This invention relates to an irrigation spray nozzle and method and, more particularly, to a nozzle with an inverted fluid flow and that is adjustable to allow irrigation through a desired fluid distribution arc.
Irrigation nozzles have been adapted for mounting on a fixed or pop-up water supply riser. Spray type irrigation nozzles typically include at least one discharge orifice shaped to distribute fluid in a stream or spray pattern of a pre-selected arcuate span. One common form of such spray nozzle includes an upper deflector assembled to a lower nozzle body designed for mounting onto the riser. The deflector and nozzle body cooperatively define the discharge orifice with the selected arcuate span through which fluid is projected from the nozzle. Such spray nozzles commonly include a series of models that each produce a different spray pattern, such as, for example, a quarter-circle, half-circle, and full-circle spray pattern.
One shortcoming of many commercially available spray nozzles is their tendency to distribute fluid in a doughnut-shaped watering pattern caused by less fluid being distributed in the regions relatively close to and distant from the nozzle. In other words, such spray nozzles distribute most of the fluid to a mid-range region from the nozzle. This limited fluid distribution results from the spatial arrangement between the upper deflector and the lower nozzle body. More specifically, it arises because fluid is directed upwardly from the lower nozzle body to impact the upper deflector, which then redirects the fluid to the surrounding terrain. In such commercially available spray nozzles, the fluid stream is generally comprised of two portions: an upper portion and a lower portion. The upper portion of the stream typically has a relatively low velocity because it has experienced frictional drag across the deflector. In contrast, the lower portion of the stream generally has a relatively high velocity because it has not experienced this frictional drag. As both fluid stream portions are emitted outwardly, gravity causes the lower velocity fluid to interfere with the higher velocity fluid, resulting in an intermediate velocity fluid stream that irrigates with only a mid-range doughnut pattern about the nozzle.
Accordingly, there is a need for a spray nozzle that reduces interference between low velocity and high velocity portions of the fluid stream. This would provide an enhanced distribution pattern by increasing the amount of fluid distributed to terrain outside of the limited mid-range distance, i.e., to terrain relatively near to, as well as terrain relatively distant from, the nozzle. One approach for reducing this interference is through the inversion of fluid flowing through the spray nozzle, which, in effect, switches the spatial arrangement of the low velocity and high velocity portions.
It would be desirable to have an inverted flow spray nozzle that is not a fixed arc nozzle but that can instead be adjusted to a desired variable fluid distribution arc. In this regard, it is desirable that the spray nozzle have the capability of distributing fluid through virtually infinite arcuate settings along a continuum between a full circle open setting and a very small arcuate closed setting. There is therefore a need for a spray nozzle having both an inverted fluid flow capability for more uniform fluid distribution and having an adjustable arc capability.
It would also be desirable to have a spray nozzle capable of distributing fluid at a constant precipitation rate regardless of the size of the fluid distribution arc selected by a user. Thus, there is a need for a variable arc nozzle that proportionally adjusts the flow rate through the nozzle as the arcuate span of the fluid distribution is adjusted by the user. Otherwise, there will be an uneven fluid distribution rate, i.e., a different volume per area depending on the arc setting.
Further, spray nozzles are often designed as part of a family of nozzles in which each nozzle has a different intended maximum throw radius. For example, nozzles may be individually designed to have throw radiuses of 4, 6, 8, 10, 12, and 15 feet. It would be desirable to have a spray nozzle in which the precipitation rate of each type of nozzle can be “matched” to the precipitation rates of the other types of nozzles. Accordingly, there is a need for a spray nozzle that incorporates at least all of these features: (1) inversion of fluid flow to reduce interference between high and low velocity fluid streams; (2) variable arc capability to allow the spray nozzle to be set to a desired fluid distribution arc; (3) a relatively uniform precipitation rate regardless of the size of the arc selected by the user; and (4) the ability to match the precipitation rate for nozzles of a nozzle family in which each nozzle has a different maximum throw radius.
As can be seen in
In the preferred embodiments, the nozzle 10 inverts fluid flow. The nozzle 10 improves the flow pattern at the inner and outer regions of the spray coverage by using a downward flow directed downwardly at distribution surfaces 12 of the nozzle 10, in contrast to upward flow directed upwardly to impact against an upper deflector (as used in conventional spray nozzles). The inverted nature of the downward flow onto the distribution surfaces 12 results in a more uniform distribution of fluid, when compared to an upward flow directed upwardly against an upper deflector, because the lower flow velocity component of the fluid discharging from the nozzle 10 does not interfere directly with or fall into the higher velocity component, or provides relatively minimal interference.
In other words, the low velocity component of the fluid flow is at the bottom portion of the discharging fluid, and the higher velocity component sprays generally above the lower velocity component. Consequently, the higher velocity component provides both a longer throw, which increases the watering area, and an improved watering at the outer region, and the lower velocity component waters the inner region more effectively.
In the preferred embodiment, the inverted fluid flow is created by first directing the supply water upwardly toward the deflector of the nozzle 10 in a direction parallel to the central axis and then reversing the flow in the opposite direction down onto the distribution surfaces 12. In one preferred form, a plurality of upward flow passages 14 are used to direct the fluid initially upwardly to a helical interface 16, which forms one helical revolution. The fluid then flows through the arcuate chamber 18 and then downwardly through a series of downward flow passages 20 onto the distribution surfaces 12 to be redirected outwardly from the nozzle 10 for irrigation.
It should be understood, however, that the upward and downward flow passages 14 and 20 are not required. Preferred embodiments of nozzle portions are described herein, such as shown in
The nozzle 10 also preferably includes a variable arc capability. The nozzle 10 includes a first nozzle body portion 22 having a first downward-facing, helical surface 24 and a second nozzle body portion 26 having a second upward-facing, helical surface 28. The first nozzle portion 22 is fixed while the second nozzle portion 26 is rotatable. In a closed position, the first and second nozzle portions 22 and 26 sealingly engage one another to block fluid from flowing from the upward flow passages 14 to the downward flow passages 20 (with respect to preferred embodiments having flow passages). The second nozzle portion 26 may be rotated from the closed position to a desired arcuate setting. This rotation causes the helical interface 16 to open and allows fluid to flow from the upward flow passages 14 to the downward flow passages 20 within the selected fluid distribution arc. In other words, this rotation valves the upward and downward flow passages 14 and 20, i.e., opens a certain number of passages depending on the size of the water distribution arc selected. The remainder of the helical interface 16 remains closed. In
In one preferred embodiment, as shown in
The nozzle 10 preferably includes a nozzle body 30 having a central axis and preferably includes three nozzle body portions 22, 26, and 32. In the first preferred form, the first (deflector), second (collar), and third (base) nozzle body portions 22, 26, and 32 define the upward and downward flow passages 14 and 20, the helical surfaces 24 and 28, and the helical interface 16. These components preferably are formed of a molded plastic material, or other suitable material, and although they are shown as three separate parts, they also may be combined to form one part or two parts. The nozzle 10 also preferably includes a filter 34 to screen out particulate matter and a screw 110 that helps retain the components together. The screw 110 may be an adjustable flow rate adjustment screw to regulate fluid flow through the nozzle 10.
As shown in
The base 32 further preferably includes a set of internal ribs 48 forming spokes that are located above the internal threading 38. The ribs 48 interconnect the outer wall 42 to a central hub 50 and define flow passages 52 therebetween that permit fluid flow upwardly through the base 32. The central hub 50 defines a key-shaped central bore 54 to accommodate fixed insertion of a corresponding stem portion of the deflector 22 therein. The central hub 50 holds the deflector 22 fixed against rotation.
As shown in
The collar 26 includes a central hub 62 at its upper end that defines a central bore 64 therethrough. The central hub 62 forms an inner helical edge 66 and an upper helical edge 28. The inner helical edge 66 projects radially inwardly and engages the collar 26, as described further below, to block and unblock upward fluid flow through upward flow passages 14. The inner helical edge 66 sealingly engages the deflector 22 and may be rotatably adjusted for setting the desired fluid distribution arc. Rotation of the collar 26 blocks and unblocks the upward fluid flow.
The upper helical edge 28 projects upwardly and forms a top surface of the collar 26. It is preferably in the shape of a helical upward-facing, upward-sloping lip or ramp. The upper helical edge 28 defines the helical interface 16 in conjunction with the deflector 22, as described below. Rotation of the collar 26 forms an arcuate chamber 18 in the helical interface 16, thereby allowing fluid to flow from the upward flow passages 14 over the top of the upper helical edge 28 and to the downward flow passages 20. The upper helical edge 28 rotatably and sealingly engages the helical underside surface 24 of the deflector 22 to define the arcuate chamber 18 that is adjustable in size.
As shown in
In the first preferred embodiment of the collar 26, a plurality of distribution surfaces 12 are preferably formed on an outer scalloped portion of the helical shoulder 70. As illustrated in
As can be seen in
The collar 26 preferably includes a first edge surface, or fin 78, that extends axially along the underside of the collar's central hub 62. This first fin 78 reinforces a first edge of the fluid distribution arc. It reinforces this edge as fluid flows upwardly through the upward flow passages 14.
The collar 26 also preferably includes a second edge surface, or fin 80, that extends radially outwardly from the first fin 78. This second fin 80 joins the top and bottom ends of the helical shoulder 70. It reinforces the first edge of the fluid distribution arc as fluid is deflected and redirected from the distribution surfaces 12. The distribution surface 13 corresponding to this second fin 80 preferably does not include drag-inducing grooves so as not to reduce the distance of throw at the first edge of the fluid distribution arc.
There are preferably at least three flow control features on the collar 26 that reduce interference of the emerging fluid and that reduce the velocity of the bottom flow portion. First, the downward flow passages 20 include vertical side walls 79 and a wedge-shaped and sloped bottom wall 81 to contain and guide the fluid flow. Second, the collar 26 includes flow walls, or tabs 82, spaced along the helical shoulder 70 to either side of the downward flow passages 20 that act as flow guides. These flow tabs 82 guide the flow in a general radially outward direction and limit the tangential flow component, thereby providing a more uniform radial pattern. In some instances, flow tabs may be used on nozzle types of a nozzle family (i.e., each having a different throw radius) to provide a uniform pleasing aesthetic appearance and to serve as an indicator of the nozzle family. Third, the distribution surfaces 12 each include an outer scalloped portion 74 having a radial central groove 75 and other grooves that are parallel to the central groove 75. This scalloped portion 74 further increases the amount of drag on the bottom flow portion and again limits the tangential flow component.
As shown in
When the nozzle 10 is assembled, the stem upper portion 92 preferably engages the top of the central hub 50 of the base 32. As can be seen in
The head 84 of the deflector 22 preferably includes an inner helical surface 24 on its underside. This inner surface 24 is preferably in the shape of a downward-facing, downward-sloping helical groove. This inner groove 24 is preferably bounded on one side by the upward flow passages 14 and on the other side by a first helical edge 98. The upper lip 28 of the collar 26 is sized to fit within this bounded region and to sealingly engage the inner groove 24. As the collar 26 is rotated, its upper lip 28 traverses the deflector's inner groove 24 to control the size of the arcuate chamber 18. In the fully open position, the collar's upper lip 28 is preferably spaced away from the deflector's inner groove 24 by one helical pitch.
The head 84 also preferably includes an outer helical groove 104. The outer helical groove 104 is preferably bounded on one side by the first helical edge 98 and on the other side by a second helical edge 106. This outer helical groove 104 overlies the distribution surfaces 12 of the collar 26. As shown in
The collar 26 and deflector 22 each preferably include stepped walls 101 and 102, respectively. The collar stepped wall 101 joins the ends of the upper helical lip 28, and the deflector stepped wall 102 joins the ends of the inner helical groove 24. The stepped walls 101 and 102 engage one another when the nozzle 10 is in the closed position and resist over-rotation of the collar 26 past the closed position.
The nozzle 10 also preferably includes a feature to prevent over-rotation of the collar 26 past the fully open position. In one preferred form, the threading of the base 32 and collar 26 engage to prevent over-rotation past the fully open position. The threading allows rotation of the collar 26 through one revolution, but the collar internal threading 58 has a stop 59 at one end to prevent further rotation of the collar 26.
The nozzle 10 also preferably includes a filter 34. The filter 34 has an upper lip 112 for mounting the filter 34 to the base 32 above the internal threading 38. The lip 112 may be adapted for press fit or slide fit reception onto an inner mounting surface 113 of the base 32. The filter 34 is located upstream of the upward and downward flow passages 14 and 20 of the nozzle 10 and restricts grit and other debris from flowing into the nozzle 10 and becoming lodged so as to interfere with the operation of the nozzle 10.
The nozzle 10 may also include a flow throttling screw 110 (
In operation, when fluid is supplied to the nozzle 10, it flows upwardly through the filter 34 and then upwardly through the flow passages defined by the ribs 52 of the base 32. Next, fluid flows upwardly through the upward flow passages 14 of the deflector 22 in a first direction generally parallel to the central axis. Fluid flowing upwardly toward the closed portion of the helical interface 16 is blocked by the sealing engagement of the collar's inner helical edge 66 with the deflector 22. Fluid flowing toward the arcuate chamber 18 flows through the upward flow passages 14 and over the top of the upper helical edge 28 and beneath a portion of the deflector 22. The arcuate chamber 18 inverts the fluid flow and redirects it downwardly through the downward flow passages 20 of the collar 26 and in a direction generally opposite the first direction. It then impacts the distribution surfaces 12 and is redirected outwardly from the nozzle 10 for irrigation. The fins 78, 80, and 108 on the deflector 22 and collar 26 reinforce fluid flow at the edges of the fluid distribution arc.
Another preferred embodiment is a method for distributing fluid from a spray nozzle, such as the preferred embodiment described above. The method generally comprises directing fluid in a first direction parallel to the central axis, directing fluid through an arcuate chamber that inverts fluid flow, directing fluid in a direction generally opposite the first direction, and directing fluid against the plurality of distribution surfaces. For example, in a preferred form, fluid is directed upwardly (first direction) through the upward flow passages 14, then is directed through the arcuate chamber 18, and then is directed downwardly (third direction) through the downward flow passages 20 and against the distribution surfaces 12.
The inverted flow approach results in an inverted velocity distribution in the fluid leaving the distribution surfaces 12, in contrast to fluid impacting an upper deflector of a conventional nozzle. The inverted fluid velocity distribution produces a more uniform distribution of fluid to surrounding terrain because high velocity fluid is in the upper region of the distribution and the lower velocity fluid is in the lower region of the distribution. Gravity does not cause the high and low velocity fluid to interfere with one another.
In conventional spray nozzles, fluid is directed upwardly against an upper deflector for deflection outward from the nozzle. The surface drag on the upper deflector results in low velocity fluid leaving the nozzle in the upper region of the distribution, and higher velocity fluid leaving the nozzle in the lower region of the distribution. Gravity then causes the lower velocity fluid to fall into the higher velocity fluid. This interference creates a compressed profile of a mid-range velocity which causes the fluid to carry over the desired watering area close to the nozzle and to fall short of the desired watering area furthest from the nozzle. As a result, a doughnut shaped distribution pattern around the nozzle is formed with fluid distributed primarily to a limited mid-range distance from the nozzle.
In contrast, the fluid deflected from the distribution surfaces 12 of the nozzle 10 does not interfere in this manner, resulting in a more uniform fluid distribution pattern. The lower velocity flow created by the drag across the distribution surfaces 12 is on the bottom portion of the distribution, whereas the higher velocity fluid is overhead and above. Thus, lower velocity fluid will not tend to interfere with the higher velocity fluid.
In addition, the outer portion 74 of each distribution surface 12 is formed with grooves 76 to increase the frictional drag on the fluid across the distribution surfaces 12. This drag further reduces the velocity of the fluid at the bottom of the distribution leaving the distribution surfaces 12. This reduced velocity enhances the fluid distribution for the area closer to the nozzle 10, while allowing the higher velocity fluid to reach the outermost area intended for irrigation.
The characteristics of the fluid distribution may be tailored by changing certain aspects of the nozzle 10. For example, the number and arrangement of the upward and downward flow passages 14 and 20 may be modified. There need not be a one-to-one correspondence of upward flow passages 14 to downward flow passages 20. In addition, the number and arrangement of grooves 76, or other alternative surface features, may be modified to increase or decrease the frictional drag across the distribution surfaces 12 and to thereby increase or decrease the velocity of some portion of the fluid distribution.
Moreover, the flow characteristics of the fluid emitted from the nozzle 10 may be modified for different nozzle types by changing certain dimensions of the nozzle 10, such as, for example, the cross-sectional dimensions of the upward and downward flow passages 14 and 20. The cross-sectional area of the upward flow passages 14 may be different than that of the downward flow passages 20. The ratio of these cross-sectional areas may be adjusted to achieve desirable fluid pressure and velocity values at the distribution surfaces 12 of the collar 26.
Further, the upward and downward flow passages 14 and 20 can be substantially larger in diameter than a single orifice (such as that used in a conventional up flow nozzle). The cross-section of the upward and downward flow passages 14 and 20 are preferably selected large enough to reduce the likelihood of clogging. For nozzles with passages in series, the ratio of the passage size affects pressure and exit velocity characteristics. For nozzles with flow passages having a uniform cross-section, in contrast, these characteristics may require that the flow passage be very small. Accordingly, the use of relatively large passages in series reduces the sensitivity of nozzles to clogging with contamination that would otherwise occur in conventional nozzles employing a relatively small flow passage.
As can be seen from
In addition, the use of notches for the upward and downward flow passages 14 and 20 allows for the matching of precipitation rates for a family of nozzles in which each nozzle has a different maximum throw radius. One can achieve such a matched precipitation rate by designing each nozzle type with a different number, arrangement, and/or cross-section of upward flow passages 14 with respect to downward flow passages 20 than other nozzle types. As stated above, this modification of the relationship of upward to downward flow passages allows for fine tuning of velocity and pressure characteristics at the distribution surfaces. Accordingly, by modifying the relationship between the upward and downward flow passages 14 and 20 for each nozzle type, a matched precipitation rate can be achieved for the family of nozzles.
In the second preferred embodiment, the distribution surfaces 127 are arranged in generally the same manner as the first embodiment. Each surface 127 includes a relatively smooth inner portion 172 and a textured outer portion 174 with flow tabs 182 spaced to either side of the distribution surfaces 127. The textured outer portion 174 preferably includes a number of drag-inducing grooves 176, preferably with a central radial groove 175 and additional grooves parallel to the central groove 175. In the second preferred embodiment, however, the shape of the textured outer portion 174 has been modified. More specifically, the grooves 176 are separated from one another by upwardly projecting ridges 177. The ridges 177 provide greater friction that significantly decreases the velocity of the bottom part of the water distribution, thereby improving close-in irrigation of surrounding terrain. Thus, these ridges 177 may be especially advantageous for nozzle types with a longer throw radius.
A third preferred form of the collar (collar 226) is shown in
A fourth preferred form of the collar (collar 326) is shown in
A fifth preferred embodiment (collar 426) is shown in
The collar 426 also does not include individual scalloped distribution surfaces like those shown in the second embodiment, which assisted in guiding fluid flowing through the downward flow passages. Instead, the helical shoulder 470, in effect, forms one continuous distribution surface. It includes a relatively smooth inner portion 472 and a generally textured outer portion 474 with flow tabs 482 spaced helically at predetermined intervals along the helical shoulder 470. The textured outer portion 474 is preferably made of radial grooves 476 of roughly the same length that extend along most of the helical shoulder 470. The grooves 476 are relatively long and preferably extend the radial distance between the flow tabs 482 and the outer wall 456. The grooves 476 are preferably separated from one another by upwardly projecting ridges 477 to improve close-in water distribution. Fluid flows generally downwardly along the outside of the central hub 462, between flow tabs 482, and along the textured outer portion 474. The textured outer portion 474 preferably includes a smooth scallop 487 without grooves at the lower end of the helical shoulder 470 to reduce friction and to provide a strong water stream at the first edge of the water distribution arc.
A sixth preferred embodiment of the collar (collar 526) is shown in
The shoulder 570 includes a relatively smooth inner portion 572, flow tabs 582 spaced helically at predetermined intervals along the helical shoulder 570, and a relatively smooth outer portion 574 terminating in inlet ducts 589 spaced helically about the outer periphery. The inlet ducts 589 each generally include a shallow ramp 591 with curved walls 593 recessed into the helical shoulder 570 in order to draw fluid into each duct 589. More specifically, the ramp angle and the curvature profile of the walls 593 are selected to create counter-rotating vortices that trap a boundary water layer by deflecting this layer away from the duct 589 while simultaneously drawing in faster moving fluid. As a result of this swirling effect, the inlet duct 589 reduces boundary layer fluid velocity and increases close-in water distribution. The collar 526 also preferably includes a smooth scallop 587 at the lower end of the helical shoulder 570 to provide a strong water stream at the first edge of the water distribution arc.
As with the collar, other preferred embodiments of the deflector may also be used and are shown in
A third preferred form of the deflector (deflector 722) is shown in
In general, any of the preferred forms of the deflector may be used interchangeably with the various preferred forms of the collar described herein. The forms of the deflector and collar may be selected to provide desired features and advantages and to achieve desired velocity and pressure characteristics for irrigation. The structure and description of the deflector 22 and collar 26 generally apply equally to the other preferred embodiments of deflector and collar described herein, except where noted herein.
The foregoing relates to preferred exemplary embodiments of the invention. It is understood that other embodiments and variants are possible which lie within the spirit and scope of the invention as set forth in the following claims.
This application is a continuation-in-part of pending U.S. patent application Ser. No. 11/674,434, filed Feb. 13, 2007, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11674434 | Feb 2007 | US |
Child | 12418057 | US |