The present application relates generally to liquid spraying apparatus, and more particularly, to a spraying apparatus having an improved system for sensing and monitoring liquid flow and/or faulty operation of the spray nozzles of the spraying apparatus.
Spray booms for agricultural usage provide a great convenience to farmers and others seeking to spray liquid chemicals in agricultural operations. Such spray booms typically have large numbers of laterally-spaced spray nozzles each of which discharge an atomized liquid spray onto the agricultural crop. Over time, the operation and performance of the nozzles of the spray apparatus can become faulty, through partial or complete blockage of flow passages, wear of the nozzle parts, or damage, resulting in uneven or ineffective application of the chemical. In addition, the operator may be unaware of the faulty spray performance at the time of application and have difficulty in going back to spot treat problem areas if the fault is later discovered. Re-application of the chemical, of course, is time-consuming and costly. In addition, damage to the spray nozzles could result in excessive application of the chemical, causing complete destruction of the crop. Moreover, in modern farm operation, it sometimes is critical that the proper amount of chemical is sprayed at the time of application. Chemical sterilization of corn to provide de-tasseled rows requires certainty that the proper application is applied at the time of spraying. Improper or misapplication can damage surrounding areas of the crop as well.
Hence, there is a great need for a system for reliably monitoring spray performance and alerting the operator of faulty operation of spray nozzles of a spraying apparatus in real time. While different technologies have attempted to determine when a spray tip is plugged or worn, these systems have not been reliable in meeting the needs of operators seeking to monitor clogging or malfunction of selected spray nozzles of a spray boom sufficient to minimize the necessity for large-scale reapplication of chemicals or damage to crops.
It is an object of the present invention to provide a spraying apparatus having an improved system for monitoring the flow of the individual nozzles and sensing malfunctions.
Another object is to provide a spraying apparatus as characterized above which is effective for measuring the flow through the individual nozzle of the apparatus and detecting when one flow rate changes with respect to the others.
A further object is to provide a spray apparatus of the above kind in which the flow monitor system is adapted to identify individual nozzles that are faulty in operation.
Still a further object is to provide a spraying apparatus of the foregoing type in which the flow monitoring system measures and monitors the individual flow rates of the nozzles of the spraying apparatus.
Another object is to provide such a spray apparatus in which the spray nozzle monitoring system is operative for identifying specific areas in the field that are sprayed during faulty operation of a spray nozzle or nozzles of the spraying apparatus. A related object is to provide such a spray apparatus in which the monitoring system identifies specific areas in the field in which chemical was improperly applied or missed for later reference.
Yet another option is to provide a spraying apparatus having a flow monitoring system of the foregoing type which is relatively simple in construction and lends itself to economical manufacture and easy usage.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible of various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
Referring now more particularly to
The spray nozzle assemblies 11 each are supported in depending fashion for the liquid supply conduit 14 in a conventional manner. To this end, illustrated liquid spray nozzle assemblies 11, as best depicted in
For securing the spray nozzle assembly 11 to the supply conduit 14, the nozzle support body inlet and mounting section 16 includes an integrally formed cradle-shaped mounting flange 24 positioned adjacent underside of the liquid supply conduit 14 and a clamping element 25 pivotally connected to one end of the mounting flange 24 and positionable over the liquid supply conduit 14 for securement to an opposite end of the mounting flange 24.
The mounting and inlet section 16 of the nozzle support body 15 includes a nipple 26 which extends into the liquid supply conduit 14 through an aperture in the underside. Pressurized liquid from the supply tank 17 or other appropriate liquid source supplied to the liquid conduit 14 enters the nipple 26 and passes downwardly through an inlet passage 28 in the mounting and inlet section 16, which in turn communicates with an annular chamber or passage 29 defined between an outer cylindrical wall 30 of the check valve hub section 18 and an internal tube 31 is fixedly supported within the hub section 18 at an end opposite the check valve 19 such that liquid travels in one direction through the annular chamber 29 for communication into an open end of the tube 31 for travel in an opposite direction, as shown in
In accordance with the illustrated embodiment, a spray nozzle liquid flow monitoring system is provided for monitoring liquid flow through the spray nozzle assemblies and detecting whether one or more of the spray nozzles of the spray boom is operating improperly, such as through partial or complete clogging, wear, or damage. In the illustrated embodiment, each spray nozzle assembly 11 has a turbine 40 disposed within a liquid flow passage and arranged to rotate when the liquid flow passes over the turbine 40 as the liquid flow passes through the spray nozzle. The turbine 40, which may alternatively be embodied as a propeller or other flow-activated device, has a magnetic polarity so as to provide varying magnetic fields usable in determining its speed of rotation as it rotates under the action of the passing liquid flow. The turbine 40 in this case is supported within a metering flow passage 42 defined by the tube 31 and has a central cylindrical hub 44 with a radially projecting helical vane 41 extending from the cylindrical huh 44 which is an incident to liquid impinging upon the vane 41 imparts rotative spinning movement to the turbine 40. The turbine 40 has outwardly extending shaft segments 45 at opposite ends supported within respective web-configured supports 46 mounted in the metering passage 42 which permit liquid passage about the supports 46. It will be understood by persons skilled in the art that the annular passageway 29 and the metering flow passage 42 within the tube 31 can be appropriately sized for required flow from the liquid through the check valve hub section 18 to the spray nozzle assembly 11. Further, although a helical vane is illustrated, alternative structures such as individual vanes, foils and the like may be used.
In keeping with this embodiment, the cylindrical hum 44 of the turbine 40 carries a centrally disposed magnet 47, which in this case has a cylindrical configuration and is disposed in parallel relation to the rotary axis of the turbine 40, as depicted in
To facilitate assembly of the turbine 40 within the check valve huh section 18, as well as removal for cleaning and maintenance, the check valve huh section 18 is removably mountable within the spray nozzle assembly 11. The hub section 18 in this case is coupled to the nozzle support body 15 by a threaded retaining ring 50 and the check valve 19 is housed within a cap 51 threadly fixed to an opposite end of the hub section 18. An annular seal 52 is interposed between axial ends of the check valve hub section 18 and the nozzle support body 15, while permitting fluid flow through and from the check valve hub section 18.
In carrying out the illustrated embodiment, a sensor interface module 55 is provided for sensing the changing magnetic fields that occur as an incident to rotation of the turbine 40 due to the passage of liquid through the flow metering passage 42 of each spray nozzle assembly 11. Each sensor interface module 55 in this case includes a hall-effect sensor 56 which senses the changing magnetic field of the rotating turbine 40. The hall-effect sensor 56 of each spray nozzle assembly is supported in proximate relation to the turbine 40 for sensing the magnetic pole changes and communicating signals indicative of the frequency of these readings to the sensor interface module 55. The signals may be raw signals provided from the sensor 56 or may alternatively be processed values indicating analog or digital values representing the rotational speed or frequency of rotation of the turbine 40. The sensor interface module 55 in this case includes a circuit board 58 mounted on the boom support 12 adjacent to the respective spray nozzle assembly 11 to be monitored and is connected to the hall-effect sensor 56 by a cable 59. The hall-effect sensor 56, which may be of commercially available type, such as from CANFIELD CONNECTOR, Youngstown, Ohio, in this case is encapsulated within a head 56A and mounted with snap action engagement within the hub section 18 in an abutting relation to an outer side of the metering tube 31. Such close proximity of the hall-effect sensor 56 to the turbine 40 enables reliable sensing of magnetic pole changes as an incident to each cycle of rotation of the turbine 40 while remaining outside the metering flow path within the metering tube 31.
In further carrying out the invention, the sensor interface module 55 for each spray nozzle assembly 11 communicates with a monitor or control module 60, preferably located in the cab for easy access and use by an operator, operable for monitoring the rotation of the magnetic turbine 40 of each spray nozzle assembly 11, and hence, the liquid flow of the respective nozzle assembly. The control module 60 may be embodied as a single controller or may include more than one controller disposed to control various functions and/or features of a machine. For example, a master controller, used to control the overall operation and function of the machine, may be cooperatively implemented with a controller that monitors operation of the spray nozzles. In this embodiment, the term “controller” is meant to include one, two, or more controllers that may be associated with the machine or system described and that may cooperate in controlling various functions and operations of the machine or system. The functionality of the controller, while described herein conceptually to include various discrete functions, is illustrative and may be implemented in hardware and/or software without regard to the discrete functionality described. Accordingly, various interfaces of the controller are described relative to components of the spray nozzle assembly 11, but interfaces are not intended to limit the type and number of components that are connected, nor the number of controllers that are described.
Accordingly, the control module 60 allows the user to control high and low tolerances of rotational speeds and/or flow rates and provide an alert signal when limits are exceeded. For simultaneous monitoring of the plurality spray nozzle assemblies 11 on the boom 10, the sensor interface modules 55 in this case are interconnected by respective connectors 61 at opposite ends which communicate signals to the control module 60 in a closed loop, as depicted in
In accordance with still a further embodiment, the flow sensing system of the present invention may be utilized with a GPS tracking system for providing mapping of the actual spray discharges from the individual spray nozzles and a record that can be utilized in substantiating the correct chemical application and specific locations or the areas which have been sprayed during malfunctioning of one or more of the spray nozzles. To this end, a GPS receiver 65 may be mounted on the cab, as depicted in
In carrying out another embodiment, the supply of liquid to each spray nozzle assembly may be individually controlled, through a respective valving arrangement under the control of the control module 60. As depicted in
Hence, the control module 60 may be programmed to monitor and control various aspects of the performances of the individual spray nozzle assemblies 11, and in the event of a malfunction or other alert signal, energize a LED light 62 on the individual sensor interface module 55 for quickly alerting the operator as to which spray nozzle assembly 11 is sensing an error. More particularly, the control module 60 may be programmed to provide a multiplicity of cumulative and/or alternative functions including:
It can be seen that the illustrated spray nozzle liquid flow monitoring system basically comprises
In a typical operation of the spray nozzle liquid flow monitoring system, as depicted in
It will be appreciated that the described system allows for the efficient and particularized monitoring of the liquid flow of the plurality of spray nozzles on a spray boom. It will also be appreciated, however, that the foregoing methods and implementations are merely examples of the inventive principles, and that these illustrate only preferred techniques. It is thus contemplated that other implementations of the invention may differ in detail from the foregoing examples. Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
It will be understood that the use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising.” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
This patent application claims the benefit of U.S. Provisional Patent Application No. 61/523,265, filed Aug. 12, 2011, which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4315317 | Orchard et al. | Feb 1982 | A |
4553702 | Coffee et al. | Nov 1985 | A |
4630773 | Ortlip | Dec 1986 | A |
5134961 | Giles et al. | Aug 1992 | A |
5334987 | Teach | Aug 1994 | A |
5348226 | Heiniger et al. | Sep 1994 | A |
5704546 | Henderson et al. | Jan 1998 | A |
6749134 | Arenson et al. | Jun 2004 | B2 |
20020029804 | Liorati et al. | Mar 2002 | A1 |
20020190140 | Arenson et al. | Dec 2002 | A1 |
20050098485 | Boyd et al. | May 2005 | A1 |
20120168530 | Ellingson et al. | Jul 2012 | A1 |
Entry |
---|
U.S. Patent & Trademark Office, International Search Report in International Patent Application No. PCT/US2012/049566 (Oct. 10, 2012). |
U.S. Patent & Trademark Office, Written Opinion of the International Search Authority in International Patent Application No. PCT/US2012/049566 (Oct. 10, 2012). |
Number | Date | Country | |
---|---|---|---|
20130037625 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61523265 | Aug 2011 | US |