The present invention relates generally to the fields of mechanical and fluid/hydraulic engineering and more particularly to sprayer devices and their methods of use.
The prior art has included numerous sprayers for agricultural or other uses having tanks that may be worn on the back of a worker who is operating the sprayer. These devices are generally referred to herein as “backpack sprayers.”
The backpack sprayers of the prior art have included both manually operated sprayers and power sprayers. The manually operated backpack sprayers have typically incorporated a hand pump having a handle that is manually moved up and down to operate the sprayer. The power backpack sprayers have typically incorporated a battery-powered electric motor that drives the sprayer pump.
Certain recent improvements relating to backpack type sprayers are described in Applicant's U.S. Provisional Patent Application No. 61/767,993 (filed Feb. 22, 2013) and 61/769,706 (filed Feb. 26, 2013), the entire disclosures of which are expressly incorporated by reference.
Further examples of backpack type sprayers devices are described in U.S. Pat. No. 7,309,028 (Langhans et al.), U.S. Pat. No. 6,412,707 (Wirz), U.S. Pat. No. D591,387 (Campbell), U.S. Pat. No. 5,984,199 (Restive), U.S. Pat. No. 5,857,618 (Restive), U.S. Pat. No. 5,671,884 (Restive), U.S. Pat. No. 5,636,791 (Leer), U.S. Pat. No. 5,478,015 (Black), U.S. Pat. No. 4,798,333 (Luchsinger), U.S. Pat. No. 4,768,714 (Luchsinger) and U.S. Pat. No. 4,702,416 (Pagliali et al.)
There remains a need in the art for the development of new manual and power sprayers that incorporate features or components that overcome problems or shortcomings associated with such sprayers of the prior art.
The present inventions provide sprayer devices and related methods. The sprayer devices can be of a type that may be carried or worn on the back of a user. The sprayer devices have a tank, a spray outlet (e.g., a spray nozzle or spray wand) and either a manual or power pump for spraying liquid from the tank out of the spray outlet. The sprayer devices may also incorporate one or more of the following: a) a brace member for deterring bending or deformation of a bottom bracket on the sprayer, b) a pump axle with redundant rotation-limiting stop members useable for either right-handed or left-handed operation, c) system for selective and/or controlled agitation or non-agitation of liquid within the sprayer tank and/or d) an information card holding niche with removable information card.
Further elements, aspects and details of the present inventions will be appreciated by those of skill in the relevant art from the following detailed description of examples and the accompanying figures to which it refers.
The detailed description and examples set forth below refers to
The following detailed description and the accompanying drawings to which it refers are intended to describe some, but not necessarily all, examples or embodiments of the invention. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The contents of this detailed description and the accompanying drawings do not limit the scope of the invention in any way.
A. Brace Member
In the particular example shown, the base bracket 14 has a transverse portion 24 which is not directly affixed to the tank 12 and the brace member 22 extends between the approximate midpoint of the transverse portion 24 of the base bracket 14 and the tank 12. A brace-engaging structure 26 is formed on or in the wall of the tank 12 to facilitate substantially locking engagement (e.g., a snap fit, hook-over fit, undercut abutment, etc.) of the top end of the brace member 22 with the wall of the tank 12, while the bottom end of the brace member 22 is mounted on or affixed to the base bracket 14. In this particular non-limiting example, the bottom end of the brace member 22 has a transverse arcuate portion 28 that pivotally mounts on the upper surface of the transverse portion 24 of the base bracket 14. With this arcuate portion 28 pivotally mounted on the transverse portion 24 of the base bracket 14, the top end of the brace member 22 is then pivoted toward the tank 12 to cause the top end of the brace member 22 to move into substantially locking engagement with the brace-engaging structure 26. In this manner, the brace member 22 is firmly installed such that it provides vertical support between the tank 12 and the transverse portion 24 of the base bracket 14. With the brace member 22 installed in this manner, if downward pressure is applied to the top of the tank 12 while the base bracket 14 is sitting on an underlying surface such as a floor or the ground, the brace member 22 will prevent the base bracket 14 from bending or deforming upwardly toward the tank 12.
In the non-limiting example shown, the brace-engaging structure 26 comprises an indentation 30 that has a stepped inner surface 32 and the top end of the brace member 22 is configured to snap fit within the indentation 30 in abutment with a portion of the stepped surface 32 so that it will not inadvertently pivot back out of the indentation. More particularly, in this example, the top end of the brace member 22 has a retainer projection 34 that protrudes from the upper end of the brace member 22 and abuts against the underside of the tank 12 (as seen in
Although the example provided above uses a snap-fitting arrangement for engagement of the brace member 22 with the wall of the tank 12, it is to be appreciated that various alternative arrangements may be used to secure the brace member 22 in its desired position, such as adhesive, solvent welding, fasteners (e.g., screws or rivets), etc. Also, in some embodiments, the brace member 22 may be formed as an integral portion of either the base bracket 14 or the tank 12. Also, in some embodiments, more than one brace member 22 may be provided. All of these variations are to be deemed within the scope of the present invention.
B. Pump Axle with Redundant Rotation-Limiting Stop Members Useable for Either Right-Handed or Left-Handed Operation
Referring to
In this example, the pump axle 320 comprises a right axle portion 320R and a left axle portion 320L. Axle guides 310R, 310L are formed below the tank 120 on either side of the pump 150. During assembly, the right axle portion 320R is inserted, inner end first, through the right axe guide 310R which is located to the right of the pump 150. The left axle portion 320L is inserted, inner end first, through the left axle guide 310L located to the left of the pump 150.
As seen in the views of
As may be appreciated from the showing of
After the axle 320 has been fully installed, the pump handle 160 is attached to either the right or left end of the axle 320. Pump handle connector fittings 370R and 370L are formed on the outer ends of the right and left axle portions 320R, 320L, respectively. In this example, the pump handle connector fittings 370R and 370L comprise short sections of metal tubing affixed on the outer end of each axle portion 320R, 320L at a slight angle such that when the bottom end of the pump handle 16 is inserted into the desired pump handle connector fitting 370R or 370L, the pump handle 160 will extend upwardly and slightly outwardly to one side of the tank 120. In this example, through holes are formed in the bottom of the pump handle 16 and in each pump handle connector fitting 370R, 370L so that a locking pin or bolt may be placed to firmly and non-rotatably lock the pump handle 160 in the desired pump handle connector fitting 370R or 370L.
In use, the device will typically be worn on the users back and the user will repetitively move the pump handle 160 up and down between stopping points dictated by concurrent abutment of the stop members 330R, 330L with their respective abutment surfaces 350. This will allow effective pumping of liquid from the tank 120 out of the spray emitting apparatus 180 by either a right-handed or left-handed user.
C. System for Selective and/or Controlled Agitation or Non-Agitation of Liquid within the Sprayer Tank
In use, the tank 120 of the sprayer device has an inner space or cavity that is typically filed with liquid up to some liquid level (e.g., the upper surface of the liquid within the tank). As the pump 150 is used to pump liquid from the tank out of the spray emitting apparatus 180, some blow-by or leakage from the pump 150 may occur. The about of such leakage may increase as the pump 150 become worn. The prior art has included a system wherein the sprayer uses a combined piston and diaphragm pump with a collection chamber below the pump 150 to collect leaking liquid. Liquid that collects within that collection chamber then flows through a recirculation loop and back into the tank. This is described in Applicant's prior U.S. Pat. No. 4,798,333, the entire disclosure of which is expressly incorporated by reference. In this prior art system, the re-circulated liquid enters the bottom of the tank (i.e., blow the liquid level). Because the action of the diaphragm pump causes back and forth movement of the liquid, this results in agitation of the liquid within the tank. While some agitation of liquid may be desirable for certain types of chemical, there are situations where agitation is undesirable, such as with chemical solutions that tend to froth or foam when agitated.
The present invention provides an improved system for re-circulating collected liquid back into the tank such that some or all of the re-circulating liquid may be alternatively channeled through a conduit that delivers the liquid into the inner space of the tank above the liquid level, thereby not causing substantial agitation of the tanked liquid. In some embodiments, this may be accomplished by providing separate agitation and non-agitation ports on the tank so that the user can simply connect the recirculation conduit to the agitation port (if agitation is desired) or to the non-agitation port (if no agitation is desired). In other embodiments a valve may be provided for selectively channeling a desired portion (e.g., 1 to 100%) of the re-circulated liquid into either the agitation port or the non-agitation port.
As may be appreciated from
If and when agitation of the tanked liquid is desired, the recirculation conduit 440 may be connected (e.g., by a hose clamp) to the agitation port 400 and the cap 410 may be connected (e.g., by a hose clamp) to the non-agitation port 420. In such alternative configuration, liquid would be pumped, in pulsating or back and forth fashion, from the collection chamber 46, through conduit 440 and through agitation port 420. When the tank 120 is in its usual upright position (as when worn on the back of an operator) this will result in pulsating or back and forth movement of the re-circulating liquid (along with any entrained gas) through an opening in the bottom of the tank 120 thereby entering directly into the standing liquid within the tank 120 at a location below the tanked liquid's upper surface or liquid level. This will result in agitation of the tanked liquid concurrently with mixing of the re-circulated liquid with the mass of liquid contained within the inner space of the tank 120.
In some embodiments, the simple moveable recirculation conduit 440 shown in this example may be replaced with duplicate recirculation lines or a single bifurcated or branched (e.g., a Y or T) recirculation line, so as to maintain constant fluidic connection between the collection chamber 46o and both ports 400, 420. A suitable type of manually-actuatable or power-actuatable diverter device (e.g., a flow splitter, manifold, diverter valve, three way valve, three-way stop cock, mixing valve, etc) may be provided for selectively channeling desired portion(s) (e.g., between 0% and 100%) of the re-circulated liquid into either the agitation port 400 or the non-agitation port 420. In some embodiments, this would allow the user to easily switch back and forth between an agitation mode (where all of the re-circulated liquid enters the agitation port 400) and a non-agitation mode (where all of the re-circulated liquid enters the non-agitation port 420). Or, in embodiments where a variable mixing valve apparatus is used, this may allow the operator to make adjustments to the amount or degree of agitation by adjusting the relative portions (e.g., 60% agitation/40% non-agitation; 10% agitation/90% non-agitation, etc . . . , etc. . . . ).
D. Information Card Holding Niche with Removable Information Card
Optionally, any sprayer device may, in accordance with the present invention, incorporate a card-holding niche for holding an information card (e.g., a small placard with information printed on it). Such information card may, in at least some instances, comprise a resilient, wear and/or liquid resistant card that flexes of deforms in a manner that facilitates its stowage in the card-holding niche. A non-limiting example of this is seen in
It is to be appreciated that, although the invention has been described hereabove with reference to certain examples or embodiments of the invention, various additions, deletions, alterations and modifications may be made to those described examples and embodiments without departing from the intended spirit and scope of the invention. For example, any elements, steps, members, components, compositions, reactants, parts or portions of one embodiment or example may be incorporated into or used with another embodiment or example, unless otherwise specified or unless doing so would render that embodiment or example unsuitable for its intended use. Also, where the steps of a method or process have been described or listed in a particular order, the order of such steps may be changed unless otherwise specified or unless doing so would render the method or process unsuitable for its intended purpose. Additionally, the elements, steps, members, components, compositions, reactants, parts or portions of any invention or example described herein may optionally exist or be utilized in the absence or substantial absence of other elements, steps, members, components, compositions, reactants, parts or portions, unless otherwise noted. All reasonable additions, deletions, modifications and alterations are to be considered equivalents of the described examples and embodiments and are to be included within the scope of the following claims.
This patent application claims priority to U.S. Provisional Patent Application No. 61/767,993 entitled Sprayer Tank With Support Member filed Feb. 22, 2013; 61/769,706 entitled Sprayer Tank With Support Member filed Feb. 26, 2013 and 61/915,343 entitled Sprayer Devices and Related Methods filed Dec. 12, 2013, the entire disclosure of each such provisional application being expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2324747 | Weissert | Jul 1943 | A |
3790114 | Italiano | Feb 1974 | A |
4702416 | Pagliai et al. | Oct 1987 | A |
4768714 | Luchsinger | Sep 1988 | A |
4798333 | Luchsinger | Jan 1989 | A |
5478015 | Black | Dec 1995 | A |
5636791 | Leer | Jun 1997 | A |
5671884 | Restive | Sep 1997 | A |
5857618 | Restive | Jan 1999 | A |
5984199 | Restive | Nov 1999 | A |
6412707 | Wirz | Jul 2002 | B1 |
6776378 | Yu | Aug 2004 | B1 |
7309028 | Langhans et al. | Dec 2007 | B2 |
D591387 | Campbell | Apr 2009 | S |
7854396 | Wu | Dec 2010 | B2 |
20060277783 | Garton | Dec 2006 | A1 |
20080042382 | Dodier | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
61767993 | Feb 2013 | US | |
61769706 | Feb 2013 | US | |
61915343 | Dec 2013 | US |