This application claims priority under 35 U.S.C. §119(a) to French Patent Application Serial Number 1653320, filed Apr. 14, 2016, the entire teachings of which are incorporated herein by reference.
Field of the Invention
The invention relates to a spray nozzle for a receptacle, in particular for a system for dispensing a pressurized fluid provided with a pushbutton. The invention also relates to a dispensing system comprising such a nozzle.
Description of the Related Art
In one particular application, the dispensing system is intended to equip bottles used in perfumery, cosmetics or pharmaceutical treatments. Indeed, this type of bottle contains a product that is retrieved by the dispensing system comprising a device for the pressurized withdrawal of said product, said system being actuated for example by a pushbutton to allow the spraying of said product. In general, the withdrawal device comprises a manually actuated pump or valve, for example actuated via the pushbutton.
Such pushbuttons are traditionally made in at least two parts, including an actuating body and a spray nozzle that are assembled to one another. The nozzle generally comprises a vortex chamber provided with a dispensing orifice, as well as at least one supply channel of said chamber.
The withdrawal device withdraws the product from the bottle via a tube, and pushes it under pressure to the inside of a conduit arranged in the pushbutton, which is the actuating element of the withdrawal device. This conduit emerges in a so-called vortex chamber intended to rotate the liquid very quickly and therefore give it speed and the effects of the centrifugal force. This vortex chamber is extended at its center by an outlet orifice through which the product escapes to the outside with a high speed. Moved by this speed, and subject to the centrifugal forces, the liquid fractures into droplets and forms an aerosol. The size of the droplets coming from the vortex chamber depends in part on the force and speed with which the user actuates the pump by pressing on the pushbutton with his finger, since the induced pressure depends thereon.
In order to ensure good uniformity of the size of said droplets, one technology consists of using a conical vortex chamber. Thus, the stream rotates in a chamber in the form of a pool that impacts itself after it leaves through the dispensing orifice.
French Patent FR 2,952,360 shows one example of such a conical vortex chamber. Here, the supply channels emerge tangentially in the vortex chamber, which is cylindrical of revolution to rotate the product very quickly. Furthermore, the dispensing orifice has a smaller diameter relative to that of said chamber so that the rotating product escapes through said orifice, impacting itself with a sufficient speed to split into droplets forming the aerosol.
However, this technology has a limited efficacy for fluids whose viscosity is close to that of water. When the products to be sprayed have higher viscosities, for example up to 50 or 100 times that of water, the impaction is low and the retrieval is done in the form of a hollow cone spray or a jet. One thus does not obtain droplets with the desired size.
The present disclosure aims to resolve the foregoing problem and seeks to provide a spray nozzle for a dispensing system capable of spraying products whose viscosity is higher than that of water, so as to obtain droplets according to the desired size for perfumery, cosmetics or pharmaceutical treatment bottles.
To that end, one embodiment of the invention relates to a spray nozzle, in particular for a system for dispensing a pressurized product provided with a pushbutton, the nozzle comprising a dispensing orifice and a vortex chamber emerging on the dispensing orifice, the chamber including a conical part defined by a conical side surface, said conical side surface converging from an upstream end toward a downstream supply end of the dispensing orifice, the nozzle further comprising at least one supply channel of said vortex chamber, the supply channel(s) emerging in the upstream end of the conical part, the conical side surface having at least one stepped portion provided with one level or multiple levels.
The stepped portions favor greater impaction of the pool on itself, and thus the formation of fine enough droplets. Indeed, when the fluid rotates in the form of a laminar pool on the surface of the conical part and approaches the outlet orifice, the pool jumps from one stage to the other between two levels, which causes the turbulence of the flow. One thus manages to create significant turbulence despite the viscosity of the product.
According to different embodiments of the invention, which may be considered together or separately:
The present invention also relates to a nozzle-anvil assembly as previously described.
The invention also relates to a system for dispensing a pressurized product for a receptacle, in particular a cosmetic product bottle, the system comprising such a spray nozzle. The dispenser preferably comprises a pushbutton arranged to support the spray nozzle.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
The dispensing system comprises a withdrawal device 6 equipped with an intake tube 4 for the pressurized product that is inserted tightly into the well 3. In a known manner, the dispensing system further comprises mounting means 7 for mounting on a bottle 8 containing the product and withdrawal means 9 for withdrawing the product from inside said bottle that are arranged to supply the intake tube 4 with pressurized product. The withdrawal device 6 here comprises a manually actuated pump, or in the case where the product is packaged pressurized in the bottle 8, a manually actuated valve. Thus, upon a manual movement of the pushbutton, the pump or the valve is actuated to supply the intake tube 4 with pressurized product. The mounting means 7 for example comprise a fastening ring and a decorative collar to hide the ring and the intake tube 4.
As shown in
The housing 10 is provided with an anvil 11 around which a spray nozzle 12 is mounted so as to form a dispensing path for the pressurized product between said housing and a vortex chamber. To that end, the anvil 11 extends from the bottom of the housing 10 while leaving a communication channel 13 between the well 3 and said housing.
In the illustrated embodiment, the dispensing path successively has, in communication from upstream to downstream: an upstream annular conduit 18 in communication with the channel 13, said tubular conduit 18 being formed between the inner face of the side wall 14 of the nozzle 12 and the outer face of the side wall of the anvil 11 that is positioned opposite it; a downstream annular conduit 21 formed between the proximal wall 15 of the nozzle 12 and the distal wall 17 of the anvil 11. On the downstream side, the dispensing path supplies pressurized product to the vortex chamber 22, provided with at least one supply channel 24 of said chamber. More specifically, in the illustrated embodiment, the supply channels 24 communicate with the downstream annular conduit 21. In the illustrated embodiment, the nozzle has two supply channels 24 of the vortex chamber 22, said channels being arranged symmetrically relative to the dispensing axis D. Alternatively, more than two supply channels 24 can be provided, in particular three channels 24 arranged symmetrically relative to the dispensing axis D, or a single channel 24 can be provided to supply the vortex chamber 22.
The association of the nozzle 12 in the housing 10 is done by fitting the outer face of the side wall 14, the rear edge of said outer face further being provided with a radial projection 16 for anchoring the nozzle 12 in said housing. Furthermore, a cavity of the vortex chamber is formed hollowed in the proximal wall 15 and the end 11 has a planar distal wall 17 on which the proximal wall 15 of the nozzle 12 bears to define the vortex assembly between them. The nozzle 12 is further provided with a dispensing orifice 23 by which the product is sprayed.
Advantageously, the nozzle 12 and the body 1 are made by molding, in particular from a different thermoplastic material. Furthermore, the material forming the nozzle 12 has a rigidity exceeding the rigidity of the material forming the body 1. Thus, the significant stiffness of the nozzle 12 makes it possible to avoid deformation when it is mounted in the housing 10, so as to guarantee the geometry of the vortex chamber. Furthermore, the lower stiffness of the body 1 allows improved sealing between the mounting well 3 and the intake tube 4. In one example embodiment, the body 1 is made from polyolefin and the nozzle 12 is made from cyclic olefin copolymer (COC), polyoxyethylene or polybutylene terephthalate.
In the embodiment shown in
Thus, during dispensing of the pressurized product, the tangential supply of the vortex chamber 22 makes it possible to rotate the product in the cylindrical part of said chamber; the product is next pressed and pushed in rotation through the upstream end 26 along the side surface 25 of said conical part while forming a pool of product, the rotational speed of which increases and which converges with the downstream end 27; then said converging pool can impact itself, escaping through the dispensing orifice 23 to form the aerosol.
According to the invention, the side surface has at least one stepped portion 33 provided with one level 36 or multiple levels 36. A level refers to a transverse surface, in particular orthogonal to the dispensing axis D of the chamber 22, situated between the base and the apex of the conical part. Thus, the stepped portions 33 have a stair-step shape, the levels 36 of which form the stairs. The stepped portions 33 here extend from the upstream end 26 to the downstream end 27 of the conical part, and have a width that decreases in proportion to the diameter of the conical part between the upstream and downstream ends. In the embodiment of
Furthermore, to supply the vortex chamber 22 tangentially by rotating the product along its side surfaces 25, 34, each supply channel 24 has a U-shaped section that is defined between an outer wall 28 and an inner wall 29. The outer 28 and inner 29 walls are orthogonal to the upstream end 26. Furthermore, the outer wall 28 is tangent to the cylindrical side surface 34 and the inner wall 29 is offset from it, for example by a distance smaller than 30% of the inner dimension of the upstream end 26, so as to avoid impaction of the product in said upstream end. In the illustrated embodiment, the inner wall 29 advantageously has a convergence angle with the outer wall 28 in the upstream-downstream direction, the offset between said walls then being measured at the emergence section of the channels 24 in the upstream end 26. Preferably, the inner wall 29 has a convergence angle smaller than or equal to 10°. The inner wall is also connected to the cylindrical surface 34 of the chamber by a rounded corner 38, which preferably has a radius smaller than 0.1 mm.
Moreover, the downstream end of the supply channel 24 or the set of downstream ends of each of the supply channels 24 forms a supply section of the vortex chamber 22. To increase the dispensing time of a product dose over the actuating travel of the pushbutton, it is possible to provide that this supply section is small relative to the inner surface of the upstream end 26. In particular, the surface area of the supply section can be less than 10% of the inner surface of the upstream end 26. Preferably, the surface area of the supply section can be comprised between 0.01 mm2 and 0.03 mm2. In one example embodiment, the inner dimension of the upstream end 26 is 0.5 mm, i.e., an inner surface of 0.2 mm2, and each channel 24 has a width of 0.12 mm and a depth of 0.13 mm, i.e., a surface area of 0.016 mm2 for the supply section.
In the illustrated embodiment, the downstream end 27 of the vortex chamber is topped by a dispensing orifice 23 having a cylindrical geometry of revolution around the dispensing axis D, the inner dimension of said orifice being equal to the inner dimension of the downstream end 27. Advantageously, the axial dimension of the dispensing orifice 23 is small relative to its inner dimension, so as not to disrupt the convergence of the vortex pool. In particular, the axial dimension of the dispensing orifice 23 can be less than 50% of its inner dimension. In an alternative that is not shown, the downstream end 27 of the vortex chamber 22 can form a dispensing orifice 23. Aerosol production is particularly satisfactory when the inner dimension of the downstream end 27 is small relative to the inner dimension of the upstream end 26, such that the impaction of the pool is done as close as possible to the dispensing orifice 23. In particular, the inner dimension of the downstream end 27 can be less than 50% of the inner dimension of the upstream end 26, more specifically being comprised between 20% and 40% of said inner dimension.
Preferably, the axial dimension of the vortex chamber 22 is relatively large, in particular around or larger than the inner dimension of the upstream end 26, so as to allow the establishment of the vortex pool along the side surfaces 25, 34 of said vortex chamber 22 and to impart a gradual convergence. In particular, the axial dimension of the vortex chamber 22 is at least equal to 80% of the inner dimension of the upstream end 26, more specifically being comprised between 90% and 200% of said inner dimension.
According to one particular embodiment, the inner dimension of the cylindrical part is 0.6 mm, the upstream end 26 being 0.5 mm, and the inner dimension of the downstream end 27 is smaller than or equal to 0.14 mm. The axial dimension of the vortex chamber 22 is at least equal to 0.45 mm, knowing that the axial dimension of the conical part is 0.32 mm and the cylindrical part is 0.13 mm. The axial dimension of the dispensing orifice 23 is less than 0.10 mm, and the inner dimension is 0.14 mm.
In
According to different alternatives of the second embodiment, the stepped portion(s) may have variable dimensions, and for example be arranged on one third, one quarter, two thirds or three quarters of the side surface along the dispensing axis.
According to a third embodiment, an axis Y of the dispensing orifice 23 forms a predetermined angle A with the dispensing axis D. This angle is different from zero. This makes it possible to offset a pressure imbalance in the vortex chamber or to obtain spraying with a more or less bowed, or even flat, shape.
According to a fourth embodiment shown in
The invention also relates to an assembly comprising a nozzle and an anvil. A front vortex chamber situated between the distal wall 17 of the anvil and the proximal wall 35 of the conical part, this vortex chamber having a cylindrical shape. Supply channels 24 emerge in said front vortex chamber, the latter emerging in the vortex chamber 22 of the nozzle.
These embodiments therefore make it possible to use a vortex chamber for a viscous product. The impaction of the vortex pool on the stepped portions in particular makes it possible to produce an aerosol made up of a uniform spatial distribution of droplets suspended in the air, the size of said droplets being small and uniform. In particular, the aerosol may then assume the appearance of a smoke plume with droplet sizes comprised between 10 μm and 60 μm, with an average of 35 μm, and irrespective of the bearing force that the user exerts on the pushbutton, in particular in the case of a needle pump.
Finally, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Having thus described the invention of the present application in detail and by reference to embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims as follows:
Number | Date | Country | Kind |
---|---|---|---|
1653320 | Apr 2016 | FR | national |