The invention will further be described, by way of example, with reference to the accompanying drawings, in which:
The spray nozzle illustrated in
The insert 30 abuts an end of the nozzle body 10 and includes a through bore 34 which extends coaxially with the throughbore 12. The needle 14 extends through the throughbore 34.
As shown in
The insert 30 is held in position by means of a cap 38 which engages a surface of the insert 30 remote from that engaging the nozzle body 10, the cap 38 being secured to the nozzle body by means of a screw-threaded collar 40. The cap 38 defines an outlet orifice 41 through which part of the insert 30 extends, the outlet orifice 41 being aligned with the axis of the throughbore 12. The diameter of the outlet orifice 41 is greater than the outer diameter of the adjacent part of the insert 30 with the result that an annular flow passage is formed therebetween, the annular flow passage communicating with an annular gallery 42 defined by an annular recess formed in the insert 30. The annular gallery 42 communicates with drillings or passages 44 (not in the plane of the sections shown in
As best shown in
The cap 38 has an outer face 62 made up of a first region 64 and a second region 66 both of which are of generally planar form and which are angled relative to one another, intersecting one another along an apex 68. In the illustrated arrangement, the regions 64, 66 are angled to one another by approximately 128°, but other arrangements are possible. The outlet orifice 41 and the outlet ports 52 are all positioned along the apex 68. As illustrated in
In use, air under pressure is supplied to the atomisation air inlet port 50 and the air inlet 54. Fluid containing dye particles is supplied under pressure to the dye inlet port 36. Prior to air being supplied under pressure to the control port 20 and control chamber 18, the spring 24 holds the needle 14 in engagement with the seal ring 28 thus the fluid containing dye particles is prevented from flowing to the throughbore 34. When it is desired to commence spraying of the dye material, air is supplied under pressure to the control port 20 and control chamber 18 urging the needle 14 to the right in the orientation illustrated, lifting the needle 14 from the seal ring 28. The fluid containing the dye particles is thus able to flow along the throughbore 34 to an outlet formed at the end thereof. Air is delivered under pressure to the outlet orifice 41 and interacts with the fluid delivered from the throughbore 34, atomising the fluid and forming it into a mist. The supply of air under pressure to the angled outlet ports 52 serves to shape the mist, flattening the mist from what would otherwise be a generally conical spray pattern to a generally linear form.
The supply of air to the chamber 60 and through the clearances 70 results in air being blown in the form of a planar jet forming an air curtain over the regions 64, 66 forming the outer surface 62 of the cap 38. The flow of air over the outer surface 62 of the cap serves to ensure that the air close to these surfaces is continually moving thus preventing dye particles from being deposited. In addition, the continuous flow of air serves to wash dye particles which may adhere thereto from the cap 38 thus resisting the formation of whiskers or beards of dye particles.
As the outer surface 62 is in the form of two generally planar regions 64, 66 which intersect along a relatively sharp apex 68, it will be appreciated that the curtains of air serving to wash particles from the surface 62 are able to flow over substantially all of the surface 62, few if any regions being formed in which the air flow is low or static.
It will be appreciated that a range of modifications and alterations could be made to the arrangement described hereinbefore. For example, rather than provide outlet means in the form of clearances 70 between the cap 38 and collar 40, a series of outlet openings may be formed in either the cap 38 or the collar 40 to direct air over the outer surface 62 of the cap 38. Additionally or alternatively, a series of outlet openings may be provided in the surfaces 64, 66 communicating through the cap 38 with gallery 56 or chamber 60 to further improve the movement of air in the region of the surfaces 64, 66. Other modifications are also possible.
| Number | Date | Country | Kind |
|---|---|---|---|
| 0609434.6 | May 2006 | GB | national |