This application is a national phase of International Application No. PCT/IB2018/056286, filed on Aug. 20, 2018, which claims the benefit of Lithuanian Patent Application No. 2017 078, filed on Oct. 10, 2017. The contents of these applications are hereby incorporated by reference in their entirety.
The invention is related to the field of agriculture and forestry, namely to devices for treating of agricultural areas, forest lands and other areas by spraying liquid means of chemical treatment, in general with a spraying device installed on an unmanned vehicle, in particular on an unmanned aerial vehicle.
The invention is intended for the dosed distribution of liquid means for chemical treatment in precision agriculture systems, including both fertilizers, plant growth stimulators and analogous materials, as well as for combating harmful insects, pests and weeds and plants along roads, pipelines and so on.
Sprayed liquids used in agriculture and other industries are usually poisonous. Any operation involving such liquids (refilling, spraying, spilling and washing) poses a risk to personnel health, therefore requires special safety measures.
High rate of mortality from pesticides and poisonous substances is typical for the agricultural industry [(http://www.aljazeera.com/news/2017/03/200000-die-year-pesticide-poisoning-170308140641105.html)], which indicates the insufficiency of the available protective means. Liquid, that is hazardous to the personnel, remains in the units of spraying device (in reservoirs, connecting hoses, filters, sprayers, nozzles, liquid pumps and valves). Known devices for spraying of liquid means of chemical treatment typically comprise a housing; reservoir for liquid means; spraying unit(s) with sprayer(s); spraying device controller (optionally); liquid transport system, comprising set of liquid hoses, and means for ensuring the flow of liquid through the liquid transport system from the reservoir to the spraying unit(s). A pump is used in some known devices as a means for ensuring flow of liquid through the liquid transport system from the reservoir to the spraying unit(s).
One way or another, known solutions often mention a liquid subsystem as an integral part of spraying devices for liquid means of chemical treatment, including those installed on an unmanned vehicle. Generally the liquid subsystem is usually comprising a reservoir for liquid means of chemical treatment, provided with an outlet channel, and liquid hoses connected thereto. Existing spraying devices for unmanned vehicles have a statically assembled structure of significant size, thus complicating the entire system service and compliance with the work safety standards. Besides, the residual liquid and its vapour over a longer period of time are also harmful to the elements of spraying device and the unmanned vehicle, carrying it.
Current devices do not have an unified standard of reliability for their components and it is not possible to track the service life of components coming into contact with the liquid, therefore they do not provide neither safety nor reliability. In part of current technical solutions, liquid splashes freely in a large fixed volume, therefore, as liquid is consumed, this causes the unmanned vehicle to swing due to a shift of centre of gravity.
There is a number of patents known, in which the spraying device comprises a rigid tank, containing an elastic reservoir with liquid means of chemical treatment, or they are separated with an elastic membrane. The rigid tank limits the maximum expansion of the elastic bag. Under constant pressure of the walls of elastic (flexible) bag on the liquid, the liquid splashing issue is partially solved.
In patent application CN106035295A, the elastic bag (reservoir) is placed inside a rigid tank and is provided with inlet and outlet channels. The main disadvantage of this is that the bag is made as a stationary detail of the tank and is not replaceable. Similar solution is disclosed in patent application CN 105882973A, where an elastic inner bag for pesticides is placed in a container filled with elastic material. During refilling the filler is compressed and, as the liquid is consumed, the filler fills the free spaces in the container.
In another patent CN105966622A, there is a special elastic membrane inside the reservoir for pesticides, which covers part of the liquid surface, so that the liquid is between the inner surface of the reservoir and the membrane. Such structure prevents splashing of liquid as it is consumed.
In the aforesaid spraying devices, the universality of mounting and operation versatility of the liquid transport system is not achieved, the problem of the utilization of a used liquid transport system is not solved, high personnel safety level has not been reached; their design and maintenance are complicated; and it is not possible to easily replace the liquid transport system without the participation of a qualified personnel.
In related technical fields there are also many known devices and methods of storing the liquid in disposable reservoirs, for example, for hair dyeing (CA2953378A1, etc.), for storing doses of medicine (U.S. Pat. No. 3,991,758, etc.), which are provided with channels for the liquid (liquid subsystem elements).
In plurality of known spraying devices a pump is used as a means ensuring liquid transportation through the liquid transport system from the reservoir to the spraying unit(s).
In patent WO2016/192023 (US2017/0152843) the spraying device, mounted on an unmanned aerial vehicle, is based on a pump, where a brushless motor is used; possible connection with the spraying unit (liquid subsystem) is described. The patent assumes that there may be a pumping chamber installed in the pump. The main drawback is that the patent does not describe the pumping chamber and its properties; it is likely that the pumping chamber is an integral part of the pump and cannot be replaced; the properties of the liquid system are not described.
In the patent application WO 2016/192024 (US2017/0129605 A1) the spraying device is also based on a pump; the spraying device is mounted on an unmanned aerial vehicle. In the spraying device described in WO 2016/192024 (US2017/0129605 A1) the diaphragm pump is used and liquid flow rate is set by the cycle frequency of this pump. The application mentions a liquid transport system (liquid subsystem), through which liquid flows from the reservoir into the sprayers (spraying units).
The main disadvantage and problem of the known solution is that the pumping chamber and properties thereof are not described; the liquid subsystem is stationary and it is not removable and entirely replacable for a new one without great efforts. Therefore, when refilling the spraying device and servicing it, personnel's contact with the contents or residues of the content of the liquid transport system cannot be avoided, and this may be dangerous for the service personnel.
Other drawbacks of the technical solution discussed is that the spraying device is designed for an unmanned aerial vehicle only and is not used with an unmanned ground vehicle. Spraying device installation and application versatility, high level of safety for the personnel, and the possibility to easily replace the liquid subsystem without the participation of a qualified personnel, equipped with pritective means, are not achieved in the solution provided by WO2016/192024 (US2017/0129605 A1), and the problem of the utilization of used liquid subsystem is not solved as well. According to solution of patent CN105438475A, liquid is stored in reservoirs and is sprayed through the nozzle (spraying unit), the device is refilled through a special feeding box with a screw cap. Increased pressure required for spraying liquid is created by the pump. The spraying device is designed to be mounted on an unmanned aerial vehicle. Main disadvantages of such a solution are that the refilling of spraying system is not automated (the personnel participation is not excluded), it is designed for the spraying device of unmanned aerial vehicle only, and the liquid subsystem is stationary and non-replaceable. Other drawbacks of this technical solution is that despite a pump is used, however the control method of sprayed liquid flow is not provided. Liquid is sprayed only one way (through the nozzles) and only in one direction, vertically downward. Liquid channels in this spraying device are arranged strictly vertically only, which increases the dimensions of the structure.
Publication WO2014160589 (US2014/0303814A1) discloses the use of a spraying system and unmanned aerial vehicles in agriculture and points out the need for an automated refilling subsystem (refilling module), for charging of batteries of the unmanned vehicles, base station for parking and storage of unmanned vehicles, as well as the need for software for control systems and communication with the unmanned vehicles. The personnel's contact with the contents of the liquid system and residues of the content is not considered in this application.
The technical solution under US2014/0303814A1 does not provide the refilling of the refilling subsystems themselves by unmanned vehicles, and does not provide the diagnostics of unmanned vehicles or spraying devices thereof, connected for refilling.
Other drawbacks of the said technical solution are that the spraying system is stationary and designed for an unmanned aerial vehicle namely; it is not used with an unmanned ground vehicle; and the liquid system cannot be replaced.
The following definitions are used in this description:
Session—unmanned motion unit, defining both the spatial distribution of the area to be treated and the parameters of spraying (bandwidth, liquid flow, speed of motion or flight).
Known devices do not solve the problem regarding regular personnel's contact with substances, harmful to health, during servicing of the spraying systems for liquid means of chemical treatment, for example, when refilling them, particularly when washing, drying or replacing reservoirs for means of chemical treatment and other elements. In addition, the centre of gravity of the structures of these spraying devices is not stable during spraying; the spraying devices are not automated and their utilization possibilities are limited. The parts of known devices are also non-standardized, therefore it is not possible to track the service life of units, contacting with the liquid, which means that known devices are not safe and are unreliable. After the spraying devices are used and until their utilization, hazardous liquid still remains in the units of these devices, which liquid residues are also harmful to the elements of the spraying devices and to the unmanned vehicles, carrying them.
The used pumps have stationary pumping chambers, the emptying and washing of which is difficult or impossible.
The technical task of this invention is to create a spraying system which would provide:
To solve the listed problems a complex technical solution is proposed, which comprises the whole set of features and objects, as disclosed in the claims of the invention.
A liquid subsystem for use in a spraying device for liquid means of chemical treatment, mounted on an unmanned vehicle, is comprising a reservoir for liquid means of chemical treatment, provided with an outlet channel, and liquid hoses, connecting to the reservoir. Novel is, that the liquid subsystem according to present invention is designed as an entirely replaceable device, wherein the hermetic reservoir is made in the form of a bag, impermeable for a liquid medium.
The liquid subsystem further comprises a manifold with one or more outlet ports, which is connected to the outlet channel of the reservoir through the manifold channel. Each liquid hose of the liquid subsystem at one end is hermetically connected to one of the manifold outlet ports, and at the other end is provided with a lock valve, which is closed in a disconnected state.
According to this invention, the liquid subsystem is further comprising a sealable storage bag. Besides, the liquid subsystem is further comprising a contactless tag. The contactless tag is made as a barcode, two-dimensional code or contactless radio frequency tag.
In one embodiment of the invention the contactless tag is containing read-only information. This read-only information is comprising a unique identifier of the liquid subsystem, and/or date of manufacture, and/or warranty expiry date, and/or designation of compatibility with various liquids, and/or designation of maximum operating pressure, and/or number of provisioned cycles of use.
According to the invention the contactless tag may further comprise the variable indicators of the liquid subsystem. The variable indicators, for example, may comprise an identifier of the used liquid type, and/or the impermeability status of the liquid subsystem, and/or a counter for the cycles of use.
The manifold channel of the liquid subsystem according to present invention is provided with one or more measuring sections for being placed into outer liquid flow sensor(s) and/or liquid presence detector(s). Any of measuring sensors, into which said measuring section is placed, may be ultrasonic, optical, inductive or capacitive.
The liquid subsystem of present invention is further comprising either one central or several individual pumping chambers of liquid pump(s), wherein said pumping chambers are integrated into the liquid subsystem to be replaced together with it, while the size and form of the pumping chamber are defined by the type of appropriate liquid pump.
In one embodiment of present invention, in the presence of a single central pumping chamber of the liquid pump, the manifold connecting channel is equipped with said central pumping chamber. In this case the central pumping chamber is placed into the operating area of the central pumping engine of appropriate central liquid pump.
In another embodiment of present invention, in the presence of several individual pumping chambers of the liquid pump, each liquid hose, designed for connecting with an appropriate spraying unit, is equipped with said individual pumping chamber. In this case each individual pumping chamber is placed into the operating area of the pumping engine of appropriate individual liquid pump.
According to the invention, material of liquid-impermeable reservoir is selected from a group of chemically inert polymeric materials, comprising single- or multilayer films of thermoplastic polyurethane, silicone, rubber, polyimide, polyethylene and polyamide, preferably is thermoplastic polyurethane.
The key object of present invention is a spraying device for liquid means of chemical treatment, mounted on an unmanned vehicle and comprising a housing, a reservoir for liquid means, spraying unit(s) with sprayer(s), spraying device controller, liquid transport system with a set of hoses, and means for transporting of liquid through the liquid transport system from the reservoir to the spraying unit(s).
Novel is, that in the spraying device of present invention:
The spraying device of present invention is further comprising a compression mechanism, pressing the reservoir to the bottom of the basket.
Each liquid pump of the spraying device of the invention is a positive displacement pump, for example of peristaltic, diaphragm or piston type or of any other appropriate type.
The spraying device according to present invention is comprising either a single central or, alternatively, several individual pumping engines which, together with appropriate deformable pumping chambers, form either a single central pump or, alternatively, several individual pumps.
The spraying device according to present invention may comprise more than one liquid subsystem disclosed above.
The liquid subsystem of the invention is fixed in the nodes of spraying device with the possibility of quick installation, dismantling and/or replacement thereof The spraying device of present invention is provided with one or more liquid refilling valves, each being connected to manifold through an appropriate liquid hose of the liquid subsystem, and which is designed for refilling of liquid subsystem with liquid means of chemical treatment. Said liquid refilling valves are controlled by the refilling station, and being disconnected from the refilling station, they do not allow neither air nor liquid to pass in neither direction. Said liquid refilling valve(s) is(are) designed for automated refilling and/or emptying of the spraying device of present invention.
In the preferred embodiment of the invention each spraying unit is comprising a lock valve actuator.
Any said spraying unit is comprising one or more sprayer(s).
Any sprayer of the spraying unit according to present invention is of siphon, centrifugal or disk type, is an airless type nozzle or is an air-assisted nozzle.
The feedback sensors of the spraying device according to present invention are comprising at least the liquid flow sensor(s) and/or liquid presence detector(s).
The session controller of spraying device according to present invention is a microprocessor based device. The session controller is designed to regulate liquid flow by controlling the frequency of movements of pumping engines, deforming the appropriate pumping chambers.
The spraying device according to present invention is equipped with a liquid subsystem's contactless tag reader, which is connected to the session controller.
The spraying device is equipped with a communication channel(s), over which the session controller is interacting with the motion controller of the unmanned vehicle.
In the embodiment of present invention the unmanned vehicle is serving as an energy source for the session controller of the spraying device. The energy supplied to the session controller from the unmanned vehicle is serving also as an energy for powering other elements of spraying device.
The entire housing of the disclosed spraying device or part thereof may serve as the basket. The basket might be equipped with a hinged or removable lid.
In one of the embodiments of present invention housing or frame of the unmanned vehicle is serving as the housing of the spraying device. The housing is comprising trusses/masts, onto which spraying units and optionally other components of spraying device are installed, wherein trusses/masts are made static, telescopic or foldable.
In the preferred embodiment of the present invention the spraying device is made in the form of a module designed to be installed on an unmanned vehicle. The spraying device, made as said module, is designed for automated installation, removal or replacement on an unmanned vehicle.
According to the invention in a spraying system of liquid means of chemical treatment, wherein the spraying system comprise one or more unmanned vehicles with mounted spraying devices, a complex of one or more ground stations for automated refilling of said spraying devices, mounted on an unmanned vehicle, and a control station, controlling said complex of ground stations and motion of unmanned vehicle(s), wherein the disclosed above spraying device(s) are used, and said complex of ground stations is comprising a station(s) equipped at least with:
The unmanned vehicle of the spraying system of liquid means according to the invention may be equipped with more than one spraying device(s) described above.
The refilling module of the spraying system of liquid means may be connected to one or more liquid sources.
Any liquid source connected to the refilling module may be either stationary or mobile.
In one of the embodiments of present invention the refilling module of the spraying system of liquid means is designed to be able to empty the reservoir of the connected spraying device into one or more of the liquid sources.
The ground stations of the spraying system of liquid means according to preferred embodiment of the invention are of a modular design, and, besides said landing and refilling modules, the set of modules is further comprising at least:
The spraying system of liquid means according to present invention is further comprising an emergency platform for parking, storage and maintenance of faulty unmanned vehicles.
In the preferred embodiment of present invention the unmanned vehicle of the spraying system of liquid means is an unmanned aerial vehicle.
The essential features of the proposed technical solution are explained in drawings.
The variants of embodiments of the invention are disclosed as the examples illustrating this invention, however not limiting its scope of protection.
The key element of spraying system E according to present invention is spraying device A for liquid means of chemical treatment with a replaceable liquid subsystem B, which is an integral part of the spraying device A. Said invention objects: liquid subsystem B, spraying device A and spraying system E are all designed for spraying of liquid means of chemical treatment, and are united by a single inventive concept which includes the creation of entirely replaceable, properly marked and hermetically sealed liquid subsystem in a spraying device designed to be installed on unmanned vehicles and used in autonomous spraying systems. Moreover, said objects are organically interrelated and correlate as a part (liquid subsystem B), integrated into the whole (spraying device A) and, in turn, integrated into the system (spraying system E), comprising the spraying device as integral part thereof.
Spraying device A of spraying system E is to be considered first.
In general, spraying device A according to present invention comprises:
Liquid subsystem B is an integral part of spraying device A.
Liquid subsystem B comprises:
Reservoir 3 contains the liquid to be sprayed (liquid means of chemical treatment); reservoir 3 is made from a polymeric material as a soft hermetic bag, which is placed on the bottom of a strong and rigid basket 2. Reservoir 3 can be pressed to the bottom of basket 2 with a compression mechanism 20, which is installed in basket 2 above reservoir 3, thus limiting the free movement of the liquid and preventing the centre of gravity from shifting.
Reservoir 3 is connected to manifold 11 through manifold channel 12.
Manifold channel 12 can be equipped with a special deformable central pumping chamber 13, which is designed to be inserted into the operating area of the central pumping engine 7 of spraying device A. Central pumping chamber can be made from an elastic material, insensitive to water and used liquids. For example, this can be a silicone hose, neoprene hose, BTP (butyl titanate) hose, Tygon® hose and a hose made from analogous materials.
Manifold 11 is connected with liquid hoses 15. Liquid hoses at the opposite end of manifold 11 are provided with lock valves 16, which in inconnected state are sealing the internal volume of liquid to be sprayed. Each liquid hose 15, designed to be connected with the spraying units, can be provided with a special deformable individual pumping chamber 17, designed to be inserted into the operating area of individual pumping engine 8 of spraying device A.
Liquid hoses 15 are standard plastic hoses/tubes made of soft material, which is inert to water and used liquids, and designed to operate under increased pressure conditions. For example, they can be made from polyurethane: PU (polyurethane), soft polyurethane, hard polyurethane; from nylon (soft nylon); from polymers (FEP (Fluoropolymer)), from silicon.
Pumping chambers 13 (
Storage bag 19 has a hermetic lock 21, for example, zip lock, double zip lock or a structure of analogous purpose.
Storage bag 19 can be made from any soft material, which is inert to water and used liquid, for example, polyethylenes: PE (polyethylene), LDPE (low density polyethylene), HDPE (high density polyethylene); polypropylenes: OPP (oriented polypropylene), CPP (cast polypropylene); polyimide PI and analogous materials, including metallized options. Sealable storage bags are produced at large scale from these materials and they are widely available.
Contactless tag 18 can be of any suitable type, such as barcode (for example, CODE128), two-dimensional code (for example, QR code or Data matrix), radio-frequency identification (for example, NFC). Contactless tag 18 may have a rewritable memory for the autonomous storage of the operational history of liquid subsystem B (number of sessions, time under pressure and the like counters).
Liquid subsystem B can be easily separated and dismantled from spraying device A.
Liquid subsystem B is fixed:
Liquid subsystem B of spraying device A of present invention is made as single unit, is compact and hermetic when disconnected from spraying device A, and is utilized in a sealed storage bag 19, thus contributing to high level of safety for the personnel. It is marked with a contactless tag 18 for verification of its authenticity and registering its history of operation, which means standardization of the main units of spraying device A and assurance of the warranty characteristics of the device.
Spraying device A can be provided with one or more liquid subsystems B.
Housing 1 of spraying device A is made as a rigid structure where all or some of the elements of spraying device A are installed.
Housing 1 is installed on the unmanned vehicle 22 (for example, on an unmanned aerial vehicle,
Housing 1 may comprise static, telescopic or folding trusses or masts 24 onto which spraying units 4 and, optionally, other elements of the device (not shown in drawings) are fixed.
Spraying devices A, where part or whole of housing 23 of an unmanned vehicle is serving as housing 1, are considered to be partially or fully integrated into the unmanned vehicle 22. While, spraying devices A with an independed housing 1 are independent. Independent spraying devices A can be installed on unmanned vehicles 22 and removed therefrom in completely automated way by the ground station spraying device module 25. An example of installation of a spraying device as an independent module as shown on
Independent spraying devices A are tested and refilled with liquid in an automated way by the ground station refilling module 26.
The structurally strong basket 2 is designed for reservoir 3 and limits its maximum permissible volume. Basket 2 is adapted for quick insertion of reservoir 3. For this purpose the basket is equipped with a removable or hinged lid 27. Basket 2 is provided with compression mechanism 20, which mechanically or pneumatically presses reservoir 3 to the bottom of basket 2. To reduce the weight of spraying device A, basket 2 can be of a porous structure (grid, combs, net of woven or glued carbon filaments), and optionally with an inner case, made of a light, strong and non-streachable material. Manifold channel 12 comes out of basket 2.
There may be one or more spraying units 4, where each spraying unit 4 is provided with:
Liquid refilling valve 5 is connected to manifold 11 with liquid hose 15.
The status of liquid refilling valve 5 is controlled by the refilling station 30. When liquid refilling valve 5 is disconnected from the refilling station 30, it does not pass neither air nor liquid in any direction. Measuring section 14 of manifold channel 12 is designed to be placed into a liquid presence detector and/or liquid flow sensor 6, which can be optical, ultrasonic, inductive, capacitive or of other type.
Pumping engines 7 (or 8) transport liquid by deforming pumping chambers 13 (or 17), in the manner, determined by the type of the pumping engine. Central pumping engine 7 and associated central pumping chamber 13, integrated into it, form together a central liquid pump 31. Individual pumping engine 8 and associated individual pumping chamber 17, integrated into it, form together an individual liquid pump 32. The pumping engine defines the shape and dimensions of the corresponding pumping chamber 13 (or 17), as well as additional system elements (not shown in drawings), necessary for the proper operation of the resultant liquid pump. In the spraying device according to present invention pumping chambers and pumping engines may be configured into following pump types:
The spraying device comprises a single central pumping engine 7 or several individual pumping engines 8.
If only one central pumping engine 7 (
If individual pumping engines 8 (
Session controller 9 is a microprocessor based device.
Session controller 9 is design to be able to receive power from unmanned vehicle 22 through the session controller power supply port 33, as well as to supply power to all elements of spraying device A which require it. During refilling, session controller 9 receives a session description from control station 34, stores this session description in its memory and tracks its stages and current status.
Session controller 9 coordinates/synchronizes the motion of unmanned vehicle 22 according to the stages of the session and actions necessary during the session, by interacting with the motion controller 35 of unmanned vehicle 22 by communication channel 36.
Session controller 9 controls spraying device A by the sequence of executable commands for the following elements:
Session controller 9 regulates liquid flow by controlling the frequency of pumping engines movements, deforming pumping chambers.
Session controller 9 can transmit the stage and current status of the session through communication channel 36 to the motion controller 35 of unmanned vehicle 22 (for example, for further data transmission to control station 34).
Session controller 9 can be combined with motion controller of the unmanned vehicle 22 or can be integrated into it.
Unmanned vehicles equipped with spraying devices A can operate in groups fully automatically in the spraying system E according to present invention, which comprises the ground station park and the control station.
According to one of preferred embodiments of the invention, spraying system E (
Control station 34 is designed for the centralized automatic control of group of unmanned vehicles 22, related to this control station, and park of the ground stations.
Communication module 37 provides connection between the control station 34 and unmanned vehicles 22 and ground stations.
Ground stations of spraying system E are designed for the automatic servicing of unpowered unmanned vehicles 22 and spraying devices A integrated on them or carried by them. Ground stations are composed of modules, where various module combinations are possible to obtain a ground station, optimized for specific application, i.e. to obtain a ground station with defined functions, such as refilling station 30, parking station 38 and storage station 39.
Main ground station modules are as follows:
Refilling station 30 of spraying system E is a ground station, designed for the automatic refilling of spraying devices A and charging or replacement of batteries 44 of unmanned vehicle.
Main elements of refilling station 30 are as follows:
Parking station 38 is a ground station, designed for secure and automatic storage of unmanned vehicles 22 and can be used for transporting unmanned vehicles.
Parking station 38 comprises:
Storage station 39 is a ground station, designed for the automated storage of the modular spraying device A 46, and can be used for transporting of spraying devices A.
Storage station 39 necessarily comprises:
Emergency platform 49 is designed for parking of unmanned vehicles 22, when the unmanned vehicle 22 itself is faulty or spraying device A integrated therein is critically damaged, or when all spraying devices modules 25 of ground stations all are faulty.
Spraying Device and System Operation
Installation of a new replaceable liquid subsystem B into a spraying device A In order to install liquid subsystem B into spraying device A, a new storage bag 19 is opened and a new liquid subsystem B is extracted therefrom.
Lid 27 of basket 2 is opened. Reservoir 3 is placed into basket 2. Manifold channel 12 comes out of basket 2.
In the invention embodiment option with a central pump 31 the central pumping chamber 13 is placed into a central pumping engine 7 and fixed therein. Manifold 11 is fixed, and measuring section 14 of manifold channel 12 is placed into the liquid flow sensor and/or liquid presence detector 6. Then liquid hoses 15 are installed in their places and fixed.
In the invention embodiment option with individual pumps 32 individual pumping chambers 17 of liquid hoses 15 are placed into individual pumping engines 8 and fixed therein.
One appropriate liquid hose 15 is connected to the liquid refilling valve 5, in case it is not included in the subsystem B set. Otherwise, the liquid refilling valve 5 is fixed on housing 1 of spraying device A. After that, lock valves 16 are connected to the spraying units 4, and then lid 27 of basket 2 is closed.
Spraying device A is prepared for operation or for mounting on unmanned vehicle 22 (if it is not integrated into it).
Prepared spraying device A can be mounted on an unmanned vehicle or installed in a free slot of spraying devices module 25 of storage station 39.
When performing self-diagnosis and refilling the spraying device A by module 26, the spraying device must be fixed in a proper position relative to refilling module 26. For example, this happens automatically, when unmanned vehicle 22 is fixed in proper position in the landing module 42 of refilling station 30.
Further operations are performed when power is available in session controller 9.
Refilling module 26 is connected to the liquid refilling valve 5. Refilling module 26 pumps the compressed air into reservoir 3. During this operation the pumping engines must be stopped. Pressure and leakage in reservoir 3 are checked according to the dynamics of change of air pressure in liquid subsystem B by the corresponding pressure sensor located in refilling module 26.
After that refilling module 26 stops supplying air, however continues to monitor the dynamics of change of air pressure in reservoir 3. Air is discharged from reservoir 3 into the atmosphere by alternating and short-term activations of pumping engines 7 or 8, and a conclusion is made on the operable condition of pumping engines 7 or 8, as well as on the hermetic properties of liquid subsystem B.
Refilling station 30 enables all the air to escape from reservoir 3 through the refilling valve 5, where air is squeezed out mechanically by compression mechanism 20 or pumped out by refilling module 26. Refilling module 26 then pumps liquid into reservoir 3. In the process the pressure changes in reservoir 3, proper operation of the system and the absence of leakage in the liquid subsystem are monitored.
If leakage is found, refilling module 26 begins receiving liquid from reservoir 3 under the pressure of compression mechanism 20 and under possible reverse pumping by refilling module 26.
If critical failure is detected, unmanned vehicle 22 is sent to emergency platform 49 or to storage station 39, where liquid subsystem B or the whole modular spraying device A 46 is replaced. By pumping out liquid from reservoir 3, refilling module 26 can refill liquid sources 48 with liquid or its concentrate.
During spraying, liquid flow (consumption) is set by the frequency of deformation of pumping chambers by pumping engines. Liquid flow (consumption) control is performed continuously during the spraying stages.
Necessary interruptions during spraying are done by stopping the pumping engines. If one central pumping chamber 13 is used in liquid subsystem B, then spraying can be interrupted by controlling the lock valves 16 of spraying units 4, however at least one lock valve 16 must be opened when the central pumping engine 7 is operating.
The moment of liquid depletion is determined according to the liquid flow sensor and/or liquid presence detector 6.
Liquid subsystem B can be dismantled and/or replaced.
Before disconnecting liquid subsystem B, an employee should use individual protection means, for example, put on gloves and a respirator.
Spraying device A must be dismantled from the unmanned vehicle 22, if it is not integrated into the unmanned vehicle.
If liquid refilling valve 5 is part of the liquid subsystem B, then it is removed from housing 1 or basket 2. Reservoir 3 is removed from basket 2.
Reservoir 3 is placed into storage bag 19 together with refilling valve 5.
All pumping chambers 13 and 17 are emptied, then manifold 11 is removed and inserted into storage bag 19. Liquid hoses 15 are then disconnected one by one and stowed into the storage bag 19. Filled storage bag 19 is sealed with lock 21 and sent for utilization.
Advantages of the proposed equipment and evidence of solution of the problem
The proposed technical solution provides:
The proposed technical solution can find application in the field of agriculture, as well as in other industries, where there is need to spray any type of liquid means according to a specified program.
For example, such devices and systems can be used for extinguishing fires, watering football fields, watering city streets when cleaning them during the hot season, as well as for painting or other decorative treatment of large-scale objects (for example, building roofs) or large areas.
List of the positions of spraying device and system elements:
Number | Date | Country | Kind |
---|---|---|---|
2017078 | Oct 2017 | LT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2018/056286 | 8/20/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/073314 | 4/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3991758 | Mohrke et al. | Nov 1976 | A |
6175420 | Barry | Jan 2001 | B1 |
6560806 | Lawson | May 2003 | B1 |
7784715 | Kress | Aug 2010 | B2 |
20080123466 | Thompson | May 2008 | A1 |
20080173705 | Girard | Jul 2008 | A1 |
20080178940 | Kress | Jul 2008 | A1 |
20110186657 | Haviland | Aug 2011 | A1 |
20110198413 | Thompson | Aug 2011 | A1 |
20110272493 | Richardson | Nov 2011 | A1 |
20130277455 | Thompson | Oct 2013 | A1 |
20140246506 | Maas | Sep 2014 | A1 |
20140303814 | Burema | Oct 2014 | A1 |
20150059626 | Conrad | Mar 2015 | A1 |
20160069743 | McQuilkin | Mar 2016 | A1 |
20170129605 | Wu | May 2017 | A1 |
20170152843 | Bei et al. | Jun 2017 | A1 |
20170374323 | Gornik | Dec 2017 | A1 |
20180035606 | Burdoucci | Feb 2018 | A1 |
20190366375 | Thompson | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2567559 | Aug 2007 | CA |
2953378 | Jan 2016 | CA |
101733223 | Jun 2010 | CN |
101733223 | Jun 2010 | CN |
105438475 | Mar 2016 | CN |
105438475 | Mar 2016 | CN |
105882973 | Aug 2016 | CN |
105882973 | Aug 2016 | CN |
105966622 | Sep 2016 | CN |
106035295 | Oct 2016 | CN |
106035295 | Oct 2016 | CN |
106043702 | Oct 2016 | CN |
205633070 | Oct 2016 | CN |
WO-2007014690 | Feb 2007 | WO |
Entry |
---|
International Search Report for PCT/IB2018/056286 dated Nov. 15, 2018, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200246819 A1 | Aug 2020 | US |