The present invention broadly relates to a spray nozzle. More particularly, the present invention relates to a spray nozzle with an improved insert (which is often generally referred to as an orifice disc) and nozzle cap combination.
Spray drying of milk or dairy products involves the spraying of a milk concentrate through a pressure atomizing nozzle at a very high pressure, typically 200-500 BarG, into a heated cyclonic drying chamber operating at inlet temperatures around 120 to 160 degrees Celsius where the spray nozzle operates. These drying temperatures coupled with the atomized liquid, which in turn dries into fine particulates, produces a suspended milk powder which slowly travels to the base of the cyclone as it cools to an outlet temperature of around 60 degrees Celsius and subsequently gets collected and bagged.
Some atomized liquid, prior to being fully dried, quite often settle upon all over the surfaces of atomizing nozzles due to their close proximity to the spray orifice (ie. the outlet). Spray nozzles that currently exist in the marketplace have a shortcoming in that they are susceptible to allowing a slow accumulation of the atomised but semi-dried liquid on and around the spray orifice which resides in the hotter portion of the drier. Over time, this liquid not only dries but slowly cooks on the hot nozzles' surface. This leads to layer upon layer of build-up until a mass of cooking product develops enough accumulated heat to begin to burn. This accumulation of burnt product can slowly liberate into the properly dried cooler clean powder which results in contamination thereof with burnt particulates known as “scorched particles”. The level of scorched particles is routinely measured in the collected powder and the result forms part of a powder grading process. A high measure of scorched particles would naturally result in downgrading of the powder thereby significantly effecting its market value.
A further problem associated with the operation of the drier is that the combination of the chamber temperature and the suspended powder produced from the dried atomized liquid, poses a significant fire risk by creating and developing a source of ignition over time. This source of ignition is caused by the previously described atomized liquid settling upon and around the surfaces of the hot atomizing nozzles, accumulating thereupon, and eventually drying and cooking into a mass of cooked product with enough accumulated heat to begin to burn. Whenever build-ups occur or are expected to occur with currently existing nozzles, operators often need to prematurely shut down the drier in order to avoid build-ups from developing into an explosive ignition source that can potentially cripple the drier leading to days of down time or production outage, or worse still, a total loss of the drier plant to a fire that could not be controlled or contained. Such a need for premature shutdowns significantly impacts on the day by day productivity of the drier.
It is important to note that the spray nozzles referred to above face the challenge of operating in very high pressures. They require pressure integrity that relies upon a minimum material thickness and profiles at the end of the nozzle cap that retains the metering wear parts, to withstand the stress and strain of this pressure. Typically this required thickness intrudes into the spray zone and can interact with the spray plume, thus contributing to the build-up of the spray product upon the nozzle cap. Hence there is a need to maintain or enhance the pressure integrity of spray nozzles thereby allowing higher operating pressures and thus higher flow and greater productivity, while reducing the build-up that can occur from thicker and stronger nozzle caps. The problem is that such thicker and stronger nozzle caps which are typically adopted in the prior art in an effort to increase pressure strength would result in further intruding into the spray plume and worsening the build-up, product contamination and fire risk.
It is therefore an object of the present invention to provide a spray nozzle with an insert which may meet the above need, and/or which may overcome or ameliorate the above shortcoming and problem, or which will at least provide a useful alternative.
According to one aspect of the present invention, there is provided a spray nozzle including:
a removable insert having a base member and a protruding member; a nozzle cap with an annular flange which delimits an interior locating surface for the insert, the flange extending radially and ending with an internal extremity which defines a planar spray opening; and
wherein when in use, the base member is housed within the nozzle cap whilst the protruding member projects outwardly and stands proud of the planar spray opening.
Preferably, the spray nozzle includes a nozzle body to which the nozzle cap is adapted to engage, the nozzle body having fluid receiving and discharging sections and defining a counterbore which extends between the fluid receiving section and the fluid discharging section and which delineates a central axis towards which the flange radially extends.
Preferably, the protruding member includes a cylindrical wall which defines a passage which ends with an orifice. More preferably, the planar spray opening is on a plane which is substantially perpendicular to the passage.
Preferably, the protruding member of the insert is adapted to be removably fitted into the spray opening. More preferably, the protruding member has an exposed surface which travels beyond the planar spray opening. Even more preferably, the exposed surface includes an annular plateau which surrounds the orifice. Most preferably, the orifice being located at a distal end of the protruding member is distanced from the planar spray opening.
It is preferred that the annular flange also has an exterior surface which curves towards the extremity.
In one preferred embodiment, the insert is in the form of a frustoconically shaped disc. Preferably, the exposed surface is linear and tapered being inclined to the planar spray opening at a constant angle. More preferably, the base member also has a tapered external face which is linear and inclined to the planar spray opening at the same constant angle. As such, the exposed surface of the protruding member and the tapered external face of the base member are collinear and continuously integrated into one another. Preferably, the exposed surface of the protruding member and the tapered external face of the base member are also coplanar. In this embodiment, the interior locating surface of the annular flange is a slanting surface complementary to the tapered external face of the base member. As such, the tapered external face of the base member is capable of facilitating smooth insertion of the protruding member into the spray opening of the nozzle cap resulting in self-alignment or centring of the insert which is concentric or coaxial to the annular flange of the nozzle cap.
In another preferred embodiment, the interior locating surface of the annular flange is flush with the planar spray opening. The base member, being in the form of a disc, is preferred to provide an annular shoulder with an external face which in use abuts the interior locating surface. Preferably, the exposed surface converges curvedly to form a neck-shaped protruding member. In this embodiment, the spray nozzle has a downstream end portion with a smooth exterior contour which transitions from a curved exterior surface of the annular flange to the curved exposed surface of the protruding member at the extremity in a seamless fashion.
Preferably, the external face of the base member includes a groove adapted to receive a sealing means. More preferably, the sealing means is an O-ring.
Preferably, the counterbore is defined by a cylindrical wall which ends with a retaining lip which acts as an impediment to keep the insert in place. More preferably, the spray nozzle includes a swirl unit which is positioned upstream of the insert. Even more preferably, the nozzle cap has an upstream end which in use is adapted to engage the fluid receiving section of the nozzle body. Most preferably, the nozzle cap provides a mechanism for positively securing the insert and swirl unit in place and compresses the sealing means as the upstream end threadably engages the fluid receiving section of the nozzle body. The arrangement is such that tightening of the nozzle cap to the nozzle body causes compressive sealing by the sealing means.
According to one aspect of the present invention, there is provided an removable insert for fitting into a nozzle cap of a spray nozzle, the insert having a base member and a protruding member which is integrated with the base member, the nozzle cap having a downstream end with an annular flange which delimits an interior locating surface for the insert, the flange extending radially towards the central axis and ending with an extremity which defines a planar spray opening; the spray nozzle including a nozzle body having fluid receiving and discharging sections and defining a counterbore which extends between the fluid receiving section and the fluid discharging section and which delineates a central axis;
wherein when in use, the base member is housed within the nozzle cap and the protruding member projects outwardly and stands proud of the planar spray opening.
The invention in its various aspects will now be described in connection with non-limiting embodiments described in connection with the drawings, in which:
Referring to
As best shown in
Referring to
As shown in
Turning to
Referring back to
In both of the above described embodiments of the spray nozzle 10 & 10A, the nozzle cap 16 provides a mechanism for positively securing the insert 14 and swirl unit 66 in place and compresses the sealing means (ie. the O-ring) 60 as the upstream end 68 threadably engages the fluid receiving section 18 of the nozzle body 12. The arrangement is such that tightening of the nozzle cap 16 to the nozzle body 12 causes compressive sealing by the sealing means (ie. the O-ring) 60.
It should be noted that the insert 14 in the form of an orifice disc is a component which may require regular replacement and is typically manufactured of a hard-wearing material such as tungsten carbide or ceramic.
Now that preferred embodiments of the present invention have been described in some detail, it will be apparent to a skilled person in the art that the spray nozzle of the present invention may offer at least the following advantages:
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. For instance, as shown in
It is to be understood that any acknowledgement of prior art in this specification is not an admission that this prior art forms part of the common general knowledge in the relevant art.
Number | Date | Country | Kind |
---|---|---|---|
2018904960 | Dec 2018 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2019/000161 | 12/20/2019 | WO | 00 |