Spray gun manufacturing method, spray gun, spray gun body and cover

Information

  • Patent Grant
  • 10702879
  • Patent Number
    10,702,879
  • Date Filed
    Friday, July 31, 2015
    9 years ago
  • Date Issued
    Tuesday, July 7, 2020
    4 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Lieuwen; Cody J
    Agents
    • Bianco; Paul D.
    • Winer; Gary
    • Fleit Intellectual Property Law
Abstract
A spray gun manufacturing method, a spray gun, a spray gun body and a cover. The method includes forming a spray gun body. In forming the spray gun body, a bearing part is formed on a side of the spray gun body, with a surface of the bearing part being lower than another surface of the side of the spray gun body, and a partial edge of the bearing part corresponding to a partial edge of the spray gun body.
Description
FIELD OF THE INVENTION

The present invention relates to a spray gun body manufacturing method, a spray gun body, and a cover for a digital pressure measurement device, which cover has an edge of part of a spray gun.


BACKGROUND

The spray gun is a tool that is commonly used in industry, which can for example spray coatings onto article surfaces, e.g. furniture, machinery and especially vehicles.


Moreover, as technology has progressed, a spray gun 1 with a digital pressure measurement device 31 provided on a handgrip 21 has appeared. FIG. 2 shows a spray gun 1 with a digital pressure measurement device 31 provided on a handgrip 21. Compared with a spray gun that is not provided with a digital pressure measurement device (as shown in FIG. 1), the handgrip 21 of the spray gun 1 provided with the digital pressure measurement device 31 is wider, so that the digital pressure measurement device has enough space in the handgrip. This has given rise to a new technical problem.


A spray gun manufacturer must produce two different types of spray gun body; one type has a wider handgrip (digital type), while the other type has a smaller handgrip (standard type). As a result, the manufacturer requires two different types of forging tool or casting tool. These tools are very expensive, leading to high costs. Furthermore, before producing spray gun bodies, the manufacturer must know how many standard spray guns and how many digital spray guns it requires. In addition, the spray gun user must accustom himself to two different types of spray gun handgrip. If a customer is accustomed to using a standard spray gun for work, and wishes to switch to a digital spray gun, he must first become familiar with the digital spray gun, as the digital spray gun is placed differently in the hand. Moreover, since the handgrip of the digital spray gun is very wide, the user must spread his hand very wide when gripping the spray gun in his hand. When the user needs to work with the spray gun for a long period of time, this is tiring for the user.


SUMMARY OF THE INVENTION

A manufacturing method for a spray gun is disclosed, which method allows the same tools (especially casting or forging tools) to be used to produce digital spray guns and standard spray guns; this makes the manufacturing method cheaper and more flexible.


Also disclosed is a body of a spray gun, by means of which spray gun a digital handgrip and a standard handgrip have the same width.


Further disclosed is a spray gun by means of which a digital handgrip and a standard handgrip have the same width.


In addition, a cover for a digital pressure measurement device is disclosed, which cover has a partial edge of a spray gun (in particular a handgrip of a spray gun body).


According to one aspect of the present invention, a method for manufacturing a spray gun is provided, comprising a step of forming a spray gun body. In the step of forming the spray gun body, a bearing part is formed on a side of the spray gun body, with a surface of the bearing part being lower than another surface of the side of the spray gun body, and a partial edge of the bearing part corresponding to a partial edge of the spray gun body.


Preferably, the method further comprises covering the bearing part with a cover, wherein a partial edge of the cover corresponds to the partial edge of the spray gun body.


Preferably, the bearing part is formed on a side of a handgrip of the spray gun body.


Preferably, the method further comprises a step of forming a slot in the bearing part, to hold a digital pressure measurement device.


Preferably, a digital pressure measurement device is formed on the cover.


Preferably, the cover and the spray gun body form a shadow gap.


Preferably, the shadow gap is formed by a step part close to an edge of the cover.


Preferably, the shadow gap is formed by a step part close to an edge of the spray gun body.


Preferably, the shadow gap is formed simultaneously by a step part close to an edge of the cover and a step part close to an edge of the spray gun body.


Preferably, the cover can be removably attached to the spray gun body by means of at least one projection and at least one corresponding hole.


Preferably, the cover has two projections, and the spray gun body has two corresponding holes.


Preferably, the spray gun body has two projections, and the cover has two corresponding holes.


Preferably, the cover has one projection and one corresponding hole, while the spray gun body has one projection and one corresponding hole.


Preferably, the cover has at least one slot.


Preferably, the cover has a window arranged in the slot.


Preferably, the window is covered by a transparent protective plate.


According to another aspect of the present invention, a method for manufacturing a spray gun with a digital pressure measurement device attached is provided, the method comprising a step of manufacturing a spray gun body without a digital pressure measurement device.


Preferably, the method further comprises forming a bearing part on a side of the spray gun body by cutting; a surface of the bearing part is lower than another surface of the side of the spray gun body.


Preferably, a partial edge of the bearing part corresponds to a partial edge of the spray gun body.


Preferably, the bearing part is formed on a side of a handgrip of the spray gun body; and a partial edge of the bearing part corresponds to a partial edge of the handgrip of the spray gun body.


Preferably, the method further comprises forming a slot in the bearing part by cutting in order to hold a digital pressure measurement device.


Preferably, the method further comprises placing the digital pressure measurement device in the slot.


Preferably, the method further comprises covering the bearing part with a cover, wherein a partial edge of the cover corresponds to the partial edge of the spray gun body.


According to another aspect of the present invention, a spray gun body is provided, comprising a handgrip, wherein a bearing part is formed on a side of the spray gun body, with a surface of the bearing part being lower than another surface of the spray gun body side, and a partial edge of the bearing part corresponding to a partial edge of the spray gun body.


According to another aspect of the present invention, a spray gun is provided, comprising a spray gun body, wherein a bearing part is formed on a side of the spray gun body, with a surface of the bearing part being lower than another surface of the side of the spray gun body, and a partial edge of the bearing part corresponding to a partial edge of the spray gun body.


According to another aspect of the present invention, a cover for a spray gun is provided, wherein at least a partial edge of the cover corresponds to a partial edge of a spray gun body.


According to yet another aspect of the present invention, a spray gun comprises a frame body defining a recessed bearing surface forming a first portion of a leading edge of a handgrip; a first cover shaped and dimensioned to fit into the recessed bearing surface and to form a second portion of the leading edge of the handgrip, and a side portion of the handgrip; and a second cover shaped and dimensioned to fit into the recessed bearing surface and to form a second portion of the leading edge of the handgrip, and a side portion of the handgrip. The second cover further includes a recess bounded in part by the second portion of the leading edge of the handgrip, the recess sized and dimensioned to at least partially receive a digital pressure measurement device, and a window formed within the side portion of the handgrip that is sized and dimensioned to enable viewing of a display of the digital pressure measurement device when a digital pressure measurement device is received within the recess. The first cover is connectable to the frame body when a digital pressure measurement device is not installed in the spray gun, and the side portion of the handgrip of the first cover does not include a display window. The second cover is connectable to the frame body when a digital pressure measurement device is installed in the spray gun. The exterior dimensions of the handgrip are substantially the same when either the first or second cover is connected to the frame.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a spray gun in which no digital pressure measurement device is provided on the handgrip in the prior art;



FIG. 2 shows a spray gun in which a digital pressure measurement device is provided on the handgrip in the prior art;



FIG. 3 shows a spray gun body and cover according to embodiment one of the present invention;



FIG. 4 shows a spray gun in which no digital pressure measurement device is provided according to the present invention;



FIG. 5 shows a spray gun in which a digital pressure measurement device is provided according to the present invention;



FIG. 6 shows a spray gun body and cover according to embodiment two of the present invention;



FIG. 7A shows a front view and FIG. 7B shows perspective view of a cover according to embodiment three of the present invention;



FIG. 8 shows a spray gun according to embodiment four of the present invention.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the following detailed description, the accompanying drawings which form part of this description are referred to, wherein particular embodiments capable of realizing the present invention are shown by way of example. With regard to the drawings, directional terms such as “top”, “bottom”, “inner” and “outer” are used with reference to the direction of the drawing described. Since the components of the embodiments of the present invention can be placed in many different directions, directional terms are merely used for illustration, without having any limiting meaning. It should be understood that other embodiments may be used, and structural or logic changes may be made on condition that the scope of the present invention is not departed from. Thus, the detailed description below should not be understood as having a limiting meaning, and the present invention shall be defined by the attached claims.


Embodiment One

A method for manufacturing a spray gun according to embodiment one of the present invention is explained with reference to FIG. 3.


As FIG. 3 shows, a body 2 for a spray gun 10 of the present invention is formed by a forging or casting method, with the formed body 2 having, formed on a handgrip 21, a bearing part 33 for bearing a cover 32. Moreover, referring further to FIG. 3, a surface of the bearing part 33 is lower than another surface of the handgrip 21, and a partial edge of the bearing part 33 corresponds to a partial edge of the spray gun body 2. Furthermore, a slot 34 for holding a digital pressure measurement device 31 is formed by cutting in the surface of the bearing part 33 of the body 2. As can be seen by referring to FIG. 6, in at least one region, the slot 34 may run through the entire width (from one side to the other side) of the handgrip. One benefit of such a design is to enable a hole for holding a battery to be reached without removing the cover 32 and the digital pressure measurement device 31. Thus, the hole for holding the battery can be opened by a screw at another of the handgrip, and the battery can be replaced when the hole is empty.


Furthermore, referring further to FIG. 3, the manufacturing method of embodiment one of the present invention also comprises forming the cover 32, for covering the digital pressure measurement device 31. Referring to FIG. 3, a partial edge of the cover 32 corresponds to that partial edge of the bearing part 33 which corresponds to a partial edge of the handgrip 21. That is, once the cover 32 has been installed on the bearing part 33, a partial edge of the cover 32 and a partial edge of the bearing part 33 coincide, together forming a partial edge of the handgrip 21. In the prior art, a cover of the digital pressure measurement device is located in a middle part of the spray gun handgrip, and surrounded by the handgrip, thereby being isolated from the edge of the handgrip. Thus, a frame or edge is needed to surround the cover for the digital pressure measurement device, and an edge of the spray gun handgrip is needed. These two edges both need space, so the handgrip must be made wider from front to back (relative to a spray gun with no digital pressure measurement device) in order to provide enough space. By way of the present invention, the edge of the cover for the digital pressure measurement device is the same as the edge of the handgrip. Thus, a part of the edge of the handgrip of the spray gun 10 is integrally formed in the cover 32, so that there is no need for an additional outer edge formed by the spray gun body. Thus, the space needed for an outer edge is saved. Thus, if a digital pressure measurement device is arranged in the spray gun handgrip, the handgrip can be manufactured with a smaller size (see FIG. 4).


Furthermore, since the spray gun handgrip provided with a digital pressure measurement device can be manufactured with a smaller size, the method of embodiment one only needs to produce one type of spray gun body, which can then be used for standard spray guns 10′ and digital spray guns 10 (see FIGS. 4 and 5). In the process according to the present invention, a manufacturer can first form standard spray gun bodies with intact handgrips, then decide how many spray gun bodies for use in digital spray guns it needs to then manufacture. Holes and slots are cut in these spray gun bodies, to enable them to receive components for a digital pressure measurement device.


Moreover, since a digital spray gun of a width equal to that of a standard spray gun can be manufactured, a user does not need to accustom himself to two different types of spray gun handgrip, therefore the user experience is also enhanced.


Moreover, preferably, referring further to FIG. 3, a slot 25 is provided in the cover 32, and a window 36 is provided in the slot 25, the window being covered by a transparent protective plate. Due to the presence of the slot, the position of the protective plate is further lowered relative to the outer surface of the cover, thereby further protecting the protective plate from impacts from other objects. In addition, the slot can also achieve the objective of saving material. Moreover, the provision of the slot enables the handgrip to be more ergonomic. Since the user's fingers will bend at the front edge of the handgrip 21 when the user grips the handgrip, the user's fingers will wrap round the front edge of the handgrip 21. Since the slot 25 is provided on the handgrip, protruding parts of the user's fingers can be laid in the slot 25 when the user's fingers have wrapped round the front edge of the handgrip 21, thereby preventing the user's fingers from being squeezed with the user's palm after wrapping round the handgrip front edge. Thus the comfort and stability of gripping are enhanced. The slot 25 may also be formed on another side of the spray gun and may also be formed on the handgrip of a spray gun with no digital pressure measurement device.


Furthermore, preferably, referring further to FIG. 3, the cover 32 covers the digital pressure measuring gauge 31 installed on the handgrip 21. The slot 25 is disposed in the cover 32, and a window 33 is provided in the slot 25, the window being covered by a transparent protective plate; the transparent protective plate may for example be bonded on the inside of the window.


Embodiment Two

Embodiment two of the present invention is explained with reference to FIG. 6.


All other technical features of embodiment two of the present invention are the same as in embodiment one, so are not repeated here. Embodiment two differs from embodiment one in that the digital pressure measurement device 31 is formed in the cover 32. The digital pressure measurement device 31 is installed in the handgrip of spray gun 100 by installing the cover 32 on the bearing part 33 of the handgrip 21.


As shown in FIG. 6 and mentioned above, the slot in the bearing part may run through the entire width (from one side to the other side) of the handgrip, so that a hole holding a battery is accessible on the other side of the handgrip. This through-running slot is preferably a drilled hole. A blind hole may be provided beside and separate from the through-running drilled hole, so as to be used for holding a pressure sensor. The blind hole is connected to a gas passage in the spray gun, so that the pressure sensor can measure the pressure in the gas passage. Above the drilled hole, a substantially rectangular slot may be formed for holding a circuit board having a display of the digital pressure measurement device.


Embodiment Three

Embodiment three of the present invention is explained below with reference to FIG. 7.


Information about all other technical features of embodiment three of the present invention can be found by referring to embodiment one and embodiment two, so is not repeated.


Referring to FIGS. 7A and 7B, the cover 32 has at least one positioning or retaining projection 37, and the bearing part 33 has a hole 27 (FIGS. 3 and 6) for receiving the projection 37; the cover can be removably attached to the spray gun body by means of the at least one projection and the at least one corresponding hole. Thus, if the spray gun falls and the cover strikes the floor, the impact force will not be completely guided to a screw for fixing the cover to the spray gun body; rather, most of the impact force is absorbed by the projection, thereby protecting the screw. The projection can be manufactured to be thicker than the screw, and therefore more sturdy and durable. Alternatively, the spray gun body has a projection, while the cover has a corresponding hole.


Preferably, there are two of said projections.


As can be seen in FIGS. 7A and 7B, the cover 32 also has a slot which holds the digital pressure measurement device. Thus, it is by no means the case that the entire device must be included in the handgrip; it can be sandwiched between the handgrip and the cover and thereby extend into the handgrip and the cover. Thus, the handgrip can be made thinner.


A sealing ring with an attached fixing element is provided in the cover, in order to seal the digital pressure measurement device so it is isolated from the external environment, and pollution by dust, solvents or spray paint is thereby avoided.


Embodiment Four


FIG. 8 shows a fourth embodiment of a spray gun having a digital pressure measurement device according to the present invention.



FIG. 8 shows a spray gun having a shadow gap of the present invention. As FIG. 8 shows, the spray gun 200 has a shadow gap 22, which maintains a certain distance between a surface 23 of the spray gun body and a surface of the cover 24 of the digital pressure measurement device, thereby concealing the error allowed during manufacture, eliminating the need for millimetre-scale precision processing, and reducing the gripping discomfort which arises when the edges of surfaces installed side by side are not flush with each other.


Furthermore, the shadow gap may be formed by a smaller step part 38 close to an edge of the cover 32 of the digital pressure measurement device, as FIGS. 7A and 7B show. The cover 32 forms an edge of the spray gun, and the cover 32 has at least one shadow gap; when a surface having a shadow gap is installed side by side with another surface, the shadow gap can give rise to a boundary part for permitting a certain error, thereby eliminating the need for millimetre-scale precision processing.


In addition, the shadow gap may also be formed by a smaller step part close to an outer edge of the spray gun body to be fitted with the cover, or formed simultaneously by a smaller step part close to an edge of the cover of the digital pressure measurement device and a smaller step part close to an outer edge of the spray gun body to be fitted with the cover.


In addition, the shadow gap may also be formed by another form besides a step part.


The above embodiments are merely preferred embodiments of the present invention, which are not intended to limit it. To those skilled in the art, various changes and alterations to the present invention are possible. Any amendments, equivalent substitutions or improvements etc. made within the spirit and principles of the present invention should be included in the scope of protection thereof.

Claims
  • 1. A method of manufacturing a spray gun, comprising: forming a spray gun body with a complete handgrip including opposed leading and trailing edge surfaces and opposed side surfaces, the complete handgrip having first external dimensions such that the complete handgrip has a first grip size for gripping by a user of the spray gun;cutting one of the side surfaces to remove a portion of the side surface and a portion of the leading edge surface to form an incomplete handgrip having a recessed bearing surface, with an upper surface of the recessed bearing surface being lower than the side surface before cutting; andcovering the bearing surface with a cover that is shaped and dimensioned to cover the removed portion of the side surface and leading edge surface to thereby form a modified complete handgrip having second external dimensions such that the modified complete handgrip has a second grip size for gripping by a user of the spray gun;wherein the second external dimensions are substantially the same as the first external dimensions and the second grip size is substantially the same as the first grip size.
  • 2. The method of claim 1, wherein the cover includes a window opening through which a display can be viewed.
  • 3. The method of manufacturing a spray gun according to claim 2, wherein the display is associated with a digital pressure measurement device attached to the cover.
  • 4. The method of manufacturing a spray gun according to claim 1, wherein the cover and the incomplete handgrip form a shadow gap therebetween.
  • 5. The method of manufacturing a spray gun according to claim 4, wherein the shadow gap is formed by a step part close to an edge of the cover.
  • 6. The method of manufacturing a spray gun according to claim 1, wherein the cover has at least one slot that is shaped and dimensioned to receive a portion of a pressure measurement device.
  • 7. The method of manufacturing a spray gun according to claim 6, wherein the cover has a window opening arranged adjacent to the slot.
  • 8. The method of manufacturing a spray gun according to claim 7, wherein the window is covered by a transparent protective plate.
  • 9. The method of manufacturing a spray gun according to claim 1, wherein the cover and the recessed bearing surface together form at least one mutually engaging positioning projection and corresponding hole for receiving the positioning projection.
  • 10. The method of manufacturing a spray gun according to claim 1, wherein one of the cover and the recessed bearing surface includes at least one positioning or retaining projection, and the other of the cover and the recessed bearing surface includes at least one corresponding hole for receiving the positioning or retaining projection.
  • 11. The method of manufacturing a spray gun according to claim 1, further comprising: inserting a pressure measurement device into the incomplete handgrip and positioning the pressure measurement device onto the recessed bearing surface.
  • 12. The method of manufacturing a spray gun according to claim 11, wherein the pressure measurement device is electronic and includes visible indicia indicating working pressure of the spray gun, the indicia visible through an opening in the attached cover.
  • 13. The method of manufacturing a spray gun according to claim 12, where the cover includes a transparent window.
Priority Claims (1)
Number Date Country Kind
2014 1 0374583 Jul 2014 CN national
US Referenced Citations (537)
Number Name Date Kind
40433 Sees Oct 1863 A
327260 Hart Sep 1885 A
459432 Anderson Sep 1891 A
459433 Avery Sep 1891 A
548816 Paul Oct 1895 A
552213 Troy Dec 1895 A
552715 Lugrin Jan 1896 A
563505 McCornack Jul 1896 A
581107 Emery Apr 1897 A
644803 Justi Mar 1900 A
672012 Ruper Apr 1901 A
574880 Schmidt et al. May 1901 A
1662496 Forsgard Mar 1928 A
1703383 Birkenmaier Feb 1929 A
1703384 Birkenmaier Feb 1929 A
1711221 Blakeslee Apr 1929 A
1751787 Binks Mar 1930 A
1889201 Holveck Nov 1932 A
2004303 Wahlin Jun 1935 A
2008381 Beeg Jul 1935 A
2049700 Gustafsson Aug 1936 A
2051210 Gustafsson Aug 1936 A
2070696 Tracy Feb 1937 A
2116036 Money May 1938 A
2125445 Holveck Aug 1938 A
2198441 Lobegott Apr 1940 A
2204599 Jenkins Jun 1940 A
2269057 Jenkins Jan 1942 A
D133223 Tammen Jul 1942 S
2356865 Mason Aug 1944 A
2416856 Thomsen Mar 1947 A
2416923 Jenkins Mar 1947 A
2557593 Bjorkman Jun 1951 A
2557606 Liedberg Jun 1951 A
2559091 Reasenberg Jul 1951 A
2609961 Sapien Sep 1952 A
2612899 Webb Oct 1952 A
2646314 Peeps Jul 1953 A
2721004 Schultz Oct 1955 A
2743963 Peeps May 1956 A
2844267 Petriccione Jul 1958 A
2886252 Ehrensperger May 1959 A
3090530 Peeps May 1963 A
D196477 Kelly Oct 1963 S
3159472 Revell Dec 1964 A
D200594 Sass Mar 1965 S
3240398 Dalton, Jr. Mar 1966 A
D204306 Hamm Apr 1966 S
D205760 Hocutt et al. Sep 1966 S
D208903 Zadron et al. Oct 1967 S
3344992 Norris Oct 1967 A
3381845 MacDonald May 1968 A
3417650 Varrin Dec 1968 A
3420106 Keller et al. Jan 1969 A
3435683 Keller et al. Apr 1969 A
3482781 Sharpe Dec 1969 A
D217928 Felske Jun 1970 S
3524589 Pelton, Jr. Aug 1970 A
3527372 Manning Sep 1970 A
3583632 Schaffer Jun 1971 A
3622078 Gronert Nov 1971 A
3645562 Fandetti et al. Feb 1972 A
3656493 Black et al. Apr 1972 A
3714967 Zupan et al. Feb 1973 A
3746253 Walberg Jul 1973 A
3747850 Hastings et al. Jul 1973 A
3771539 De Santis Nov 1973 A
3840143 Davis et al. Oct 1974 A
3848807 Partida Nov 1974 A
3857511 Govindan Dec 1974 A
3870223 Wyant Mar 1975 A
3873023 Moss et al. Mar 1975 A
3938739 Bertilsson et al. Feb 1976 A
4000915 Strom Jan 1977 A
D245048 Pool Jul 1977 S
D252097 Probst et al. Jun 1979 S
4160525 Wagner Jul 1979 A
4171091 van Hardeveld et al. Oct 1979 A
4210263 Bos Jul 1980 A
4273293 Hastings Jun 1981 A
4278276 Ekman Jul 1981 A
4411387 Stern et al. Oct 1983 A
4478370 Hastings Oct 1984 A
D276472 Harrison Nov 1984 S
D278543 Gintz Apr 1985 S
4545536 Avidon Oct 1985 A
4562965 Ihmels et al. Jan 1986 A
4572437 Huber et al. Feb 1986 A
4580035 Luscher Apr 1986 A
4585168 Even et al. Apr 1986 A
4614300 Falcoff Sep 1986 A
4643330 Kennedy Feb 1987 A
4653661 Buchner et al. Mar 1987 A
4667878 Behr May 1987 A
4713257 Luttermoeller Dec 1987 A
D293950 Ogden et al. Jan 1988 S
4730753 Grime Mar 1988 A
4767057 Degli et al. Aug 1988 A
D298372 Taylor, Jr. Nov 1988 S
4784184 Gates Nov 1988 A
4806736 Schirico Feb 1989 A
4826539 Harpold May 1989 A
4832232 Broccoli May 1989 A
4863781 Kronzer Sep 1989 A
4877144 Thanisch Oct 1989 A
D305057 Morgan Dec 1989 S
4887747 Ostrowsky et al. Dec 1989 A
4901761 Taylor Feb 1990 A
4906151 Kubis Mar 1990 A
4917300 Gloviak et al. Apr 1990 A
4946075 Lundback Aug 1990 A
4964361 Aebersold Oct 1990 A
4967600 Keller Nov 1990 A
4969603 Norman Nov 1990 A
4973184 La Salle Nov 1990 A
D314421 Tajima et al. Feb 1991 S
D314588 Denham Feb 1991 S
4989787 Nikkel et al. Feb 1991 A
5020700 Krzywdziak et al. Jun 1991 A
D318877 Miranda et al. Aug 1991 S
5042840 Rieple et al. Aug 1991 A
D321597 Cerny Nov 1991 S
5064119 Mellette Nov 1991 A
5071074 Lind Dec 1991 A
5074334 Onodera Dec 1991 A
5078323 Frank Jan 1992 A
5080285 Toth Jan 1992 A
5088648 Schmon Feb 1992 A
5090623 Burns et al. Feb 1992 A
5102045 Diana Apr 1992 A
5119992 Grime Jun 1992 A
5125391 Srivastava et al. Jun 1992 A
5135124 Wobser Aug 1992 A
5143102 Blaul Sep 1992 A
5165605 Morita et al. Nov 1992 A
5170941 Morita et al. Dec 1992 A
5190219 Copp, Jr. Mar 1993 A
5191797 Smith Mar 1993 A
5209405 Robinson et al. May 1993 A
5228488 Fletcher Jul 1993 A
5232299 Hiss Aug 1993 A
5236128 Morita et al. Aug 1993 A
5249746 Kaneko et al. Oct 1993 A
D341186 Albers Nov 1993 S
5289974 Grime et al. Mar 1994 A
5322221 Anderson Jun 1994 A
5325473 Monroe et al. Jun 1994 A
5332156 Wheeler Jul 1994 A
5333506 Smith et al. Aug 1994 A
5333908 Dorney et al. Aug 1994 A
5344078 Fritz et al. Sep 1994 A
5367148 Storch et al. Nov 1994 A
D353836 Carvelli et al. Dec 1994 S
5381962 Teague Jan 1995 A
5435491 Sakuma Jul 1995 A
5443642 Bienduga Aug 1995 A
5456414 Burns et al. Oct 1995 A
D365952 Gagnon et al. Jan 1996 S
5503439 LaJeunesse et al. Apr 1996 A
5529245 Brown Jun 1996 A
5533674 Feyrer et al. Jul 1996 A
5540385 Garlick Jul 1996 A
5540386 Roman Jul 1996 A
D376637 Kieffer Dec 1996 S
5582350 Kosmyna et al. Dec 1996 A
5584899 Shorts Dec 1996 A
5588562 Sander et al. Dec 1996 A
5592597 Kiss Jan 1997 A
5609302 Smith Mar 1997 A
5613637 Schmon Mar 1997 A
D380301 Kogutt Jul 1997 S
5655714 Kieffer et al. Aug 1997 A
5662444 Schmidt, Jr. Sep 1997 A
5667143 Sebion et al. Sep 1997 A
5695125 Kumar Dec 1997 A
5704381 Millan et al. Jan 1998 A
5718767 Crum et al. Feb 1998 A
D391403 Josephs Mar 1998 S
5725161 Hartle Mar 1998 A
RE35769 Grime et al. Apr 1998 E
5755363 Gantner et al. May 1998 A
5762228 Morgan et al. Jun 1998 A
5803360 Spitznagel Sep 1998 A
5816501 LoPresti et al. Oct 1998 A
5836517 Burns et al. Nov 1998 A
D402820 Morison et al. Dec 1998 S
5843515 Crum et al. Dec 1998 A
5853014 Rosenauer Dec 1998 A
D405503 Edo Feb 1999 S
5874680 Moore Feb 1999 A
5884006 Frohlich et al. Mar 1999 A
D409719 Kaneko May 1999 S
5941461 Akin et al. Aug 1999 A
5951190 Wilson Sep 1999 A
5951296 Klein Sep 1999 A
5954268 Joshi et al. Sep 1999 A
D414636 Wiese Oct 1999 S
5979797 Castellano Nov 1999 A
5992763 Smith et al. Nov 1999 A
6006930 Dreyer et al. Dec 1999 A
6010082 Peterson Jan 2000 A
6017394 Crum et al. Jan 2000 A
6019294 Anderson et al. Feb 2000 A
6036109 DeYoung Mar 2000 A
6039218 Beck Mar 2000 A
6053429 Chang Apr 2000 A
6056213 Ruta et al. May 2000 A
6089471 Scholl Jul 2000 A
6089607 Keeney et al. Jul 2000 A
6091053 Aonuma Jul 2000 A
6092740 Liu Jul 2000 A
6132511 Crum et al. Oct 2000 A
D435379 Nguyen Dec 2000 S
6230986 Vacher et al. May 2001 B1
6250567 Lewis et al. Jun 2001 B1
6267301 Haruch Jul 2001 B1
6276616 Jenkins Aug 2001 B1
D448451 Turnbull et al. Sep 2001 S
6308991 Royer Oct 2001 B1
D457599 Karwoski et al. May 2002 S
D459432 Schmon Jun 2002 S
D459433 Schmon Jun 2002 S
6402058 Kaneko et al. Jun 2002 B2
6402062 Bending et al. Jun 2002 B1
6431466 Kitajima Aug 2002 B1
6435426 Copp, Jr. Aug 2002 B1
6442276 Doljack Aug 2002 B1
6450422 Maggio Sep 2002 B1
6494387 Kaneko Dec 2002 B1
6536684 Wei Mar 2003 B1
6536687 Navis et al. Mar 2003 B1
D472730 Sparkowski Apr 2003 S
6540114 Popovich et al. Apr 2003 B1
6543632 McIntyre et al. Apr 2003 B1
6547884 Crum et al. Apr 2003 B1
6553712 Majerowski et al. Apr 2003 B1
6554009 Beijbom et al. Apr 2003 B1
D474528 Huang May 2003 S
6585173 Schmon et al. Jul 2003 B2
6595441 Petrie et al. Jul 2003 B2
6612506 Huang Sep 2003 B1
6626382 Liu Sep 2003 B1
6626383 Campbell Sep 2003 B1
6647997 Mohn Nov 2003 B2
6661438 Shiraishi et al. Dec 2003 B1
D485685 Zupkofska et al. Jan 2004 S
6675845 Volpenheim et al. Jan 2004 B2
6692118 Michele et al. Feb 2004 B2
6712292 Gosis et al. Mar 2004 B1
6717584 Kulczycka Apr 2004 B2
6732751 Chiang May 2004 B2
6763964 Hurlbut et al. Jul 2004 B1
6766763 Crum et al. Jul 2004 B2
6786345 Richards Sep 2004 B2
6796514 Schwartz Sep 2004 B1
6801211 Forsline et al. Oct 2004 B2
6820824 Joseph et al. Nov 2004 B1
6843390 Bristor Jan 2005 B1
6845924 Schmon Jan 2005 B2
6855173 Ehrnsperger et al. Feb 2005 B2
6863310 Petkovsek Mar 2005 B1
6863920 Crum et al. Mar 2005 B2
6874656 Rohr et al. Apr 2005 B2
6874664 Montgomery Apr 2005 B1
6874708 Reetz, III Apr 2005 B2
6877677 Schmon et al. Apr 2005 B2
6929019 Weinmann et al. Aug 2005 B2
6945429 Gosis et al. Sep 2005 B2
6955180 Kocherlakota et al. Oct 2005 B2
6962432 Hofeldt Nov 2005 B2
6963331 Kobayashi et al. Nov 2005 B1
7017838 Schmon Mar 2006 B2
7018154 Schmon Mar 2006 B2
D519687 Zahav Apr 2006 S
7032839 Blette et al. Apr 2006 B2
7036752 Hsiang May 2006 B1
7083119 Bouic et al. Aug 2006 B2
7090148 Petrie et al. Aug 2006 B2
7097118 Huang Aug 2006 B1
D528192 Nicholson Sep 2006 S
7106343 Hickman Sep 2006 B1
7165732 Kosmyna et al. Jan 2007 B2
7172139 Bouic et al. Feb 2007 B2
7175110 Vicentini Feb 2007 B2
7182213 King Feb 2007 B2
D538050 Tardif Mar 2007 S
D538493 Zimmerle et al. Mar 2007 S
D538886 Huang Mar 2007 S
7194829 Boire et al. Mar 2007 B2
D541053 Sanders Apr 2007 S
D541088 Nesci Apr 2007 S
7201336 Blette et al. Apr 2007 B2
7216813 Rogers May 2007 B2
D545943 Rodgers et al. Jul 2007 S
7246713 King Jul 2007 B2
7249519 Rogers Jul 2007 B2
D548816 Schmon Aug 2007 S
7255293 Dodd Aug 2007 B2
7264131 Tsutsumi et al. Sep 2007 B2
D552213 Schmon Oct 2007 S
D552715 Schmon Oct 2007 S
D554703 Josephson Nov 2007 S
D563505 Schmon Mar 2008 S
7374111 Joseph et al. May 2008 B2
D571463 Chesnin Jun 2008 S
7384004 Rogers Jun 2008 B2
RE40433 Schmon Jul 2008 E
D573227 Mirazita et al. Jul 2008 S
D574926 Huang Aug 2008 S
D575374 Huang Aug 2008 S
7410106 Escoto, Jr. et al. Aug 2008 B2
7416140 Camilleri et al. Aug 2008 B2
7422164 Matsumoto Sep 2008 B2
D579213 Aipa Oct 2008 S
D581107 Schmon Nov 2008 S
D581483 Bass et al. Nov 2008 S
D583013 Wang Dec 2008 S
7458612 Bennett Dec 2008 B1
D588231 Pellin Mar 2009 S
7533678 Rosa May 2009 B2
7540434 Gohring et al. Jun 2009 B2
7542032 Kruse Jun 2009 B2
7568638 Gehrung Aug 2009 B2
D604394 Wang Nov 2009 S
7614571 Camilleri et al. Nov 2009 B2
D607086 Kosaka Dec 2009 S
7624869 Primer Dec 2009 B2
D607972 Wang Jan 2010 S
D608858 Baltz et al. Jan 2010 S
D614731 Wang Apr 2010 S
7694893 Zittel et al. Apr 2010 B2
7694896 Turnbull et al. Apr 2010 B2
D615586 Kudimi May 2010 S
D616022 Kudimi May 2010 S
D616527 Anderson et al. May 2010 S
7765876 Chen Aug 2010 B1
D624668 Noppe Sep 2010 S
7810744 Schmon et al. Oct 2010 B2
7819341 Schmon et al. Oct 2010 B2
D627039 Yu Nov 2010 S
D627432 Escoto et al. Nov 2010 S
7823806 Schmon Nov 2010 B2
D629623 Lampe Dec 2010 S
7856940 Wendler Dec 2010 B2
7913938 Cooper Mar 2011 B2
7922107 Fox Apr 2011 B2
D637269 Wang May 2011 S
D638121 Villasana May 2011 S
D639863 Langan Jun 2011 S
D641067 Wang Jul 2011 S
D644716 Gehrung Sep 2011 S
D644803 Schmon Sep 2011 S
D645094 Langan Sep 2011 S
8042402 Brown et al. Oct 2011 B2
D649196 Langan Nov 2011 S
8052071 Kruse Nov 2011 B2
D655347 Gehrung Mar 2012 S
8127963 Gerson et al. Mar 2012 B2
D657276 Brose Apr 2012 S
D661492 Ranschau Jun 2012 S
D661742 Clark Jun 2012 S
D663960 Jeronimo Jul 2012 S
8225892 Ben-Tzvi Jul 2012 B2
D664773 Papin Aug 2012 S
8240579 Bennett Aug 2012 B1
8297536 Ruda Oct 2012 B2
D670085 Brookman et al. Nov 2012 S
D671988 Leipold Dec 2012 S
D672012 Brose Dec 2012 S
D674880 Schmon Jan 2013 S
8352744 Kruse Jan 2013 B2
8360345 Micheli Jan 2013 B2
D681162 Kruse Apr 2013 S
8444067 Schmon et al. May 2013 B2
8454759 Selsvik Jun 2013 B2
8481124 Nolte et al. Jul 2013 B2
D689590 Brose Sep 2013 S
D689593 Schmon Sep 2013 S
D690799 Maier Oct 2013 S
D692530 Gehrung Oct 2013 S
D692532 Li et al. Oct 2013 S
8616434 Wilen Dec 2013 B2
D697584 Schmon Jan 2014 S
D698008 Schmon et al. Jan 2014 S
8626674 Whitehouse Jan 2014 B2
8642131 Nolte et al. Feb 2014 B2
D704300 Li et al. May 2014 S
8757182 Schmon Jun 2014 B2
8807460 Charpie et al. Aug 2014 B2
8857732 Brose Oct 2014 B2
D720015 Kruse Dec 2014 S
D720041 Robinson Dec 2014 S
8899501 Fox et al. Dec 2014 B2
D721785 Gehrung Jan 2015 S
8925836 Dettlaff Jan 2015 B2
D733369 Tschan Jun 2015 S
D733453 Tschan Jul 2015 S
D734428 Wang Jul 2015 S
D734429 Wang Jul 2015 S
D734571 Tschan Jul 2015 S
9073068 Krayer et al. Jul 2015 B2
D737126 Tschan Aug 2015 S
D740393 Gehrung Oct 2015 S
D745636 Lin Dec 2015 S
9220853 Vogt Dec 2015 B2
D757216 Gherung May 2016 S
D758533 Dettlaff Jun 2016 S
D758537 Gehrung Jun 2016 S
D768820 Binz Oct 2016 S
D770593 Gehrung Nov 2016 S
9533317 Gehrung et al. Jan 2017 B2
D792557 Wang Jul 2017 S
D794756 Wang Aug 2017 S
9782784 Schmon et al. Oct 2017 B2
9878336 Gehrung Jan 2018 B2
D835235 Gehrung et al. Dec 2018 S
10189037 Schmon et al. Jan 2019 B2
10471449 Gehrung Nov 2019 B2
20010004996 Schmon Jun 2001 A1
20010040192 Kaneko et al. Nov 2001 A1
20020134861 Petrie et al. Sep 2002 A1
20020148501 Shieh Oct 2002 A1
20020170978 Mohn Nov 2002 A1
20030025000 Schmon Feb 2003 A1
20030066218 Schweikert Apr 2003 A1
20030121476 McIntyre et al. Jul 2003 A1
20030127046 Zehner et al. Jul 2003 A1
20030164408 Schmon Sep 2003 A1
20030173419 Huang Sep 2003 A1
20030177979 Crum et al. Sep 2003 A1
20030189105 Schmon Oct 2003 A1
20030209568 Douglas et al. Nov 2003 A1
20030213857 Schmon et al. Nov 2003 A1
20030218596 Eschler Nov 2003 A1
20030230636 Rogers Dec 2003 A1
20040046051 Santa Cruz et al. Mar 2004 A1
20040050432 Breda Mar 2004 A1
20040104194 Dennison Jun 2004 A1
20040129738 Stukas Jul 2004 A1
20040140373 Joseph et al. Jul 2004 A1
20040155063 Hofeldt Aug 2004 A1
20040159720 Komornicki Aug 2004 A1
20040177890 Weinmann Sep 2004 A1
20040191406 Crum et al. Sep 2004 A1
20040217201 Ruda Nov 2004 A1
20040233223 Schkolne et al. Nov 2004 A1
20040245208 Dennison Dec 2004 A1
20050056613 King Mar 2005 A1
20050082249 King Apr 2005 A1
20050127201 Matsumoto Jun 2005 A1
20050145723 Blette et al. Jul 2005 A1
20050145724 Blette et al. Jul 2005 A1
20050178854 Dodd Aug 2005 A1
20050189445 Hartle et al. Sep 2005 A1
20050218246 Chatron et al. Oct 2005 A1
20050220943 Abrams et al. Oct 2005 A1
20050248148 Schenck et al. Nov 2005 A1
20050252993 Rogers Nov 2005 A1
20050252994 Rogers Nov 2005 A1
20050268949 Rosa Dec 2005 A1
20050284963 Reedy Dec 2005 A1
20060000927 Ruda Jan 2006 A1
20060007123 Wilson et al. Jan 2006 A1
20060048803 Jessup et al. Mar 2006 A1
20060081060 Forster Apr 2006 A1
20060113409 Camilleri et al. Jun 2006 A1
20060171771 Kruse Aug 2006 A1
20060192377 Bauer et al. Aug 2006 A1
20060196891 Gerson et al. Sep 2006 A1
20070029788 Adler Feb 2007 A1
20070055883 Kruse Mar 2007 A1
20070131795 Abbate et al. Jun 2007 A1
20070158349 Schmon et al. Jul 2007 A1
20070205305 Vagedes Sep 2007 A1
20070221754 Gehrung Sep 2007 A1
20070252378 Chambers Nov 2007 A1
20070262169 Wang Nov 2007 A1
20080011879 Gerson et al. Jan 2008 A1
20080019789 Dunaway et al. Jan 2008 A1
20080029619 Gohring et al. Feb 2008 A1
20080128533 Gehrung Jun 2008 A1
20080179763 Schmon et al. Jul 2008 A1
20080251977 Naruse et al. Oct 2008 A1
20080264892 Nozawa Oct 2008 A1
20080272213 Ting Nov 2008 A1
20080296410 Carey et al. Dec 2008 A1
20090014557 Schmon et al. Jan 2009 A1
20090026290 Fox Jan 2009 A1
20090045623 Schmon Feb 2009 A1
20090072050 Ruda Mar 2009 A1
20090078789 Kruse Mar 2009 A1
20090078790 Camilleri et al. Mar 2009 A1
20090143745 Langan et al. Jun 2009 A1
20090183516 Appler et al. Jul 2009 A1
20090235864 Khoury et al. Sep 2009 A1
20090266915 Fedorov Oct 2009 A1
20100021646 Nolte et al. Jan 2010 A1
20100059533 Unger et al. Mar 2010 A1
20100084493 Troudt Apr 2010 A1
20100108783 Joseph et al. May 2010 A1
20100126541 Schmon May 2010 A1
20100163649 Bass et al. Jul 2010 A1
20100206963 Huang Aug 2010 A1
20100270390 Reitz Oct 2010 A1
20100270400 Evar Oct 2010 A1
20110024524 Fox Feb 2011 A1
20110121103 Carleton et al. May 2011 A1
20110125607 Wilen May 2011 A1
20110127767 Wicks et al. Jun 2011 A1
20110168811 Fox et al. Jul 2011 A1
20110174901 Dettlaff et al. Jul 2011 A1
20120012671 Brose et al. Jan 2012 A1
20120097762 Gehrung et al. Apr 2012 A1
20120132550 Gerson et al. May 2012 A1
20120160935 Krayer et al. Jun 2012 A1
20120187220 Micheli et al. Jul 2012 A1
20130056556 Schmon et al. Mar 2013 A1
20130074864 Nuzzo et al. Mar 2013 A1
20130266734 Nolte et al. Oct 2013 A1
20130320110 Brose et al. Dec 2013 A1
20140034757 Kaneko et al. Feb 2014 A1
20140048627 Schmon et al. Feb 2014 A1
20140059905 Raming Mar 2014 A1
20140145003 Schmon et al. May 2014 A1
20140263686 Hedger Sep 2014 A1
20140305962 Tschan Oct 2014 A1
20150165463 Gehrung Jun 2015 A1
20150231655 Adams et al. Aug 2015 A1
20170304852 Bierie Oct 2017 A1
20180050355 Delsard Feb 2018 A1
20180050356 Gehrung Feb 2018 A1
20180050361 Gehrung Feb 2018 A1
20180050362 Gehrung et al. Feb 2018 A1
20180133727 Schmon et al. May 2018 A1
20180200740 Rossbach et al. Jul 2018 A1
20200038889 Volk et al. Feb 2020 A1
20200038892 Volk et al. Feb 2020 A1
Foreign Referenced Citations (301)
Number Date Country
153883 Jun 1997 AT
163577 Mar 1998 AT
250467 Oct 2003 AT
322645 Apr 2006 AT
383910 Feb 2008 AT
461752 Apr 2010 AT
461753 Apr 2010 AT
475488 Aug 2010 AT
637187 May 1993 AU
2002352235 Sep 2003 AU
2004315547 Aug 2005 AU
2005205899 Aug 2005 AU
2011257605 Nov 2012 AU
2011361295 May 2013 AU
521511 Feb 1956 CA
2126957 Jan 1995 CA
2277096 Jul 1998 CA
2445183 Oct 2002 CA
2552390 Aug 2005 CA
2555607 Aug 2005 CA
2690112 May 2009 CA
2797990 Dec 2011 CA
2812684 Sep 2012 CA
102917803 Feb 2013 CA
2850401 May 2013 CA
203 668 Jun 1939 CH
542104 Sep 1973 CH
676208 Dec 1990 CH
2136077 Jun 1993 CN
1899704 Jan 2007 CN
1902002 Jan 2007 CN
1909970 Feb 2007 CN
1909971 Feb 2007 CN
1917960 Feb 2007 CN
200954482 Oct 2007 CN
101125316 Feb 2008 CN
201064746 May 2008 CN
100430150 Nov 2008 CN
100455360 Jan 2009 CN
101367066 Feb 2009 CN
100478080 Apr 2009 CN
101646500 Feb 2010 CN
102211070 Apr 2011 CN
102139249 Aug 2011 CN
102211069 Oct 2011 CN
103 521 378 Jan 2014 CN
203508251 Apr 2014 CN
203737474 Jul 2014 CN
204074345 Jan 2015 CN
204294401 Apr 2015 CN
205966208 Feb 2017 CN
107427851 Dec 2017 CN
108223901 Jun 2018 CN
460381 May 1928 DE
510362 Oct 1930 DE
611325 Mar 1935 DE
1425890 Nov 1968 DE
2559036 Sep 1976 DE
2653981 Jun 1978 DE
2950341 Jul 1980 DE
2926286 Jan 1981 DE
3016419 Nov 1981 DE
8024829.9 Sep 1982 DE
3111571 Oct 1982 DE
3238149 Apr 1984 DE
34 02 097 Aug 1985 DE
3402945 Aug 1985 DE
3517122 May 1986 DE
3505618 Aug 1986 DE
3526819 Feb 1987 DE
3016419 Aug 1987 DE
8702559 Oct 1987 DE
3708472 Oct 1988 DE
8902223 May 1989 DE
3742308 Jun 1989 DE
8905681 Nov 1989 DE
G 90 01 265 May 1990 DE
3906219 Aug 1990 DE
4302911 Aug 1993 DE
4230535 Mar 1994 DE
G 94 16 015.5 Nov 1994 DE
4321940 Jan 1995 DE
69211891 Oct 1996 DE
19516485 Nov 1996 DE
19727884 Feb 1999 DE
69505433 Apr 1999 DE
19807973 Jul 1999 DE
19824264 Dec 1999 DE
19832990 Jan 2000 DE
20000483 Aug 2000 DE
10004105 Oct 2000 DE
19958569 Feb 2001 DE
199 41 362 Mar 2001 DE
199 45 760 Mar 2001 DE
19945760 Mar 2001 DE
10103221 Aug 2001 DE
10031857 Jan 2002 DE
10031858 Jan 2002 DE
20114257 Feb 2002 DE
10059406 Jun 2002 DE
10135104 Sep 2002 DE
102 05 831 Aug 2003 DE
10205831 Aug 2003 DE
10311238 Oct 2004 DE
10 2004 027 789 Feb 2005 DE
29825120 Feb 2005 DE
102004027789 Feb 2005 DE
69827994 Apr 2005 DE
20320781 Jun 2005 DE
10 2004 014 646 Jul 2005 DE
10 2004 003 438 Aug 2005 DE
102004003439 Aug 2005 DE
10 2004 007 733 Sep 2005 DE
10 2004 021 298 Nov 2005 DE
699 28 944 Sep 2006 DE
69535077 Nov 2006 DE
202007001031 Mar 2007 DE
60200500 1173 Aug 2007 DE
60206956 Aug 2008 DE
102007006547 Aug 2008 DE
102007013628 Sep 2008 DE
102007039106 Feb 2009 DE
102007052067 May 2009 DE
20 2010 012 449 Dec 2010 DE
202010012449 Dec 2010 DE
102009032399 Jan 2011 DE
102009053449 Feb 2011 DE
102010060086 Apr 2012 DE
102010056263 Jun 2012 DE
102011106060 Jan 2013 DE
102011118120 May 2013 DE
10 2011 120 717 Jun 2013 DE
112007001824 Jul 2013 DE
10 2012 013 464 Nov 2013 DE
10 2015 114202 Jan 2017 DE
002066910-0001 Mar 2013 EM
002066910-0002 Mar 2013 EM
002066910-0003 Mar 2013 EM
002066910-0004 Mar 2013 EM
002066910-0005 Mar 2013 EM
002066910-0006 Mar 2013 EM
002066910-0007 Mar 2013 EM
002066910-0008 Mar 2013 EM
002066910-0009 Mar 2013 EM
002066910-0010 Mar 2013 EM
0092043 Oct 1983 EP
0092392 Oct 1983 EP
0114064 Jul 1984 EP
0313958 May 1989 EP
524408 Jan 1993 EP
567325 Oct 1993 EP
0631821 Jan 1995 EP
0650766 May 1995 EP
0650766 May 1995 EP
678334 Oct 1995 EP
0706832 Apr 1996 EP
0706832 Apr 1996 EP
0710506 May 1996 EP
801002 Oct 1997 EP
0846498 Jun 1998 EP
987060 Mar 2000 EP
1081639 Mar 2001 EP
1106262 Jun 2001 EP
1247586 Oct 2002 EP
1247586 Oct 2002 EP
1277519 Jan 2003 EP
1294490 Mar 2003 EP
1299194 Apr 2003 EP
1366823 Dec 2003 EP
1412669 Apr 2004 EP
1424135 Jun 2004 EP
1477232 Nov 2004 EP
1479447 Nov 2004 EP
1504823 Feb 2005 EP
1563913 Aug 2005 EP
1574262 Sep 2005 EP
1602412 Dec 2005 EP
1658902 May 2006 EP
1708822 Oct 2006 EP
1708823 Oct 2006 EP
1718415 Nov 2006 EP
1880771 Jan 2008 EP
1902766 Mar 2008 EP
1902786 Mar 2008 EP
1902876 Mar 2008 EP
1930084 Jun 2008 EP
1964616 Sep 2008 EP
1964616 Sep 2008 EP
1997561 Dec 2008 EP
2017010 Jan 2009 EP
2027931 Feb 2009 EP
2092987 Aug 2009 EP
2106298 Oct 2009 EP
2111920 Oct 2009 EP
2451586 May 2012 EP
2490819 Aug 2012 EP
2576079 Apr 2013 EP
2608890 Jul 2013 EP
2 669 213 Dec 2013 EP
2703089 Mar 2014 EP
2 828 000 Jan 2015 EP
398333 Jun 1909 FR
789762 Nov 1935 FR
1410519 Sep 1964 FR
2444501 Jul 1980 FR
2462200 Feb 1981 FR
2 570 140 Mar 1986 FR
2 774 928 Aug 1999 FR
2863512 Jun 2005 FR
2927824 Aug 2009 FR
190900523 Jun 1909 GB
657854 Sep 1951 GB
2 132 916 Jul 1984 GB
2153260 Aug 1985 GB
2372465 Aug 2002 GB
2411235 Aug 2005 GB
1100405 Jun 2009 HK
1096057 Jul 2009 HK
1125067 Aug 2012 HK
1138533 Nov 2012 HK
S49-136868 Nov 1974 JP
S55-107258 Jul 1980 JP
S5654328 May 1981 JP
S57-75246 May 1982 JP
S57128346 Aug 1982 JP
58-119862 May 1983 JP
S5998757 Jun 1984 JP
S601722 Jan 1985 JP
S62160156 Jul 1987 JP
H01-87805 Jun 1989 JP
H02258076 Oct 1990 JP
H04-176352 Jun 1992 JP
H0530749 Apr 1993 JP
H05172678 Jul 1993 JP
674850 Mar 1994 JP
H06215741 Aug 1994 JP
H07204542 Aug 1995 JP
H08196950 Aug 1996 JP
H08196950 Aug 1996 JP
H09117697 May 1997 JP
11-047643 Feb 1999 JP
2001259487 Sep 2001 JP
2003042882 Feb 2002 JP
2003088780 Mar 2003 JP
2004-501763 Jan 2004 JP
2004017044 Jan 2004 JP
2005138885 Jun 2005 JP
2007516831 Jun 2007 JP
2008018296 Jan 2008 JP
2010-528837 Aug 2010 JP
2014124274 Jul 2014 JP
20140064644 May 2014 KR
2523816 Jan 2014 RU
491092 Jun 2002 TW
510253 Nov 2002 TW
I220392 Aug 2004 TW
I303587 Dec 2008 TW
I309584 May 2009 TW
90008456 Aug 1990 WO
9116610 Oct 1991 WO
199207346 Apr 1992 WO
9522409 Aug 1995 WO
199832539 Jul 1998 WO
01012337 Feb 2001 WO
200112337 Feb 2001 WO
0166261 Sep 2001 WO
01099062 Dec 2001 WO
02000355 Jan 2002 WO
0202242 Jan 2002 WO
02018061 Mar 2002 WO
02085533 Oct 2002 WO
03007252 Jan 2003 WO
03045575 Jun 2003 WO
03069208 Aug 2003 WO
03069208 Aug 2003 WO
04037433 May 2004 WO
200437433 May 2004 WO
04052552 Jun 2004 WO
05018815 Mar 2005 WO
05068220 Jul 2005 WO
05070557 Aug 2005 WO
05070558 Aug 2005 WO
05077543 Aug 2005 WO
05115631 Dec 2005 WO
2006065850 Jun 2006 WO
07128127 Nov 2007 WO
2007133386 Nov 2007 WO
2007149760 Dec 2007 WO
2009015260 Jan 2009 WO
2009015260 Jan 2009 WO
2009054986 Apr 2009 WO
2009056424 May 2009 WO
2010019274 Feb 2010 WO
2010044864 Apr 2010 WO
2011047876 Apr 2011 WO
2011147555 Dec 2011 WO
2012119664 Sep 2012 WO
2013000524 Jan 2013 WO
2013016474 Jan 2013 WO
2013131626 Sep 2013 WO
2013142045 Sep 2013 WO
Non-Patent Literature Citations (173)
Entry
Office Action dated Feb. 19, 2016 for U.S. Appl. No. 14/113,649.
Final Office Action dated Feb. 25, 2016 for U.S. Appl. No. 13/698,417.
Restriction Requirement dated Mar. 25, 2016 for Design U.S. Appl. No. 29/516,082.
Response filed Mar. 31, 2016 to Office Action dated Dec. 31, 2016 for U.S. Appl. No. 14/572,998.
Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285.
Second Chinese Office Action dated Jun. 24, 2015 for Chinese Application No. 2011800266029.
Third Chinese Office Action dated Nov. 30, 2015 for Chinese Application No. 2011800266029.
Final Office Action dated Aug. 29, 2016 for U.S. Appl. No. 14/113,649.
Office Action dated Nov. 2, 2016 for U.S. Appl. No. 11/949,122.
International Preliminary Report on Patentability for PCT/EP2015/001728 filed Aug. 25, 2015.
Final Office Action dated Mar. 16, 2017 from U.S. Appl. No. 13/698,417, 9 pages.
Response to Final Office Action and RCE dated Nov. 29, 2016 in U.S. Appl. No. 14/113,649.
International Search Report (dated Jun. 20, 2008), Written Opinion (dated Jun. 20, 2008), and International Preliminary Report on Patentability (dated Sep. 14, 2010) from PCT/US2008/03318 filed Mar. 12, 2008.
Response filed Dec. 7, 2015 to Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285.
Response filed Dec. 21, 2015 to Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649.
Notice of Allowance dated Jan. 27, 2016 for Design U.S. Appl. No. 29/510,723.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/005381 file May 19, 2004.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/011998 filed Oct. 23, 2004.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/000435 filed Jan. 18, 2005.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/00437 filed Jan. 18, 2005.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2008/063344, filed Oct. 6, 2008.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/002392 filed Apr. 20, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/002544 filed May 21, 2011.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/066665 filed Sep. 26, 2011.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/003399 filed Jun. 7, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/5842 filed Dec 2, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2012/01939 filed May 5, 2012.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2009/06992 filed Sep. 29, 2009.
Internet Archive Wayback Machine [online] [captured Sep. 25, 2012] [retrieved on Sep. 8, 2014] retrieved from the Internet URL:http://web.archive.org/web/20120925210554/http://www.sata.com/index.php?id=sal-check&no cache=1&L=11.
JP Office Action issued agains JP Patent App. 2012-508926 dated Feb. 25, 2014 with English translation.
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/572,998.
Notice of Allowance dated Jan. 19, 2016 for Design U.S. Appl. No. 29/539,615.
Notice of Allowance dated Jan. 22, 2016 for U.S. Appl. No. 13/991,285.
Response to Restriction Requirement filed Jul. 27, 2015 to Restriction Requirement dated May 27, 2015 for U.S. Appl.No. 13/991,285.
Notice of Allowance dated Aug. 3, 2015 for U.S. Appl. No. 29/486,232.
Final Office Action dated Aug. 4, 2015 for U.S. Appl. No. 13/380,949.
Response to Office Action filed Feb. 16, 2016 for U.S. Appl. No. 13/698,417.
Screen shot of a SATA product (SATAjet B) description retrieved on Feb. 12, 2016 from www.sata.com/index.php.
“The Hot Rolling Process;” California Steel; retrieved on Feb. 12, 2016 from http://www.californiasteel.com/GetPublicFile.aspx?id=53.
Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649.
Notice of Allowance dated Nov. 19, 2014 for U.S. Appl. No. 29/486,223.
Office Action dated Dec. 31, 2014 for U.S. Appl. No. 13/380,949.
Restriction Requirement dated Jan. 9, 2015 for Design U.S. Appl. No. 29/469,049.
Response to Office Action filed Dec. 2, 2014 for U.S. Appl. No. 29/487,679.
Notice of Allowance dated Jan. 15, 2015 for Design U.S. Appl. No. 29/490,620.
Office Action dated Jan. 14, 2015 for Design U.S. Appl. No. 29/447,887.
Hercules Paint Gun Washers brochure publish date Jan. 2012, [online], [site visited Jan. 7, 2015], <http://www.herkules.us/pdfs/L00761-Hercules-Gun_Washers-4-page-brochure.pdf> (cited in OA for paint spray gun cleaning device).
Jetclean GUn Cleaner Terry's Auto Supply, google publish date Aug. 4, 2011, [online], [site visited Jan. 7, 2015], <http://secure.terrys.net/viewProduct.php?productID=FT.FHAZ1005>.
Restriction Requirement dated Feb. 6, 2015 for Design U.S. Appl. No. 29/486,232.
Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417.
Responde to Office Action filed Apr. 14, 2015 to Office Action dated Jan. 14, 2015 for U.S. Appl. No. 29/447,887.
Response filed Jul. 20, 2015 for Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417.
Notice of Allowance dated Apr. 30, 2015 for U.S. Appl. No. 29/447,887.
Chinese Office Action dated Oct. 28, 2014 and Search Report dated Oct. 15, 2014 for Chinese Application No. 2011800266029.
Australian Examination Report dated Oct. 30, 2012 for Australian Application No. 2010268870.
Notice of Allowance dated Apr. 24, 2015 for Design U.S. Appl. No. 29/486,232.
Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417.
Response filed Mar. 23, 2015 to Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417.
Response filed Apr. 6, 2015 to Office Action dated Feb. 6, 2015 for Design U.S. Appl. No. 29/486,232.
Response filed Mar. 31, 2015 to Office Action dated Dec. 31, 2014 for U.S. Appl. No. 13/380,949.
Japanese Office Action dated Jun. 11, 2014 for Japanese Patent Application No. 2012-518769.
Australian Examination Report dated Nov. 11, 2014 for Australian patent Application No. 2011257605.
Japanese Notice of Allowance dated Jan. 13, 2015 for Japanese Patent Application No. 2012/518769.
Application filed Dec. 11, 2011 for U.S. Appl. No. 13/380,949.
Chinese Office Action dated Jan. 28, 2014 and Search Report dated Jan. 21, 2014 for Chinese Application No. 201080030935.4.
Search Report dated Apr. 24, 2010 for German Application No. 10 2009 032 399.6-51.
Application filed Oct. 24, 2013 for U.S. Appl. No. 14/113,649.
Response filed May 18, 2015 to Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649.
Application filed Dec. 17, 2014 for U.S. Appl. No. 14/572,998.
German Search Report dated Mar. 25, 2014 for German Application No. 202013105779-7.
Application filed Nov. 16, 2012 for U.S. Appl. No. 13/698,417.
Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285.
English translation of application filed Aug. 13, 2013 for Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285.
Restriction Requirement dated May 27, 2015 for U.S. Appl. No. 13/991,285.
Application filed Jan. 29, 2015 for Design U.S. Appl. No. 29/516,073.
Application filed Jan. 29, 2015 for Design U.S. Appl. No.29/516,082.
Application filed Mar. 3, 2015, 2015 for Design U.S. Appl. No. 29/519,198.
Final Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649.
Canadian Office Action dated Nov. 21, 2012 for related application CA2741703.
Chinese Search Report dated Dec. 5, 2012 for related application CN200980135429.9.
Chinese Office Action dated Dec. 13, 2012 for related application CN200980135429.9.
German Search Report for DE 20 2008 014 389.6 completed Jul. 13, 2009.
Notification of the First Office Action with search report dated Aug. 24, 2015 for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 13 pages.
Notification of the Second Office Action dated May 16, 2016, for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 5 pages.
Japanese Office Action for JP2014-517485 (related to U.S. Appl. No. 14/113,649), dated Jul. 5, 2016, 16 pages.
Notice of Allowance dated Apr. 18, 2016 for U.S. Appl. No. 14/572,998.
Response filed Apr. 27, 2016 to Office Action dated Jan. 29, 2016 for U.S. Appl. No. 13/380,949.
German Search Report dated Apr. 12, 2016 for related German Application No. 10 2015 008 735.5.
Printout from Internet www.ehow.com explaining how to choose a spray gun and stating in item 2 “Nozzle sizes vary between about 1 mm and 2 mm.”, printed Sep. 7, 2012.
Printout from Internet www.bodyshopbusiness.com explaining how to choose nozzle setup in paragraph bridging pp. 1 and 2, giving general rule of thumb of nozzle sizes from 1.3 mm to 2.2 mm, depending on material being sprayed, printed Sep. 7, 2012.
Printout from Internet of pages from brochure of Walther Pilot showing nozzle sizes for spray guns ranging from 0.3 mm to 2.5 mm, dated 2007.
Printout from Internet www.alsacorp.com showing in the paragraph bridging pp. 2 and 3, Model VS-7200 Saber LVLP spray gun with nozzle size 1.3 mm with sizes 1.3 to 2.0 available, printed Aug. 26, 2012.
Printout from Internet of p. 28 from current 3Mtm brochure showing Tip/Nozzle/Air Cap Selection Guide with nozzle sizes from 0.5 mm to 3.0 mm.
Decision by EPO regarding opposition proceedings to revoke patent No. 99926841.0-2425/ 1108476, corresponding to '387 patent, 2012.
SATA News Publication Dan-Am Jul.-Sep. 1996.
SATA News Publication Dan-Am Oct.-Dec. 1996.
SATA News Publication Dan-Am Apr.-Jun. 1998.
Dan-Am SATA Catalog 6 for spray guns 1991.
Dan-Am SATA Catalog 8 for spray guns 1994.
Dan-Am Catalog 6—51pp published 1991.
Japanese Industrial Standards B 9809 English translation, 1992.
Japanese Industrial Standards B 9809 revised Mar. 1, 1991.
SATA News, vol. 21, 2009.
Collision Hub TV Document (image from video clip) printed Oct. 9, 2013.
MyRieIsMe.com document from press release printed Oct. 9, 2013.
How to set Air pressure, Utube screenshot printed Oct. 9, 2013.
Ohio EPA Letty to Tony Larimer, response to letter dated Aug. 2006.
Pinahs Ben-Tzvi et al, A conceptual design . . . , Mechatrronics 17 (2007) p. 1-13.
On line ad from Amazon.com printed Oct. 14, 2013.
Rone et al, MEMS-Baed Microdroplet Generation with Integrated Sensing, COMSOL, 2011.
Response filed Oct. 6, 2015 to Notice of Non-Compliant Amendment for U.S. Appl. No. 13/698,417.
Notice of Non-Compliant Amendment dated Aug. 10, 2015 for U.S. Appl. No. 13/698,417.
Final Office Action dated Oct. 16, 2015 for U.S. Appl. No. 13/698,417.
Extended European Search Report dated Apr. 17, 2015 for European Application No. 14004167.4.
Restriction Requirement Office Action dated Apr. 17, 2017 for U.S. Appl. No. 14/815,210.
Notice of Allowance dated Apr. 10, 2017 for U.S. Appl. No. 29/579,824.
Response to Final Office Action filed May 9, 2017 in U.S. Appl. No. 13/698,417.
Response to Office Action filed May 17, 2017 in U.S. Appl. No. 14/113,649.
Office Action from U.S. Appl. No. 15/143,698 dated Jan. 5, 2017.
German Search Report for German Application No. 10 2015 016 474.0 dated Aug. 9, 2016, 14 pages.
Notice of Allowance in U.S. Appl. No. 29/556,463, filed Mar. 1, 2016, 9 pages.
Notice of Allowance in U.S. Appl. No. 29/555,656, filed Feb. 24, 2016, 5 pages.
Response restriction requirement filed May 23, 2016 for Design U.S. Appl. No. 29/516,082.
Final OA in U.S. Appl. No. 14/113,649 dated Jun. 22, 2017.
Response filed in U.S. Appl. No. 15/143,698 dated Jul. 3, 2017.
International Search Report dated Aug. 31, 2016 for PCT/EP2016/061057 filed May 18, 2016.
Written Opinion for PCT/EP2016/061057 filed May 18, 2016.
International Search Report dated Jul. 14, 2016 for International Application No. PCT/EP2016/000809, filed May 17, 2016.
Written Opinion for International Application No. PCT/EP2016/000809, filed May 17, 2016.
European Search Report dated May 8, 2017 for Application No. EP16203544.
“Spray Guns/sata.com”, Oct. 18, 2015, XP055364928 URL:http://web.archive.org/web/20151018205307/http://www.sata.com/index.php?id=lackierpistolen&L=11 [gefunden am Apr. 13, 2017]; reprinted on Dec. 8, 2017.
“SATAjet 5000 B Lackierpistolen | Bechersysteme | Atemschutz | Filtertechnik | Zubehor So flexibel wie Ihre Aufgaben” Apr. 11, 2017, XP055364477 Gefunden im Internet: URL:https/www.sata.com/uploads/tx_pxspecialcontent/00_SATAjet_5000_B.pdf [gefunden am Apr. 12, 2017]; English translation of full brochure attached.
Amendments submitted to European Patent Office dated Dec. 3, 2017 for Application No. EP16203544 (with Englsh translation of chart on p. 3).
German Search Report for Application No. 10 2016 009 957.7 dated Apr. 21, 2017.
German Search Report dated Apr. 21, 2017 for application No. 10 2016 009 957.7.
Written Opinion dated Sep. 8, 2016 for International Application No. PCT/EP2016/061057 filed May 18, 2016.
20180522 Final Office Action for U.S. Appl. No. 14/113,649.
U.S. Appl. No. 14/815,210 Office Action dated Apr. 3, 2018.
U.S. Appl. No. 14/113,649 Response filed Mar. 3, 2018.
German Search Report dated Apr. 10, 2018 for Application No. 10 2017 118 599.2.
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,533.
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,461.
Response to Final Office Action dated Aug. 22, 2018 for U.S. Appl. No. 14/113,649.
European Search Report dated Jan. 24, 2018 for Application No. 17186905.
Response to Election of Species Requirement and Amendment filed Oct. 15, 2018 from U.S. Appl. No. 15/679,482.
Chinese Search Report dated Jul. 18, 2018 for Application No. 2014103745834 filed Jul. 31, 2014.
DesignView of CN302452159 registered Jun. 5, 2013, printed Oct. 18, 2018.
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,533.
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,461.
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 29/618,945.
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 14/113,649.
Office Action, dated Jan. 9, 2019, for U.S. Appl. No. 15/679,482.
Restriction Requirement dated Mar. 18, 2019, for U.S. Appl. No. 29/596,869.
Japanese Office Action dated Sep. 25, 2019 for Japanese Publication No. 2015-149405, 4 pages.
Response to Office Action dated Apr. 5, 2019 for U.S. Appl. No. 15/679,461 (29 pages).
Response to Office Action dated Apr. 9, 2019 for U.S. Appl. No. 15/679,533 (22 pages).
Response filed May 28, 2019 for U.S. Appl. No. 15/379,972.
Final Office Action for U.S. Appl. No. 15/679,461 dated Jun. 11, 2019.
Final Office Action for U.S. Appl. No. 15/679,533 dated Jul. 12, 2019.
RCE Reply filed Oct. 11, 2019 for U.S. Appl. No. 15/679,461.
Search Report dated Feb. 22, 2019 for German Patent Application No. 10 2018 118 738.6.
Search Report dated Feb. 8, 2019 for German Patent Application No. 10 2018 118 737.8.
Notice of Allowance dated Jul. 1, 2019 for U.S. Appl. No. 15/379,972.
Notice of Allowance dated Jul. 9, 2019 for U.S. Appl. No. 15/679,482.
Office Action dated Jan. 25, 2019 for U.S. Appl. No. 15/379,972.
Response to Restriction Requirement filed Oct. 29, 2019 for U.S. Appl. No. 15/575,549.
German Search Report dated Mar. 18, 2016 for Application No. 20 2015 003 664.3, 5 pages.
Chinese Search Report dated Feb. 21, 2019 for Application No. 2016800293781, 3 pages.
European Search Report dated Feb. 21, 2020 for Application No. 19183382.1.
Response dated Feb. 19, 2020 for U.S. Appl. No. 15/575,549.
European Search Report, dated Jan. 20, 2020, for European Application No. 19183380.
Final Office Action dated Feb. 27, 2020 for U.S. Appl. No. 15/575,549.
Office Action, dated Nov. 20, 2019, for U.S. Appl. No. 15/575,549 2 pages.
Related Publications (1)
Number Date Country
20160030960 A1 Feb 2016 US