Spray guns are known for the application of coatings to various substrates. It has been known to provide spray guns with removable nozzle assemblies to facilitate easier cleaning of wetted parts and to allow for exchanging nozzles of differing types for different applications. There is a need for improved connections between removable nozzle assemblies and spray gun bodies.
Exemplary embodiments according to the present disclosure include, but are not limited to, the embodiments listed below, which may or may not be numbered for convenience. Several additional embodiments, not specifically enumerated in this section, are disclosed within the accompanying detailed description.
A liquid spray gun nozzle assembly is disclosed comprising a coating liquid inlet portion and a coating liquid outlet portion, and a coating liquid flow path connecting the coating liquid inlet with the coating liquid outlet. The spray gun connection portion opposite the coating liquid outlet portion is adapted to connect the liquid spray gun nozzle assembly to a compatible liquid spray gun body. The spray gun connection portion includes a liquid sealing member configured to facilitate provision of a liquid needle within a liquid needle zone and an air sealing member configured to isolate an air zone. The air sealing member includes a tapering rim. The liquid sealing member and the air sealing member are circular in shape.
The words “preferred” and “preferably” refer to embodiments described herein that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” or “the” component may include one or more of the components and equivalents thereof known to those skilled in the art. Further, the term “and/or” means one or all of the listed elements or a combination of any two or more of the listed elements.
It is noted that the terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the accompanying description. Moreover, “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably herein.
Relative terms such as left, right, forward, rearward, top, bottom, side, upper, lower, horizontal, vertical, and the like may be used herein and, if so, are from the perspective observed in the particular figure. These terms are used only to simplify the description, however, and not to limit the scope of the invention in any way.
Reference throughout this specification to “one embodiment,” “certain embodiments,” “one or more embodiments” or “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrases such as “in one or more embodiments,” “in certain embodiments,” “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.
The above summary is not intended to describe each embodiment or every implementation of the reservoirs and associated vent assemblies described herein. Rather, a more complete understanding of the invention will become apparent and appreciated by reference to the following Description of Illustrative Embodiments and claims in view of the accompanying figures of the drawing.
These and other aspects of the invention will be apparent from the detailed description below. In no event, however, should the above summaries be construed as limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.
Throughout the specification, reference is made to the appended drawings, where like reference numerals designate like elements, and wherein:
Referring to
The liquid spray gun nozzle assembly 100 comprises one end of a liquid spray gun coating liquid connector 104 (located at a coating liquid inlet portion 102), through which a coating liquid is supplied to the liquid spray gun 2 from an external liquid source 6′. As shown, for example, in
Within the liquid spray gun nozzle assembly 100 is a coating liquid flow path 110 through which the coating liquid flows from the liquid spray gun coating liquid connector 104 to a liquid nozzle 108 (see, e.g.,
In some embodiments, the liquid spray nozzle assembly comprises an air cap 115 affixed to the spraying end thereof. When provided, an air cap 115 can direct pressurized air advantageously toward the stream of coating liquid, e.g., via one or more shaping air outlets 116 located in one or more air horns 117, as it is expelled from the liquid nozzle 108 to assist in atomization of the coating liquid and shaping of the coating liquid jet into the desired spray pattern for a given application. Within the air cap or proximate the air cap, the center air outlet 107 directs air around the liquid outlet 108 to draw the coating liquid from the liquid nozzle 108 and (if desired) also impinges upon the coating liquid to atomize it, creating a fine mist of droplets. Optionally, one or more auxiliary air outlets 118 may be provided in the air cap 115 to further assist in shaping the spray pattern. The air cap 115, the center air outlet 107, the liquid nozzle 108, the air horns 117, the auxiliary air outlets 118, and the shaping air outlets 116 may be configured as described in U.S. provisional patent application No. 62/430,393, entitled “Spray Gun Air Cap Retention Means,” filed on Dec. 6, 2016, and/or in U.S. Pat. Pub. Nos. 2016/0052003 A1 (“Liquid Spray gun, spray gun platform, and spray head assembly”); 2013/0327850 A1 (“Nozzle tips and spray head assemblies for liquid spray guns”); 2014/0246519 A1 (“Spray head assembly with integrated air cap/nozzle for a liquid spray gun”); 2013/0092760 A1 (“Spray head assemblies for liquid spray guns”); 2015/0069142 A1 (“Spray gun barrel with inseparable nozzle”); 2016/0151797 A1 (“Air caps with face geometry inserts for liquid spray guns”); 2016/0175861 A1 (“Nozzle assemblies, systems and related methods”); and/or in WO2015/191323); and/or WO2016/191240), the disclosures of which are hereby incorporated by reference in their entireties. In the embodiments shown, the coating liquid is contained entirely within the liquid spray gun nozzle assembly 100, thus generally avoiding the need to clean the liquid spray gun body 3 after use.
The external liquid source 6′ may be a container that is directly affixed to the liquid spray gun nozzle assembly 100 (see, e.g.,
As shown in
The exemplary nozzle assembly connection portion 200 facilitates the attachment of the liquid spray gun nozzle assembly 100 to the liquid spray gun body 3 by way of a captured, rotatable locking ring 210, as seen in
Referring now to the interaction between the nozzle assembly connection portion 200 and the spray gun connection portion 120, further reference is made to
Provision of the aforementioned seals allows for isolation of a shaping air zone 176, a center air zone 180, and a liquid needle zone 186. In other words, after connection and sealing, the shaping air port 202 supplies air to the shaping air zone 176, the center air port 204 supplies air to the center air zone 180, and the liquid needle port 206 facilitates provision of the liquid needle 9′ in the liquid needle zone 186. It should be understood that the third sealing member 184 and third sealing seat 284 are optional, since sealing (e.g., a packing (not shown)) around the liquid needle 9′ is typically already provided and thus coating liquid and compressed air are already fluidly isolated without the need of an additional seal against air in the center air zone. In such cases, there may still be a corresponding structure as shown at 184 (see, e.g.,
In some embodiments, the first sealing member 168 and second sealing member 172 are essentially concentric. In some embodiments, the second sealing member 172 and third sealing member 184 are essentially concentric. In some embodiments, the first sealing member 168 and third sealing member 184 are essentially concentric. In some embodiments, the first sealing member 168, the second sealing member 172, and the third sealing member 184 are essentially concentric. “Essentially concentric,” as used herein, means that the described features surround a and share a common axis (e.g., the spray axis 101) and are circular in shape, with allowances for irregularities in the circular shape(s). An example of an irregularity within the scope of the above definition is the nozzle alignment feature 185, which corresponds to the gun alignment feature 285 in the nozzle assembly connection portion 200. Such an irregularity can assist in enhancing rotational alignment of the spray gun nozzle assembly 100 with respect to a spray gun body 3.
In one embodiment, the respective sealing member(s) and sealing seat(s) provide a sealing function by way of a resiliently compressible material such as a gasket. Such a gasket may be provided as a separate part on either or both components that is attached by for example, snapping or adhesive. Alternatively, the gasket may be overmolded or insert molded onto (or within) one or both components.
In yet another embodiment, the sealing function is provided by deformation of one or more of the components themselves. In such embodiments, the relative geometry and materials of the liquid spray gun nozzle assembly 100 and the nozzle assembly connection portion 200 are chosen to interact to create a seal without the provision of separate components or special gasketing materials. For example, as can be seen in
In some embodiments, the sealing seats are provided as blind recessed receiving ports into which the sealing members can slide a distance prior to becoming fully seated against a blind end of the seat. In such embodiments, friction alone may provide sufficient sealing, or may be aided or solely provided by crumpling and/or digging as described above, or by sealing or gasketing materials as described above.
Regardless of the nature of the particular seal chosen, seals can be provided as a sliding seal (e.g., a piston-type seal) (see the interaction of the third sealing member 184 with the third sealing seat 284 depicted in
As seen in
As shown in
Turning now to
In the embodiments shown, when viewing the nozzle assembly connection portion along the spray axis 101 as shown in
When the locking ring is in the assembly position 214, it is possible to remove the locking ring 210 from the spray gun body 3 by pulling outwardly along the spray axis 101, thereby disengaging the snap feature(s) 242 from the snap track 244 and permitting the guide feature(s) to be translated outwardly through the snap window(s) 246. In this way, the locking ring can be easily removed without the use of tools for cleaning or replacement should this become necessary. Herein lies an advantage of the disclosed system, whereby moving parts that could become contaminated with coating liquid over time can be easily accessed for cleaning or replacement. The locking ring 210 can be advantageously provided as a disposable part if desired, thereby minimizing replacement cost. Furthermore, the locking ring 210 can be constructed of a resilient material (such as an injection molded polymer) not only to reduce cost but also to provide the necessary resilience needed to perform the snapping functions as described herein (i.e., permitting the snap feature(s) 242 to move slightly to snap into and out of the snap track 244.
In an alternative embodiment, installation and/or removal of the locking ring 210 can take place in a position other than the assembly position. For example, in some embodiments the locking ring is further rotatable to a locking ring removal position that is distinct from the assembly position mentioned above. In one such embodiment, rotation from the assembly position through (and therefore past) the locked position can bring the locking ring to the locking ring removal position. This position cannot ordinarily be reached while the liquid spray gun nozzle assembly is installed due stoppage of rotation of the locking ring by interference with the camming members (i.e., because the locking ring will not then turn beyond a locking state). As a result, in such an embodiment there is no possibility of removing the locking ring while the liquid spray gun nozzle assembly is installed.
Turning now to
As shown in
Each camming member (132, 136) comprises a camming member first end 140 and a camming member second end 144. An access window (152, 156) is located circumferentially between a camming member second end 144 and a camming member first end 140. In the embodiments shown, a first camming member 132 and second camming member 136 are provided, thereby providing a first access window 152 and a second access window 156.
Turing back now to
The locking ring 210 is rotatable to an assembly position 214 (see
Then, upon proper location of the spray gun nozzle assembly 100 against the nozzle assembly connection portion 200 (while the locking ring 210 is in the assembly position 214), the locking ring 210 can be rotated into the locked position 218 to securely retain the spray gun nozzle assembly 100 thereon. During rotation of the locking ring 210 from the assembly position 214 to the locked position 218, the lug camming surface(s) 232 engage the camming surface(s) 148 on the spray gun nozzle assembly, thereby interacting with the inclined portion(s) 160 to pull the spray gun nozzle assembly 100 axially (along the spray axis 101) toward the spray gun body 3. Meanwhile, the one or more nozzle keys 212 retain the spray gun nozzle assembly in rotational position with respect to the nozzle assembly connection portion 200. The locking ring 210 is rotated from the assembly position 214 with manual rotational force (i.e., by hand) until sufficient axial force is generated to create a sufficient operational seal between the various sealing members and sealing seats described elsewhere herein. This is the locked position. Sufficient friction is created by interaction of the lug camming surface(s) 232 and the camming surface(s) 148 to retain the locking ring in the locked position 218 until the user wishes to remove the spray gun nozzle assembly.
For removal, the user rotates the locking ring 210 into the assembly position, thereby again aligning the one or more camming lugs 230 with the first and/or second access windows (152, 156). The spray gun nozzle assembly 100 can then be pulled away from the nozzle assembly connection portion 200, thereby passing the one or more camming lugs 230 through the first and/or second access windows (152, 156) to separate the components.
Provision of a locking ring 210 and corresponding features as shown and described herein can allow for secure, easy, tool-free assembly and removal of a spray gun nozzle assembly 100 from a spray gun body 3. The embodiments shown and described can also provide for easy removal, cleaning, and cost-effective replacement (if necessary) of the locking ring 210.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 17/551,459, filed Dec. 15, 2021, which is a continuation of U.S. application Ser. No. 16/466,712, filed Jun. 5, 2019, now pending, which is a national stage filing under 35 U.S.C. 371 of PCT/IB2017/057667, filed Dec. 5, 2017, which claims the benefit of U.S. Application No. 62/430,383, filed Dec. 6, 2016, the disclosure of which is incorporated by reference in its/their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
2304857 | Stahl | Dec 1942 | A |
5609302 | Smith | Mar 1997 | A |
6036109 | Deyoung | Mar 2000 | A |
6854667 | Ulrich et al. | Feb 2005 | B2 |
6860438 | Huang | Mar 2005 | B1 |
6971590 | Blette | Dec 2005 | B2 |
7032839 | Blette | Apr 2006 | B2 |
7296759 | Alexander et al. | Nov 2007 | B2 |
7354074 | Kosmyna et al. | Apr 2008 | B2 |
9192950 | Carleton et al. | Nov 2015 | B2 |
9381533 | Pellin et al. | Jul 2016 | B2 |
10870120 | Ruda | Dec 2020 | B2 |
20030025000 | Schmon et al. | Feb 2003 | A1 |
20030042338 | Dankert | Mar 2003 | A1 |
20030052190 | Ulrich et al. | Mar 2003 | A1 |
20040016825 | Petrie et al. | Jan 2004 | A1 |
20050145723 | Blette et al. | Jul 2005 | A1 |
20050242207 | Tejeda | Nov 2005 | A1 |
20060065761 | Joseph et al. | Mar 2006 | A1 |
20070262172 | Huffman | Nov 2007 | A1 |
20100187333 | Escoto, Jr. | Jul 2010 | A1 |
20110121103 | Carleton | May 2011 | A1 |
20130020414 | Thomason et al. | Jan 2013 | A1 |
20130092760 | Joseph | Apr 2013 | A1 |
20130221130 | Joseph et al. | Aug 2013 | A1 |
20130327850 | Joseph | Dec 2013 | A1 |
20140246519 | Johnson | Sep 2014 | A1 |
20150028131 | Joseph | Jan 2015 | A1 |
20150069142 | Duncan | Mar 2015 | A1 |
20150090614 | Joseph et al. | Apr 2015 | A1 |
20160052003 | Escoto, Jr. et al. | Feb 2016 | A1 |
20160059253 | Gooden et al. | Mar 2016 | A1 |
20160151797 | Joseph et al. | Jun 2016 | A1 |
20160175861 | Gullicks et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1340550 | Oct 2010 | EP |
2011062752 | May 2011 | WO |
WO-2015053959 | Apr 2015 | WO |
2015191323 | Dec 2015 | WO |
2016191240 | Dec 2016 | WO |
2017123707 | Jul 2017 | WO |
2017123714 | Jul 2017 | WO |
2017123715 | Jul 2017 | WO |
2017123718 | Jul 2017 | WO |
2018104826 | Jun 2018 | WO |
2018104871 | Jun 2018 | WO |
Entry |
---|
International Search Report for PCT International Application No. PCT/IB2017/057667, mailed on Mar. 26, 2018, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20230381797 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
62430383 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17551459 | Dec 2021 | US |
Child | 18232596 | US | |
Parent | 16466712 | US | |
Child | 17551459 | US |