In striving to produce clear, sharp and colorful images, printer equipment manufacturers have explored many different types of inks and toners. Gel ink is a relatively new type of ink. A gel is an ink that is neither solid nor liquid when it is applied to the print surface. They solidify rapidly upon cooling, and therefore have advantages over water or solvent based inks that may de-wet from many surfaces, such as plastics, cardboard, etc.
Issues arise with gel inks in their transfer to the print surface, also referred to as the print or image substrate. For example, in solid ink printers, the ink first takes the form of a solid similar to wax. The printer melts the ink, generally in stick form, and transports it through a heated pathway to a print head that then uses the now liquid ink to form printed images. The printer may be an inkjet printer. As a liquid, the hot melted ink does not stick to many of the surfaces of the printer. When the ink cools, it becomes solid again and can be scraped off or otherwise removed as well.
Gel inks typically do not smear or run without some sort of force being applied. Without any interference, the gel inks will stay on the print substrate. Smearing without any outside force may happen with liquid inks, whether molten liquid or inks provided originally in liquid form. Gel inks can have high pigmentation because of their viscosity, resulting in images which have high optical density and hence good color depth.
However, gel inks require some type of transformation such as curing to prevent them from running or smearing when printed onto a substrate and subjected to general handling. In addition, uncured gel inks stick to all roller surfaces in print paths, making them unsuitable for many printing applications without some sort of transformation or curing.
The printing system 10 uses a leveling surface 18. In this embodiment, the leveling surface is a plastic or other flexible sheet 18. The leveling surface can be any surface that can contact an image printed using phase-change inks and cause the ink to spread out locally and attain a more uniform, level depth of ink on the substrate. In one form, a phase-change ink has a low viscosity above a certain temperature T1 and a high viscosity at a lower temperature T2. Some phase-change inks, especially gels, have relatively low viscosity and tend to have low cohesiveness. The result is that the ink layer splits when adhered to two surrounding surfaces which are then separated, rather than releasing from either surrounding surface. The freezing or gelling of the ink on a relatively cool substrate can cause local unevenness in an image. This is especially true where there is a higher volume of ink, as higher volumes of ink tend to ‘build up’ on the print substrate in the areas directly under the passed nozzles and as a result produce more print depth in these areas.
Application of a leveling surface serves to spread out the ink in local print features, across pixel level distances. The spreading action cannot propagate much beyond pixel level distances, otherwise the image would be effectively destroyed.
In the printing system 10 of
A leveling surface 18 is brought into contact with the printed image on the media 12 by the roller 20. A radiation source 24, such as an ultraviolet (UV) light source, then cures the ink through the leveling surface 18, which in this case is transparent. The radiation source may be any type of generator of radiation at the needed wavelength and irradiance needed to cure the ink. Examples include lamps, single light emitting diodes (LEDs), laser diodes, arrays of LEDs, etc. Generally, these inks are cured (or cross linked) using UV light, but any wavelength radiation is considered within the bounds of the invention as claimed. Examples of the leveling surface include Mylar® and other plastic sheeting including polyesters, copolyester, polysulfones, polyethersulfone, polymethylpentene, PVC, polyethylenenaphthalene, ethylene-chlorotrifluoroethylene, polycarbonate, polyetherimide, acetal copolymers, and others, the sheet being transparent or translucent to allow radiation to penetrate to the ink. It may also include thin sheets of paper or fabric or thin glass.
After the ink has cured, the leveling surface 18 is pulled away from the print media by the roller 22. The end result is that the ink is cured and it does not stick to the leveling surface 18 after curing. In order to promote the curing of the ink and subsequent removal or release of the leveling surface 18, the surface 18 may be treated with a low surface energy (hydrophobic) substance to further ensure that the ink will not stick to it. Examples of low-surface energy materials are polytetrafluoroethylene (Teflon®) with a reported surface energy of 20 mN/m, polydimthylsiloxane (PDMS) with 19.8 mN/m, Polyvinylidene fluoride (PVDF) with 30.3 mN/m, plasma polymerized hexamethyldisiloxane (HMDS) with 38 mN/m. Although low-surface energy coatings are often used as release layer, any other coating or surface deposit which adheres poorly to the leveling surface or to the ink layer may be employed as a release layer.
The release treatment may be applied by a spray or other dispenser and refreshed as needed or may be engineered into the surface itself. The treatment may consist of a release agent, either temporarily applied or permanently bonded to the surface. Examples of such low surface energy materials or surface coatings are fluoropolymers such as Cytop® manufactured by Asahi Glass or Teflon® AF manufactured by DuPont, fluorinated self assembled monolayers such as fluorosilanes, long-alkyl chain silanes, hexamethyldisilazane (HMDS), etc.
In the embodiment of
In
The radiation source would desirably reside at location 24, ‘inside’ the roller/belt assembly. This allows the radiation source to cure the ink while in contact with the leveling surface. The belt 26 would consist of a transparent material to allow the radiation to transmit through it to the ink. The radiation source 24 in
Similar to a belt intermediate transfer surface, the printing system may employ a roller or drum intermediate transfer surface.
In
Again, it is possible to place the radiation source at the location 28 to cure the image after it is transferred onto the print media 12. However, the ink may still stick to the drum, even if treated with a hydrophobic surface. Further, the image may smear or otherwise be damaged when the roller breaks contact with the print media.
Using a transparent leveling surface allows for more flexible curing options. Returning to a printing system similar to
The use of a leveling surface may also provide other opportunities in the printing area. In the above discussion, it was mentioned that the leveling surface was generally a smooth, flexible sheet. “Smooth” as that term is used here means that the surface is without micro-roughness that will not impart detectable texture to the ink. This prevents any unintentional texturizing of the image.
However, it is possible to use a textured leveling surface to create a textured mat finish to the image. Using a leveling surface with an embossed or otherwise patterned surface texture, such as by laser ablation, sand blasting, etching, mechanical milling, etc., would allow the creation of a textured pattern in the ink. Using a smooth surface may allow for creation of a glossy image. Other features may be added to the ink image, including adding in diffraction gratings to the inked image by using a leveling surface with an embossed or otherwise patterned grating.
Also, as previously mentioned, a low surface energy (hydrophobic) or other engineered surface may be applied onto the leveling surface. The leveling surface, whether a sheet, roller or other form, may be treated with a temporary release agent or have a release agent permanently bonded onto it. The permanent or temporary release agent may consist of Cytop® from Asahi Glass (amorphous perfluoropolymer with high UV transmission) or DuPont's Teflon® AF fluoropolymer resin. These coatings may be deposited from solution, e.g. by dip-coating, spray coating, mist coating, doctor blading, printing methods or other deposition methods known in the art of solution processing. Other permanent or temporary coatings may consist of ORMOCER® inorganic-organic hybrid polymers and they may also be coated from a solution. Coatings that may be more suitable as permanent coatings are Parylene, in particular the fluorine group containing Parylene HT® manufactured by Specialty Coating Systems of Indianapolis, Ind., which may be deposited from a vapor phase. Moreover, a plasma coating such as by plasma polymerization from CHF3 gas or CF4/hydrocarbon mixtures or of hexafluoroacetone/hydrocarbon such as acetylene mixtures may form a permanent release layer.
Other potential release layers may be based on transparent superhydrophobic silica or on porous alumina coatings. Other release layers commonly used for releasing molds in molding processes may also be used. These include fluorinated coatings or materials such as NanoMouldRelease by BPI Technology, Ltd. of Singapore. If the layer is permanently bonded to the leveling surface, it may not have to be replaced after each print cycle. If the layer is temporarily applied, it may be freshly coated onto the leveling surface before contacting the ink, and after release, the layer may be removed, such as by a solvent and mechanical wiping. Subsequently, a new layer of the release coating may be applied.
It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Cross-reference is hereby made to the following US patent applications, assigned to the assignee hereof: U.S. application Ser. No. 12/256,670 (Attorney File No. 20080183-US-NP), U.S. application Ser. No. 12/256,684 (Attorney File No. 20080187-US-NP), U.S. application Ser. No. 12/256,690 (Attorney File No. 20080212-US-NP), U.S. application Ser. No. 11/291,284, filed Nov. 30, 2005, now US Patent Application Publication US 2007/0120930 A1 (Attorney File No. 20040629-US-NP), and U.S. patent application Ser. No. 12/324,069, (Attorney File No. 20080178-US-NP).