be detached, the two head areas can be folded apart from one another, the cartridge including the paint needle can be removed from the head and can then subsequently discarded. Then a new cartridge can be mounted on or in the spray gun. Cleaning the material-conducting areas of the spray gun is unnecessary in this case. The pin connections are relatively complicated, however, difficult to create and release and also do not always guarantee problem free operating safety.
The problem of the invention is to create a spray gun of the type mentioned above that operates reliably at all times and to which or in which a cartridge in particular, or some other type of interchangeable insert, can be mounted in a less complicated manner but securely, and can be detached therefrom. The problem of the invention is also to create an improved mounting means for cartridges or inserts in spray guns. To create usage for spray guns. Another problem of the invention is to achieve an optimally good spraying result with the aid of an air distributor.
The first problem is solved by means of a spray gun according to claim 1 or 2. The rings according to the invention as in claim 1 or 2 guarantee a wide-area connection of the cartridge to the spray gun, which can be detached without problems and reestablished using a new cartridge if desired.
The second problem of the invention is solved by a collar ring according to claim 84, 85 or 86.
The third problem of the invention is solved by a cartridge according to claim 100. The fourth problem of the invention is solved by an air distributor according to claim 135.
Additional details and implementations of the invention can be found in the subordinate claims and will explained below with reference to the figures. Therein:
a show details of the first spray gun in different perspective views,
a show additional details of the first spray gun in different operating positions,
a through 5e show details and variants of
The spray gun according to
The material to be sprayed is conducted through the front end 8 of the spray gun head 3. When the spray gun is not in operation, the front end 8 of the head 3 is closed by a mechanism that will be discussed at a later point. The mechanism can be operated by means of a so-called trigger bar 22; the quantity of material can be regulated by a device of which only a regulation screw 100 with a lock nut is shown here.
In the present embodiment, the head 3 of the spray gun is designed in two parts. The head 3 has a rear end 3a, which is non-detachably connected to the handle area 2 of the spray gun, and a front end 3b, which is mounted on the rear end 3a via an articulation 23 so as to be foldable off or away. In the present embodiment, the articulation is constructed as a rotary joint. The rotary joint 23 can be actuated by means of a control button 24, which is shown in detail in
The material to be sprayed is conducted in the spray gun according to the invention by means of a cartridge 4, of which one embodiment can be seen especially clearly from
The mounting bracket 16 extends over roughly half the circumference of the tube 5, is roughly half as high as the latter and has on its outer side a substantially quadrilinear connecting rail 16a, which enables a particularly simple but secure mounting and easy detachment of a cup from the spray gun with or without an intervening adapter, the cup or the adapter having a corresponding trough-shaped mating element for the connecting rail 16 that can be pushed into or over the connecting rail 16a. A connection via projections of this type is particularly secure because the components are guided over a large length.
This mounting bracket 16 or a different bracket arranged on the inlet tube 5 can also be used in other cases for supporting the cartridge 4 on the spray gun (cf.
It is further possible to connect a hose or the like leading to a pump, a pressure container, a pressure cup or some other container to the tube 5. Suspended cups (suction cups) and so-called side cups can likewise be used as supply containers; the tube 5 of the cartridge 4 need only be oriented in a different position for this purpose.
It is also possible, however, to construct the supply container and the cartridge as a one-piece component.
The tube 5 can of course also be constructed differently than described above. The connecting rail 16a can be replaced by a trough and a connecting rail on the supply container or provided on an adapter, a hose or the like. Instead of the connecting rail, the cartridge can have a catch tab, which enables a snap connection directly or indirectly via an adapter to the supply container or a hose or the like, in which case it goes without saying that a catch hole, catch groove or the like must be provided on the other component. Conversely, it is of course also possible to provide a catch hole or catch groove on the tube 5 and a catch tab or the like on the other component. In a different configuration, the tube 5 can also comprise a threaded connection having a full thread or a thread segment extending over approximately 180° for example.
Especially in the latter case, the assembly and disassembly of the cartridge and the supply container or material supply is easily accomplished manually by rotating the components oppositely to one another. If catch tabs or threaded segments are used, a type of bayonet connection results, which enables particularly easy manual handling.
On the other hand, the tube 5 can have a plug connection that is either clasped by the mating element of the supply container or engages with the mating element of the supply container. The latter case guarantees particularly securely that no paint or other material escapes at the connecting point between the cartridge and the supply container. A combination of a rotary and plug connection is likewise possible.
An intervening adapter can likewise have a plug connection, a threaded connection or the like.
A connection by means of clamps, pins or the like is also conceivable.
As follows at least implicitly from the above, it is not absolutely necessary that the contour of the tube 5 be round as shown; it can also be oval, quadrangular, i.e. in any desired shape; it merely need be matched to the contour of the connection to the supply container and/or the contour of the spray gun.
It goes without saying that the actual cartridge body, i.e. the tube 15, also need not necessarily be shaped cylindrically as shown. A conical shape, a cuboid shape or some other geometric shape, with or without a change in cross-section, is likewise possible. The shape need only be matched to the shape of the cartridge receptacle in the spray gun or vice versa. The cylindrical shape or a conical shape, however, is advantageous both for the actual cartridge tube 15 and also for the inlet tube 5, because no edges that could negatively impact the material flow are present in the interior of the tubes. A particularly good guidance of the paint needle is likewise possible with a cylindrical tube 15, as will be discussed later.
The cartridge 4 can be divided in the longitudinal direction or transversely, depending on the individual requirement. The two cartridge parts can be interlocked, glued, welded or fastened to one another in some other way.
A guide channel 6 for the material to be sprayed that ends in an outlet area 7 arranged at the front end 8 of the spray gun head 3 runs through the first area 15 of the cartridge 4, formed in the present embodiment substantially as a hollow cylindrical tube. The specific design of the outlet area 7 will be discussed later. A mounting disk 17, which is simply pushed onto the tube 15 in the present example, extends around the hollow cylindrical tube 15. If necessary, the retention of the disk 17 on the cartridge 4 can be secured by means of adhesive or by welding. The mounting disk 17 can also be integrally molded with the cartridge 4, however. Two connectors 17a and 17b, which exit from the fastening disk 17 at the surface 17c facing the rear area 3a of the spray gun, extend through the mounting disk 17 or away from the mounting disk 17. The connectors 17a and 17b are produced integrally with the mounting disk 17 in the present example.
In a different design, the connectors could also be inserted into corresponding openings of the mounting disk, glued or otherwise mounted thereon.
In a different configuration, the connectors could also be only through holes in the mounting disk.
The connectors 17a and 17b engage in a respective bore at the rear end 3a of the spray gun. In the present example, the connectors 17a and 17b are inserted into air channels of the spray gun. Each air channel is equipped with a sealing ring 17f or the like at its end facing the connectors 17a and 17b. The seals can also be arranged on the connectors themselves or the connectors can be formed in such a manner that they seal radially and or axially on their own. The connection between the cartridge 4 and the spray gun is thus tight at this point. The connectors 17a and 17b can also accomplish the retaining function for the cartridge 4 on their own. The retention is particularly secure because two connectors 17a and 17b are provided.
In another configuration, one or more connectors are used only for fastening the cartridge to the spray gun and are not also used for conducting air. They of course do not have to be hollow in this case. It is of course particularly advantageous if the connectors 17a and 17b are constructed hollow as proposed and contribute to the air guidance.
At its other surface 17d, the mounting disk 17 has a slotted guide 17e for accommodating an air distributor 18, which can have a mating sliding guide (not shown). After being slipped onto or mounted on the tube 15, an outstanding centering of the air distributor 18 on the cartridge 4 is guaranteed. It would be also possible, however, to retain the air distributor 18 by other means such as catch tabs, rails or the like. The air distributor 18 and the cartridge 4 could also be glued to one another, welded to one another or integrally produced or correspondingly connected to the mounting disk 17.
In the present embodiment, the air distributor 18 according to the invention is formed in a substantially truncated conical shape and has four areas 18a-18d. The areas 18a-18d become smaller in size in the injection direction. A plurality of circular air holes 18e are provided in the largest diameter area 18a immediately adjoining the mounting disk 17 and in the smaller area 18b thereabove. The two subsequent areas 18c and 18d have no air holes. It is also possible, however, to equip only one of the areas 18a-18d or all areas 18a-18d with a single air hole each, which can also be shaped non-circularly, in the form of a slot, for example. A uniform atomization of the material to be sprayed can be achieved with the circular air holes 18e as shown. The airflow can preferably be brought into the desired shape with a so-called air guide disk and/or other air guidance means.
In the center of the uppermost area 18d of the air distributor 18, a passage opening 18f for a paint needle 19 is provided, which will be discussed later.
The air distributor 18 according to the invention can of course also advantageously be used in any other spray gun, having a cartridge or not, due to its special design.
At its free end, the cartridge 4 has a substantially truncated-conical tip 4a. In the previously described first tubular area 15 of the cartridge 4, a material-conducting component 9, constructed in the present embodiment as a cylindrical paint needle 19, is contained in the material-conducting channel 6 and extends through the previously mentioned passage opening 18f in the air distributor 18 up to the truncated-conical tip 4a of the cartridge 4. The truncated-conical tip 4a of the cartridge 4 has a passage opening 4b for the first end 19a of the paint needle 19. The first end 19a of the paint needle 19 and the tip 4a of the cartridge 4 are aligned with one another. When the cartridge 4 is installed in the spray gun, the tip 4a of the cartridge is located in the outlet area 7 of the spray gun.
In another embodiment not shown, the truncated conical tip 4a can also have a cylindrical area in the front end area.
A paint needle spring 303 is provided in the rear end 3a of the head for retracting the paint needle 19 or for closing the free end 4a of the cartridge 4 through the paint needle 19. This paint needle spring 303 can be arranged in the device 100 for adjusting the material flow. A second part of the paint needle 19 on which the spring acts is connected via a mechanism to the rear end of the paint needle, on which the tappet 27 or the like is arranged. The paint needle 19 is connected via this and possibly an additional mechanism to the trigger bar 22.
With its second end 19b, the paint needle 19 penetrates a cap 26 that closes off the end of the cartridge 4 facing away from the outlet area 7. In the present embodiment, the cap 26 is placed as a separate component on the rear end of the tubular area 15 of the cartridge 4, and contacts the tube 15 on the outside with its circumferential rim 26a. The cap 26 could also be constructed as a plug or the like that engages with the tube 15, for example. Or simply as a cover that contacts the tube 15. A fixation, whether form fit or force fit, with or without assisting means such as threads, catch tabs, adhesive, welding or the like, is possible.
The paint needle 19 is roughly 50% longer than the tubular material-conducting area 6 of the cartridge 4 and accordingly projects with its free end 19b well past the cartridge 4 in the longitudinal direction. The free end 19b further has a tappet 27 at its end. A return spring 28 for the paint needle 19 can extend between the cap 26 and the tappet 27. The return spring 28 is supported at a first end on the outer side of the cap 26 and at a second end on the inner side of the tappet 27. In the embodiment according to
A second paint needle could be coupled to the trigger bar 22 in the rear head area 3a of the spray gun and in turn act on or actuate the paint needle 19 in the cartridge 4.
The return spring 28 can be a tension or a compression spring. In a special configuration, the paint needle is opened by the return spring 28 when the trigger bar 22 is pulled, and after release, the trigger bar 22 is pressed by the return spring 28 into the front position and the paint needle 19 closes off the passage opening 4b.
In another configuration, the paint needle could be brought into the closed position by a tension spring and pulled back by means of a connection of the trigger bar to the paint needle by pressing on the trigger bar and thereby the passage opening in the tip of the cartridge could be released.
It is also possible to provide the return spring inside the cartridge 4. Such a return spring could be supported at a first end on the inner side of the cap 26 or on a hook or the like provided in the cartridge 4 and be supported at a second end on a hook or the like provided on the paint needle 19.
It goes without saying that functional seals can be provided on or in the cartridge 4, for example on its truncated-conical tip 4a and/or the passage opening 4b for the paint needle 19. For example, such a seal could be an injection-molded sealing lip, a film seal, a shaped seal, a penetration membrane, a corrugated membrane, a bellows membrane or a ring seal.
The paint needle 19 could also be provided with such or similar functional seals. Or the paint needle 19 itself or the tip 19a of the paint needle 19 could consist of a metallic or nonmetallic material with sealing properties or be coated with a corresponding material having sealing properties.
A particularly advantageous embodiment of the return spring or actuating spring 28 is shown in
The stopper 19c could also have a cylindrical or an opposing conical shape, or a different shape such as a disk or ring shape.
For additional safety, the passage opening 26b in the closing means of the cartridge 4, constructed here as a cap 26, is equipped with a sealing lip 26c. In place of the sealing lip 26c, a film seal, a penetration membrane, a corrugated membrane, a bellows membrane, a ring seal or some other seal such as a shaped seal could be provided. This also applies to all other possible embodiments of the closing means.
As
c shows a variant in which the multi-leg bow spring shown in
In the variant according to
In
In the embodiment shown here, the paint needle 19 has an incision 304 for mounting or delimiting additional components.
The cartridge 4 is placed manually into a receptacle provided in the front end 3b of the spray gun head 3, as will be described in detail later. It is visible from
In another embodiment not shown, the bearing bolt 22a could also be integrally produced with clips 200.
The bearing bolt 22a preferably has the rectangular cross section shown, but in other embodiments not shown, it can have any desired cross-sections e.g. oval or round and/or can have pockets, claws, hooks. etc. for driving a paint needle, e.g. the tappet 27 of the paint needle 19. Other, alternative forms of action and engagement are also possible.
Other alternative types of mounting of the bearing bolt on the trigger bar such as notches, bores, slotted holes etc. are possible.
The second ordinary bearing pin 22d for the trigger bar 22 is also visible from
The trigger bar 22 and thus ultimately the paint needle 19 can be actuated manually in the usual manner by pressing and releasing. It is also possible to additionally actuate the trigger bar 22 and or the paint needle 19 pneumatically, hydraulically, by magnetic fields, electrically or by a combination thereof.
An optional additional type of actuation can also be linear, rotational, by displacement of two or more surfaces (rotary valve, e.g. ball valve), rotary plus linear (e.g. a threaded drive analogous to a water tap).
The above-described arrangement of cartridge 4 and optionally a paint needle 19 along with air distributor 18 is held by means of a collar ring 10, into which the air distributor 18 and the cartridge 4 are inserted in the present embodiment. The collar ring 10 preferably consists of plastic and has a roughly semicircular protrusion 11 on its side facing the air distributor 18. The protrusion 11 is dimensionally matched to the circumferential dimension of the tubular inlet area 5 of the cartridge 4. In the assembled state, the protrusion 11 is fitted to and supported on the tube 5. The protrusion 11 preferably has resiliently elastic properties. It can be produced integrally with the collar ring 10, but need not be. It can be clamped, clipped or glued onto the collar ring 10 or mounted in some other manner thereon.
Offset by roughly 180° from the protrusion 11, a substantially cuboid mounting block 29 is located on the collar ring 10. In the assembled state, i.e. when the cartridge 4 is inserted into the front end 3b of the spray gun head 3, the mounting block 29 engages with a correspondingly shaped receptacle 30 provided in the spray gun. In the present embodiment, the receptacle 30 is an elongated hole (or pocket) that is arranged in the rear end 3a of the spray gun.
The mounting block 29 is penetrated at its free end by a bearing axle 29a, which projects laterally out of the mounting block 29 at each end. The mounting block 29 can be displaced with its bearing axle 29a along the receptacle 30 in the spray gun. Stops 30a and 30b limit the possible travel of the bearing axis 29a in the receptacle 30.
In the present embodiment, the mounting block 29 has resiliently elastic properties. It can be produced integrally with the collar ring 10, but need not be. The mounting block can be constructed in one or more parts and can, for example, also be clamped, clipped or glued onto the collar ring 10 or mounted thereon in some other manner.
The mounting block 29 can also be produced from a rigid material, however.
It goes without saying that it is particularly advantageous for reasons of production if the entire collar ring 10, i.e. the circular ring with the protrusion 11 and block 29, is integrally produced.
The mounting block 29 can of course also be produced differently, for example as a mounting ball, hinge, e.g. a thin-film hinge, etc. It is only essential that a secure mounting of the collar ring 10 on the spray gun be guaranteed. Both detachable and non-detachable connections are possible, depending on whether the collar ring 10 is intended to remain on the spray gun permanently or not.
Hook, bayonet or catch tab connections, which are arranged radially or axially, can be arranged for detachable connection of the two parts 3a and 3b of the head 3 or the collar ring 10 to the other components.
Depending on the individual requirement, stops for limiting motion can also be provided here.
The locking and unlocking can be done manually, pneumatically, magnetically, electrically, via friction forces and via acceleration, automatically or manually.
It is also possible for the collar ring 10 to be integrally produced with the air distributor 18 and/or the cartridge 4.
The collar ring 10 is equipped with a thread 32 its outer surface 31. The thread 32 is constructed as a full thread in the present embodiment. An air nozzle can be mounted on the thread 32 directly or indirectly by means of a threaded ring. The air nozzle can consist of steel, other metals or of plastic.
Such an air nozzle can be produced as a round jet nozzle or with at least one horn for forming a broad jet. Bores or air outlet openings for jet formation are inserted into the horn. The bores or openings in the horn and or the round jet bore(s) can also be non-cylindrical or have any desired cross sections.
In a further configuration, it is possible that the air distributor is or can be connected directly or indirectly to at least one additional air distribution means.
For example, a horn can be attached with a force or form fit, glued or welded onto the air distributor.
The horn or some other air distribution means can also be integrally produced with the air distributor.
As already mentioned, the shape of the cartridge receptacle in the spray gun must of course be matched to the shape of the cartridge, optionally together with the previously described additional parts of a collar ring 10, air distributor 18, etc., or the cartridge shape, optionally in addition to additional parts (e.g. air distributor), must be matched to the shape of the cartridge receptacle.
Individual or all components can be connected to one another by means of friction, spring force or in some other manner, with a force or form fit. If necessary, the components can be supported on one another via abutments and/or additional mounting means.
In the operation of the spray gun according to the invention, the handle area 2 and the head area 3b of the spray gun are in the “locked” state by means of the joint 23 (see
Perfect guidance of the paint needle 19 is guaranteed in particular by the previously described return spring 28, which is supported at one end on the tappet 27 of the paint needle 19 and at the other on the cap 26 of the cartridge 4. The desired spray pattern can be achieved by means of the special guidance through the passage openings 18e in the air distributor 18 and the air cap with horns optionally attached to the spray gun and mounted on the outside thread 32 of the collar ring 10. The quantity and pressure of the air can be regulated by means of the previously described air micrometer 21.
After completion of the spraying process, the control button 24 is turned into the “locked” position (see
During the pushing apart, the bearing axle 29a of the mounting block 29 for the collar ring 10 moves from the rear stop 30a of the receptacle 30 along the recess 30 up to the front stop 30b of the receptacle 30. After the head area 3b has been rotated about the bearing axle 29a by approximately 90°, the arrangement consisting of the collar ring 10 and the cartridge 4 together with the air distributor 18 and the like is sufficiently far away from the spray gun that the cartridge 4 is freely accessible. The used cartridge 4, possibly containing paint residues, together with the air distributor 18 and the return spring 28 or 28a can now be pulled off without problems from the collar ring 10 in the front end 3b of the head 3, discarded and replaced by a different, new and clean cartridge before a new spraying process. Cleaning the spray gun itself is at most necessary in the area of the air nozzle, if present.
By virtue of the fact that the cartridge 4 is sealed off at both ends by the paint needle 19, material to be sprayed can be stored in the combination of the cartridge 4 and the supply container without drying out. The cartridge 4 can therefore also be reused without contaminating the spray gun.
If desired, the air distributor 18 can still be used one or more times, because it is not contaminated at all.
Plastics that can be considered for the cartridges for all of the above-described components include, for example, PE, PA, POM, PEEK, which may be reinforced with glass fibers.
The spray gun can be produced from a metal such as steel, brass, aluminum, sinter metals, titanium or alloys thereof. Production from ceramic and other hard materials is also possible.
The cartridge can also be made from the same materials as the spray gun. Because the cartridge is then relatively valuable, it can possibly be reused several times. The cleaning effort for the spray gun is slight even in this case, because only the cartridge has to be cleaned if it is to be reused with a change of spraying material.
In the embodiment shown in
The one-piece design is particularly advantageous because absolutely no positioning of the air distributor 18 relative to the collar ring 10 is necessary.
This air distributor 18 likewise has a slotted guide 17e, which is provided on a mounting disk 17. The cartridge 4, which is constructed here like the cartridge 4 shown in
A second spray gun according to the invention is shown in
The head 3 here does not have any parts that can be folded apart from one another. In another embodiment, the head could also have parts that can be folded apart from one another, however.
The front end 8 of the head 3 is equipped with a known conventionally designed air nozzle 33 having two horns 33a, 33b projecting in the direction of the spray jet with openings 33c in the mutually facing surfaces. The air nozzle 33 is mounted on the spray gun, more particularly on the cartridge 4 thereof, by means of a likewise conventionally known air nozzle ring 13. For this purpose, the cartridge 4 (like the cartridges from the previously described figures) has a collar ring 10, which is injection-molded onto the free end 4a of the cartridge 4 in the present embodiment. On its outer surface 31, the collar ring 10 has a thread 32 onto which the air nozzle ring 13 can be screwed with its inside thread according to the invention. The air nozzle ring 13 extends almost up to the inlet area 5 of the cartridge 4.
The cartridge 4 according to
The cartridge 4 is supported in part by the bracket 16 on the head 3 of the spray gun. In the special case shown here, the bracket 16 rests with its outer surface on the correspondingly shaped outer surface of the suspension hook 36 for the spray gun.
According to
The slots 38 in the spray gun can also be configured as bores or simple recesses or the like.
During operation of the spray gun, a subsection of the catch hooks 37 extends into the lateral slots 38 of the spray gun and another subsection of the catch hooks 37 is outside (cf.
Thus the cartridge 4 is very securely mounted on the spray gun by means of the collar ring 10 and the catch hooks 37 on the one hand and by means of the air nozzle ring 13 on the other, but is also mounted so as to be easily detachable.
In the state where it is completely screwed on, the air nozzle ring 13 presses against the surface 37c of the previously described catch hooks 37. The barbs 37b of the catch hooks 37 are pressed thereby against the gun head 3, whereby a secure retention of the collar ring 10 on the spray gun results. The cartridge 4 can therefore neither move in the spray jet direction 300 nor laterally back and forth in the spray gun. This guarantees a mounting of the cartridge 4 on the spray gun that is always secure but easily detachable after use.
A similar secure retention can also be achieved with an air nozzle ring, however, which does not extend nearly up to the inlet area 5 of the cartridge 4 as in the present embodiment.
In another embodiment not shown, the catch hooks 37 or the film hinge 37a can be constructed sufficiently stiffly or designed in such a manner that the additional securing of the catch hooks 37 by the air nozzle ring 13 is not necessary and the catch hooks 37 nevertheless engage securely in the gun head 3, without impairing the detachability thereof.
In another possible embodiment, the air nozzle, with or without an integrated air distributor, is mounted directly on the spray gun or is fixed directly to the cartridge without a collar ring.
The cartridge 4 in
In the embodiment according to
In the fully screwed-on state, the air nozzle ring, not shown here, presses against the surface 37c of the previously described catch hooks 37, arranged here on the collar ring 10. The barbs 37b of the catch hooks 37 are pressed thereby against the gun head 3, whereby a secure retention of the collar ring 10 on the spray gun results. The cartridge 4 can therefore neither move in the spray jet direction 300 nor laterally back and forth in the spray gun. This guarantees a mounting of the cartridge 4 on the spray gun that is always secure but easily detachable after use.
In another embodiment, not shown, the catch hooks 37 or the film hinge 37a also can be constructed sufficiently rigidly or designed such that it is not necessary to additionally secure the catch hooks 37 with the air nozzle ring, and the catch hooks 37 nevertheless securely engage with the gun head, without impairing the detachability therefrom.
The third spray gun according to the invention as shown in
The head 3 of the spray gun according to
The front end 8 of the head 3 is equipped here as well with a known conventionally designed air nozzle 33, which here has horns 33a, 33b extending in the spray jet direction with openings 33c in their facing surfaces. The air nozzle 33 is fastened by means of a likewise known air nozzle ring 13 to the spray gun, similarly to the embodiment according to
The cartridge 4 according to
The bracket 16 is used in the present embodiment for mounting the supply container for the material to be sprayed.
The cartridge 4 is equipped with an air distributor 18, which is closed off at its front end by a wall 18a that is provided with some air holes 18e. The air distributor 18 here is produced integrally with the cartridge 4; the mounting disk 17 or the like as described with reference to
As
The cartridge 4 is thus very securely mounted on the spray gun, mainly by means of the air nozzle ring 13, but can easily be detachably mounted if necessary.
In another embodiment, the air nozzle interior is supported on the front side of the cartridge or parts thereof (e.g. on the air distributor) and is fixed in the gun just like the cartridge by the air nozzle ring after it has been screwed on.
In other embodiments, the cartridge can also be supported opposite the spraying direction against the gun head 3 by means of the mounting disk 17, the cap 26, the tubular inlet 5, a stop on the first cartridge area 15 or a combination thereof.
In all embodiments, detachable connections between a collar ring 10 and the spray gun are described. However, embodiments in which a collar ring is non-detachably connected to the spray gun are also possible. This would be advantageous for the spray gun operation, particularly for a multifunction collar ring that is constructed identically or similarly to the collar ring 10 already shown in
In all embodiments, the air nozzle 33 could also be integrally constructed with the air nozzle ring 13.
Instead of being screwed onto a fastening element, the air nozzle ring 13, with or without an air nozzle 33, could instead be snapped on or connected by a quick connector, a bayonet mount or another mounting means to the spray gun.
Finally it may pointed out that material-conducting components 9 other than the paint needles 19, and/or cartridges 4 without material-conducting components 9 also fall under the invention. Elements of the invention can likewise be applied to types of spray guns different from those shown and described, with or without a head that can be folded down.
It also goes without saying that the shown and described items can be combined in whole or in part in arbitrary meaningful manners or be omitted in whole or in part.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 053 026.3 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/05842 | 11/19/2011 | WO | 00 | 8/13/2013 |