The present invention relates generally to spraying systems and, more particularly, to a method and apparatus for spraying of non-rectangular objects while the objects and/or a spraying apparatus are translated in a single direction relative to each other.
Spraying systems utilizing spray guns or like spray nozzle assemblies have a wide variety of applications in industrial settings today. Spray guns are very often used to disperse a liquid material, such as to cover an area or object with particles of the sprayed material. One particular usage of such spraying systems is in the preparation of packaged or other food products. For example, a cereal product may be conveyed on a transfer belt past an array of spray guns which coat the cereal product with sweetener, additives, supplements, or the like. Such a system is often more practical than using a more targeted application system, such as manual or automated brushings or other coating devices, to coat individual units of the food product.
However, by its very nature, spraying is directionally less discriminate than more targeted methods, and so the economies generated by avoiding manual labor for the coating process can be offset or minimized by wastage of the sprayed material. This is due to the fact that a substantial amount of the sprayed material may end up on a conveyor belt, support, or other manufacturing element instead of on the product that is intended to be coated. In addition, this overspray typically must be removed from the manufacturing environment by manual labor, incurring additional costs. Moreover, such cleaning often entails halting the production line temporarily while cleaning is performed, causing a loss of productivity.
Hence, a spraying system is needed whereby overspray is minimized, thus maximizing the economies afforded by this type of material delivery technology.
It is an object of the present invention to provide a spraying system for spraying non-rectangular or other irregular shaped objects while minimizing overspray.
Another object is to provide a manufacturing system wherein a spray gun a nozzle system is employed to maximize the economy provided by spray coating, while minimizing material wastage.
Yet another object of the invention is to provide a method and a computer-readable medium embodying the method for dynamically varying the spray pattern of a spray gun or nozzle such that the pattern is concentrated on the selectively moving non-rectangular object without substantial overspray.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings, in which:
While the invention is susceptible of various modifications and alternative constructions, a certain illustrated embodiment thereof has been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific form disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions and equivalents falling within the spirit and scope of the invention.
Referring now more particularly to the drawings, there is shown an illustrative spraying systems 10 in accordance with the invention, which in this case comprises a plurality of laterally spaced spray guns 11 for directing a coating onto non-rectangular products 12 such as round pizzas, arranged in laterally spaced rows on a conveyor belt 14, as the conveyor belt 14 passes the round products 12 beneath the spray guns 11. The spray guns 11 in this case each are supported on a common header 15 oriented for directing discharging sprays downwardly onto the passing products 12. As depicted in
The spray guns 11 may be of a known type, such as an external mix, air atomizing spray nozzle assembly shown in U.S. Pat. No. 6,776,360 assigned to the same assignee as the present invention, the disclosure of which is incorporated herein by reference. The illustrated spray guns 11, as best depicted in
For controlling the discharge of liquid from the spray gun 11, a valve needle 48 coaxially extends through the housing body 25 for reciprocating movement between a valve closing position in seated engagement with a downstream tapered entry section of the spray tip passage 41 and an unseated valve open position. The valve needle 48 in this case has a tapered seating section and an axially extending clean out nose portion 49 that is positionable into and through the discharge orifice 44 when in a closed position (
For operating the valve needle 48, a piston 50 is mounted at an upstream end of the needle 48 which is biased in a valve closing direction by a compression spring 52 interposed between the piston 50 and the upstream housing cap 28. The piston 50 carries an annular sealing ring 54 in sealing engagement with a cylindrical bore 55 in the housing body 25. The compression spring 52 biases the piston 50, and hence the valve needle 48, forwardly to a fully seated, i.e., valve close position, depicted in
For atomizing the liquid discharging from the spray tip 31, the spray tip nose portion 45 and a central orifice of the air cap 32 define an annular atomizing air discharge orifice 60 which communicate with angled atomizing air passages 61 and an annular air passage 62 defined between the spray tip 31 and air cap 32, which in turn communicates through nozzle body 25 with the atomizing air inlet port 38 connected to the header by the atomizing air supply line 20. Pressurized air directed through the annular discharge orifice 60 communicates outwardly of the liquid discharge orifice 44 for interaction with the discharging liquid flow stream.
For forming and directing the discharging liquid spray into a flat fan spray pattern for wider lateral application onto the moving products 12, each spray gun 11 is operable for impinging pressurized air (i.e., “fan air”) on opposite sides of the liquid spray. In the illustrated embodiment, pressurized air is communicated to the fan air inlet port 39 of the spray gun 11 from the pressurized air supply line, which in turn communicates through the nozzle body 25 with an annular chamber 64 adjacent an upstream end of the air cap 32. The annular chamber 64 communicates pressurized air to a pair of longitudinal passages 65, which terminate in opposed angled discharge passages 66 that direct pressurized air streams 66a at an acute angle on opposite sides of the discharging liquid spray for spreading the liquid spray into a relatively flat narrow spray pattern transverse to the direction of movement of the product upon which it is directed.
In accordance with an important aspect of the invention, a control system is provided for dynamically varying the dispersal pattern yielded by the spray guns according to the shape of the non-rectangular products being conveyed past the spray guns. More particularly, the pattern variation is tied to the shape and rate of translation of the non- rectangular products to be sprayed. In this manner, the spray pattern is concentrated on the target object, minimizing the waste and mess associated with conventional spraying of non-rectangular objects. In the illustrated embodiment, the manner in which the spray gun discharge spray pattern is dynamically altered to reduce wastage and mess, while assuring product coverage, is depicted in
Thus, as the widest point of the product 12 passes beneath the spray gun 11, as depicted in
In carrying out the invention, the control system includes a fluid supply control 71 for controlling the supply of liquid, cylinder air, atomizing air, and fan air to the spray guns. The illustrated fluid control, as depicted in
The pressurized air from the air supply 75 in this instance also provides fan air to the spray gun 11. In particular, the air supply from valve 76 is supplied to a valve 84 controlled by a proportional fan air regulator 85. The proportional fan air regulator 85 controls the valve 84 via output 87a in accordance with a set signal received at input 86, based on the air pressure detected at input 87. Pressurized air from the valve 84 is communicated to the spray gun fan air inlet port 39 via a header manifold passage and the inlet line 21.
The air from the air supply 75 further provides air supply for opening and closing the valve needle 48 of spray gun 11. In particular, the air from the valve 76 is fed to a manual air pressure regulator 88 used to preset the air pressure for the spray gun cylinder air (e.g., when the cylinder air is on) which is communicated to a solenoid controlled shut-off valve 89 which can be operated for selectively turning the cylinder air on and off. From the shut-off valve 89, pressurized air can be communicated through a manual isolation valve 90 to the cylinder air inlet port 36 of the spray gun 11 via a manifold passage and the cylinder air inlet line 19.
Finally, the air from the air supply 75 also provides an air supply for controlling the supply of pressurized liquid to the spray gun 11. In particular, the air from air supply 75 is fed to a valve 91 regulated by proportional air regulator for liquid pressure 92. The proportional air regulator for liquid pressure 92 detects the air pressure after valve 91 via inlet 93a and controls the valve 91 via outlet 93 in keeping with a set signal received via inlet 94. The air that passes through valve 91 in turn controls a pressure regulating valve 95. The pressure regulating valve 95 controls the flow pressurized liquid from a pressurized liquid supply though the liquid inlet port 35 of the spray gun via a header manifold liquid flow passage and a liquid supply line 18.
In keeping with the invention, a computer readable medium is provided for varying the spray pattern of the spray guns pursuant to the particular shape of the products to be sprayed. An illustrative process for dynamically controlling the spray pattern of the spray guns is depicted in the timing diagrams shown in
After expiration of another delay period Ta at step 155, the process flows to parallel steps 156a-15d. At step 156a, the fan air control valve 84 is controlled to supply fan air according to a predefined pressure curve 101 over a period Ts. For an approximately circular target object, the curve 101 is approximately semicircular as shown. The greater the fan air pressure, the wider the spray pattern of the spray gun. At the same time, in step 156b, the atomizing air control valve 78 is controlled to supply atomizing air according to a predefined pressure curve 102 over the same period Ts. At parallel step 156c, the liquid control valve 95 is controlled to supply liquid according to a predefined pressure curve 103 over the same period Ts. Finally, at the same time at parallel step 156d, the cylinder air valve 89 is opened for the same period Ts so that the valve needle of the spray gun is opened during that period. The result of the steps executed to this point is a spray pattern, the extent of which is defined largely by curve 101, the density of which is defined largely by curve 103, and the uniformity of which is defined largely by the relationship of curve 102 to curves 101 and 103. For example, if the liquid pressure curve 103 were flat rather than being similar to curve 101, then the liquid material would be sprayed at a substantially constant rate over a dynamically varied area, resulting in non-uniform density.
After the spray time Ts, the process flows to parallel steps 157a-d. At step 157a, the fan air control valve 84 is controlled to supply fan air at an end pressure value Pfe over a period Tf. At the same time, at step 157b, the atomizing air control valve 78 is controlled to supply atomizing air at an end pressure Pae over the same period Tf. In parallel at step 157c, the liquid control valve 95 is controlled to supply liquid again at the default pressure. Finally, at step 156d, the cylinder air valve 89 is closed so that the valve needle of the spray gun is again closed. At the time, Tf expires, the process flows to parallel steps 158a-b. At step 158a, the fan air control valve 84 is closed, while at step 158b, the atomizing air control valve 78 is closed. After parallel steps 158a-b, the process returns to step 152 to await a trigger signal from the arrival of the next target object.
As noted above, the process for dynamically varying a spray gun pattern to correspond to the shape of a moving object may rely on a trigger signal that indicates that a target object is approaching beneath the spray gun. In the illustrated embodiment, this detection function is executed via an electro-optical sensor such as a beam break sensor or difference sensor (to detect difference between target object and conveyor belt). However, the detection function may also be executed via any traditional sensor technology such as trip levers and the like.
Alternatively, the objects to be sprayed are placed at a set of predetermined locations on the conveyor belt. In this instance, the trigger signal may be derived from the interaction of the belt itself with the sensor (e.g., via a break beam sensor mounted adjacent a series of holes on the conveyor belt), or can be internally generated based on the knowledge of the speed of the conveyor belt and the relative positions of objects thereon.
As discussed above, in the illustrated embodiment of the invention, a number of predetermined pressure curves are used to determine the dynamic variance in the spray gun pattern. Alternatively, the shape of the target object may be dynamically detected and the fluid pressures (e.g., fan pressure, atomizing pressure, and liquid pressure) may be determined dynamically based on the detected shape. Although electro-optical sensors preferably may be utilized other sensor types may be used instead depending upon the manufacturing environment. This is especially useful when objects of varied or non-uniform shape are to be spray coated.
It will be appreciated that the process of dynamically varying the spray gun spray pattern described above preferably is automated since the number of variables and the speed and precision with which these variables must be adjusted do not lend themselves to manual operation. Accordingly, the illustrated process described in
It further will be understood that although the invention has been described as allowing a target object to be substantially covered by a sprayed liquid material as it traverses a spray region of a spray gun, the same dynamic variation of the spray pattern is applicable to coating a predetermined portion of the target object comprising less than substantially all of the object surface. For example, the system of the invention could be used to substantially coat a pizza dough with sauce (e.g., leaving only a thin uncoated crust), or to coat half of a cookie with frosting, simply by applying the correct pressure curves to the spray gun inlets as described above. Thus, the extent or density of coverage of the target object is not critical, and can be controlled as desired by the invention described herein to meet user preferences. It will be appreciated that supplying fan air and atomizing air separately via distinct inlets allows greater independence of control over the atomization and fan pattern of the resultant spray. Furthermore, while the illustrated system uses external mix air atomizing spray guns, other forms, including internal mix air atomizing spray guns could be used. Depending upon the pressures being applied, e.g., whether the fan air and atomizing air are varied in the same way, a single orifice spray nozzle alternatively may be used. For purposes herein the term spray gun is intended to generically cover spray nozzle assemblies whether gun-shaped or otherwise.
Finally, although typically the spray guns are stationery, alternatively one or more spray guns may be scanned in a plane parallel to the conveyor belt regardless of whether the conveyor belt is moving. Moreover, although in the illustrated system employs a one-to-one relationship between spray guns and products to be sprayed, it will be appreciated that the invention is not limited to the illustrated systems, and it is contemplated that a single gun may be used to treat a plurality of product units and that multiple guns may be used to treat a single product unit as the shape of the object and other considerations may dictate.
From the foregoing, it can be seen that a spraying system of the present invention is broadly adapted to spray non-rectangular or other irregular shaped items while minimizing material waste and clean-up. The spraying system utilizes a computer readable medium and methodology which dynamically varies the spray pattern from the spray gun or nozzle such that the pattern is concentrated on the selectively moving non-rectangular items without substantial overspray.