This application relates to medical devices, and in particular to spring action medical devices and methods of using spring action medical devices.
Some medical devices, such as wire guides and catheters, may be inserted into a patient's vascular system or other body lumen. Wire guides and catheters may be used in angioplasty procedures, diagnostic and interventional procedures, percutaneous access procedures, or radiological and neuroradiological procedures in general. Wire guides are commonly used in vascular procedures to introduce a wide variety of medical devices (e.g., catheters) into the vascular system. Catheters may also be used to provide access into the vascular system.
Medical devices may encounter various challenges as they are guided through a patient's vascular system or other body lumen. For example, a procedure may require a physician to steer a wire guide or catheter through tortuous passageways before reaching a destination. In such a procedure, the device needs sufficient stiffness to be pushed along the path while remaining flexible enough to pass through the tortuous passageways without causing damage. Additionally, the patient's vascular system or other body lumen may contain occlusions that impede the device along its path. It may be difficult for some medical devices to pass through occlusions. These occlusions may also impede fluid flow in the body lumen. Therefore, a need exists for an improved medical device for passing through and/or clearing occlusions.
In one implementation, a medical device includes a distal tip, a spring, and a hammer component disposed between the distal tip and the spring. The spring is configured to provide a force when released from a loaded state to propel the hammer component in a distal direction toward the distal tip to strike the distal tip.
In another implementation, a medical device includes a body portion, a distal tip disposed at a distal end of the body portion, a support structure on an inner surface of the body portion, a hammer component, a spring, and a trigger wire. The spring is disposed between the hammer component and the support structure. The trigger wire is coupled with the hammer component in a configuration where movement of the trigger wire in a proximal direction relative to the body portion retracts the hammer component and compresses the spring into a loaded state between the hammer component and the support structure. The spring is configured to provide a force when released from the loaded state to propel the hammer component forward in a distal direction relative to the body portion to strike the distal tip.
In another implementation, a method of using a medical device is provided. A spring of the medical device is placed in a loaded state by retracting a trigger wire of the medical device. A distal tip of the medical device is positioned to abut an occlusion in a body lumen or to be within a distal tip movement range of the occlusion in the body lumen. The spring is released from the loaded state to propel a hammer component of the medical device in a distal direction to strike the distal tip and transfer a force from the distal tip to the occlusion.
The components in the figures are not necessarily to scale. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
a and 6b illustrate one embodiment of an actuator for a spring action medical device.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and alterations and modifications in the illustrated device, and further applications of the principles of the invention as illustrated therein are herein contemplated as would normally occur to one skilled in the art to which the invention relates.
As used herein, the term “proximal” refers to a portion of the medical device closest to a user when placing the medical device in a patient, and the term “distal” refers to a portion of the medical device closest to the end inserted into the patient's body.
The spring 104 is an elastic device that stores mechanical energy. The spring 104 may be a wire spring, a coil spring, a flat spring, or another resilient/compressive structure that may be a separate component or built into another component of the wire guide 102. In the implementation of
In the implementation of
In one implementation, the spring 104 may travel up to an inch or two very quickly. In other implementations, the spring 104 may travel more than two inches very quickly. The spring 104 may be formed to have a spring constant that provides a desired force according to Hooke's law, F=−kx, where F represents the force exerted by the spring 104 when released, k represents the spring constant, and x represents the distance that the spring 104 is compressed from a relaxed state. To increase the force provided by the spring 104, the spring 104 may be compressed to a greater degree before release or may be formed to have a larger spring constant. In some implementations, a large spring force is desired to help break apart, clear, or pass through occlusions in the vascular system. In other implementations, a smaller spring force may be desired to avoid damage to the vascular system. The amount of spring compression and the spring constant may therefore be selected or varied to meet the needs of the intended application for the wire guide 102.
The hammer component 106 provides a mass that may be propelled by the spring 104 to cause the distal-most segment 118 of the hammer component 106 to strike the distal tip 112. The hammer component may be formed of a dense metal (e.g., palladium, platinum, or the like) or another material. A radiopaque material may be used to increase the visibility of the hammer component 106 when the wire guide 102 is within the body of a patient.
The hammer component 106 may be disposed about a portion of the trigger wire 108. For example, the spring 104 may be disposed about the trigger wire 108 between the spring 104 and the distal end of the trigger wire 108. In one implementation, the hammer component 106 may be constrained to move only along the longitudinal axis of the wire guide 102.
The hammer component 106 may be formed from one or more separate components. The hammer component 106 shown in
The trigger wire 108 may be coupled with a distal-most segment 118 of the hammer component 106, which in the implementation of
The trigger wire 108 may comprise a core element, solid shaft, suture, cable, wire, or mandrel of the wire guide 102. The trigger wire 108 has a distal end and a proximal end. The distal end of the trigger wire 108 may be coupled with the hammer component 106. For example, the distal end of the trigger wire 108 may be coupled with distal-most segment 118 of the hammer component 106. The proximal end of the trigger wire 108 may be coupled with the handle 116 or may be free to exit the proximal end of the outer wire guide body 110. The handle 116 may be used to pull the trigger wire 108 in a proximal direction. Alternatively or additionally, the handle may be used to push the trigger wire 108 in a distal direction or twist the trigger wire 108. Where the handle 116 is used to twist the trigger wire 108, the wire guide 102 may include a torque transmitting feature (e.g., a polygonal cross-section or a key and keyway) between the trigger wire 108 and the outer wire guide body 110. In addition to controlling the spring 104, such manipulations may also steer the wire guide 102 along its path through the vascular system or other lumen. The handle 116 may be formed to have a low profile so that a medical device (e.g., a catheter) may pass over the handle and continue to pass over the remainder of the wire guide 102 unimpeded.
The trigger wire 108 may be formed of a suitable metallic material such as medical grade stainless steel, a stainless steel alloy, Elgiloy, Nivaflex, a super-elastic material including a nickel-titanium alloy (e.g., Nitinol), a linear-elastic material, or combinations of these materials. In other implementations, other suitable trigger wire materials may be used. The trigger wire 108 may include a radiopaque material, such as platinum or gold. Inclusion of a radiopaque material may increase the visibility of the wire guide 102 within the body of a patient. In some implementations, a radiopaque material may be included in other portions of the wire guide 102, such as in the outer wire guide body 110, the spring 104, the hammer component 106, and/or the distal tip 112.
It will be appreciated that the trigger wire 108 may take one of many different shapes. In some implementations, the trigger wire 108 has a circular cross-sectional shape. In other implementations, the trigger wire 108 has a rectangular cross-sectional shape. In yet other implementations, the cross-section of the trigger wire 108 assumes different shapes along the length of the trigger wire 108.
The flexibility of the wire guide 102 may be constant or may vary along the length of the wire guide 102. The trigger wire 108 and/or the outer wire guide body 110 may have a cross-sectional area that remains substantially constant along its length. Alternatively, the trigger wire 108 and/or the outer wire guide body 110 may have a cross-sectional area that varies along their respective lengths. In one implementation, the trigger wire 108 and/or the outer wire guide body 110 has a cross-sectional area that diminishes gradually or stepwise at an increasing distance from the proximal end of the wire guide 102 such that the trigger wire 108 and/or the outer wire guide body 110 tapers to a smaller diameter toward their respective distal ends. For example, the trigger wire 108 and/or the outer wire guide body 110 may include a tapered distal end portion. The tapered distal end portion may increase the flexibility of the distal end of the wire guide 102. The flexibility of the wire guide 102 may also be controlled by characteristics of other components of the wire guide 102, such as the spring 104 or the hammer component 106.
The outer wire guide body 110 may be disposed about at least a portion of the trigger wire 108. The outer wire guide body 110 may be a cannula, sheath, tube, helical coil, or a combination thereof. The outer wire guide body 110 may be compressible or uncompressible. In one implementation, as shown in
The outer wire guide body 110 is sized to slidably receive a portion of the trigger wire 108 such that that trigger wire 108 is longitudinally movable relative to the outer wire guide body 110. In this way, a physician may use the handle 116 to push, pull, or twist the trigger wire 108 relative to the outer wire guide body 110. For example, when the physician pulls the handle 116 proximally relative to the outer wire guide body 110, the hammer component 106 is retracted, which places the spring 104 in a compressed state between the hammer component 106 and the support structure 120 of the outer wire guide body 110. The support structure 120 may support the proximal end of the spring 104. The support structure 120 may be formed on the outer wire guide body 110. For example, the support structure 120 may be a lip or rim formed in the outer wire guide body 110.
In one implementation, the trigger wire 108 may be coated with a material to allow it to slide through the outer wire guide body 110 more easily. In another implementation, the inner surface of the outer wire guide body 110 may be coated. The coating may be a material that reduces the coefficient of friction between the trigger wire 108 and the outer wire guide body 110. For example, the coating may include a polymer, such as a fluoropolymer. In one implementation, the coating may be polytetrafluoroethylene (“PTFE”).
The distal tip 112 of the wire guide 102 may be disposed at a distal end of the outer wire guide body 110. In one implementation, the distal tip 112 is an integral portion of the outer wire guide body 110. In another implementation, the distal tip 112 is a member connected with the outer wire guide body 110. For example, the distal tip 112 may be attached to the outer wire guide body 110 by adhesive, solder, laser welding, crimping, or other attachment method. In the implementation of
The wire guide 102 may include a safety wire 114 that connects the distal tip 112 (or some other distal end portion of the outer wire guide body 110) to a portion of the outer wire guide body 110. In the implementation of
The hammer component 206 shown in
The trigger wire 208 may be coupled to a distal-most segment 218 of the hammer component 206. In other implementations, the trigger wire 208 may be coupled with another part of the hammer component 206. The trigger wire 208 may be connected with the distal-most segment 218 of the hammer component 206 by soldering, welding, crimping, or the like. The other segments of the hammer component 206 may then be slidably threaded onto the trigger wire 208. When the trigger wire 208 is pulled back in a proximal direction the distal-most segment 218 may be retracted with the trigger wire 208. The space between the coils of the spring 204 may be reduced as the distal-most segment 218 is drawn in the distal direction so as to bias the sprig 204 against the support structure 220. The individual coils may abut when the spring 204 is being compressed. When the spring 204 is released from the compressed state, the spring 204 biases (e.g., pushes/propels) the hammer component 206 and the distal-most segment 218 against the distal tip 212.
The cannula body 210 may limit some longitudinal movement of the distal tip 212 relative to the remainder of the wire guide 202 when struck by the hammer components. When the distal-most segment 218 of the hammer component 206 strikes the distal tip 212, the distal tip 212 may only move forward to the degree allowed by the cannula body 210. The cannula body 210 may constrain substantially all distal movement of the tip or may be designed to allow some distal movement. Even if the cannula body 210 constrains the distal tip 212 from moving forward when struck by the distal-most segment 218 of the hammer component 206, the distal tip 212 may still transfer force from the hammer components to an external object, such as an occlusion in a vascular passageway. For example, the distal tip 212 may be positioned to abut the external object prior to being struck by the distal-most segment 218 of the hammer component 206. The force from the hammer components may then transfer through the constrained distal tip 212 and into the external object. Where the external object is an occlusion in a vascular passageway, the transferred force may serve to break apart, clear, or pass through the occlusion.
The catheter 302 may include a passageway that allows the catheter 302 to be placed over another medical device, such as a wire guide 318. An opening 320 provides access to the passageway through the catheter 302. As shown in
The spring 304 illustrated in
The hammer component 306 provides a mass that may be propelled by the spring 304 to strike the distal tip 308. The hammer component 306 may have a similar construction/function as the hammer component 106 of
The catheter 302 may include an opening 324 that provides access to a passageway for the trigger wire 310. The trigger wire 310 may comprise a core element, suture, cable, wire, or mandrel, with a similar structure and function as the trigger wire 108 described in connection with
The trigger wire 310 may be movable relative to the outer catheter body 312. When a physician pulls the trigger wire 310 proximally relative to the outer catheter body 312, the distal-most segment 322 of the hammer component 306 is retracted which places the spring 304 in a compressed state between the hammer component 306 and a support structure 326 of the outer catheter body 312. The support structure 326 may support the proximal end of the spring 304. The support structure 326 may be formed on the outer catheter body 312. For example, the support structure 326 may be a lip or rim formed in the outer catheter body 312.
The distal tip 308 is disposed at a distal end of the catheter 302. In one implementation, the distal tip 308 comprises an atraumatic shape, such as a rounded tip or a tip of flexible material. In another implementation, the distal tip 308 may have a shape that is designed to pierce through occlusions. For example, as shown in
The catheter 302 may include an opening 328 that provides access to the balloon 314. The balloon 314 may be configured like an angioplasty balloon. The opening 328 may be used to expand the balloon 314 to make contact with the vessel wall. The balloon 314, when expanded, serves to anchor the catheter 302 in place within the vessel.
To activate the spring action component of the catheter 302, the spring 304 is released from a compressed state to provide a force to push the hammer component 306 forward in a distal direction. When the distal-most segment 322 of the hammer component 306 strikes the distal tip 308, the tip 308 may move forward in the distal direction. The catheter 302 may include the recoil spring 316 to allow the distal tip 308 to move forward without dislodging the balloon 314 from its connection with the vessel wall.
The hammer component 406 shown in
The trigger mechanism 502 is configured to hold the spring 104 (
In one implementation, the trigger mechanism 502 includes a first recess 504 located on the outer wire guide body 110 at a predetermined location near the proximal end of the device. The first recess 504 is configured to receive and engage a protuberance 506 of the trigger wire 108 so as to hold the spring 104 in its compressed state. The location of the recess 504 may be selected to achieve the desired degree of compression when the spring 104 is in the compressed or loaded state. In implementations that desire a high degree of spring compression, the recess 504 may be located relatively close to the proximal end of the wire guide 102. In implementations that desire a lesser degree of spring compression, the recess 504 may be located relatively further from the proximal end of the wire guide 102.
The trigger mechanism 502 also includes a longitudinal slot 510 located on the outer wire guide body 110, the proximal end of the longitudinal slot 510 being adjacent to the first recess 504. The longitudinal slot 510 is configured to guide the protuberance 506 toward the first recess 504 when a user pulls the trigger wire 108 in a proximal direction to compress the spring from its substantially relaxed state. In operation, a user pulls the trigger wire 108 in a proximal direction to compress the spring until the protuberance 506 reaches the first recess 504, at which time the user twists the trigger wire 108 so as to position the protuberance 506 in the first recess 504. Subsequently, when the user releases the trigger wire 108, the protuberance 506 is engaged within first recess 504 under the bias of the spring so as to hold the spring in its compressed state. As shown in
In some implementations, the trigger mechanism 502 may also include a second recess 508 located on the outer wire guide body 110 at a predetermined location adjacent to the distal end of the longitudinal slot 510 to hold the spring 104 in a substantially relaxed state when the protuberance 506 engages the second recess 508. In other implementations, the protuberance that engages with the first recess 504 may be different than the protuberance that engages with the second recess 508.
a and 6b illustrate one embodiment of an actuator for a spring action medical device. Although it may be used with any of the medical devices 102, 202, 302, and 402, the actuator will be described with reference to the wire guide 102 of
To use the actuator with the wire guide 102 (
After the carriage piece 604 moves over the peak of the ramp 606, the carriage piece 604 will fall into a valley which releases the tension on the trigger wire 108. When the tension is released, the spring 104 is allowed to extend from the compressed state to propel the hammer component 106 forward in the distal direction. As the cap 602 continues to be twisted in the counterclockwise direction, the ramps 606 will cause the spring 104 to be sequentially compressed and released. Therefore, a user may cause multiple spring firings or strikes of the hammer by applying a twisting motion to the cap 602.
The actuator may also include a mechanism to turn the cap 602. The mechanism may be any component that can store an actuation force, such as a spring, rubber band, or the like. For example, a user may twist the cap 602 in a first direction to wind up the actuator. Upon release of the cap 602, the winding mechanism may cause the cap 602 to spin in the opposite direction until coming to rest. While the cap is spinning, the carriage piece 604 rises and falls as it rides up and over the ramps 606. As the carriage piece 604 rises and falls, the spring 104 will be sequentially compressed and released resulting in multiple spring firings or strikes of the hammer.
In other implementations, the actuator may comprise a motor which may be internally or externally powered. A user may employ the motor to spin the cap 602 over the ramps 606, pull the trigger wire 108, and/or directly compress/extend the spring 104.
The actuator may be coupled with a proximal end of the wire guide 102. The first pin vise 704 may connect with a first portion of the wire guide 102, such as the outer wire guide body 110. The second pin vise 706 may connect with a second portion of the wire guide 102, such as the trigger wire 108. The oscillation generator 702 may pull and then release the trigger wire 108 which compresses and releases the spring 104. Therefore, a user may cause multiple spring firings or strikes of the hammer through the oscillation generator 702. Alternatively, the oscillation generator 702 may actuate the hammer component 106 directly without use of a spring. The oscillation generator 702 may be a SouthOrd Lat-17 lock picking gun, or the like.
At act 802, a spring of the medical device is compressed or stretched. The spring of the medical device may be compressed or stretched either before insertion of the device into the patient's vascular system or after insertion of the device into the patient's vascular system. In one implementation, a user may pull the trigger wire 108 of the wire guide 102 in a proximal direction to retract the hammer component 106 and place the spring 104 into a compressed state. The spring 104 may be compressed between the hammer component 106 and some other support structure, such as the support structure 120 formed on the inner surface of the outer wire guide body 110. In another implementation, the medical device may be configured with an extension spring. For example, a user may pull the trigger wire 108 in a proximal direction to place a relaxed spring into an extended state.
The amount of force that is provided by the spring is dependent on the amount of compression or extension in the spring. The user may control the amount of spring force created by controlling the amount of compression/extension provided to the spring. In one implementation, a small spring force may be desired. Therefore, the user may only compress/stretch the spring a relatively small amount. In other implementations, a larger spring force may be desired. Therefore, the user may compress/stretch the spring a relatively larger amount.
At act 804, the spring is held in the compressed or extended state. The user may engage the trigger wire 108 with a trigger mechanism to hold the spring in the compressed or extended state. In one implementation, the trigger mechanism includes a recess located on the outer wire guide body 110 at a predetermined location to hold the spring 104 in the compressed state when a protuberance of the trigger wire 108 engages the recess.
At act 806, the medical device is positioned within a body, such as in a patient's vascular system. The medical device may be positioned within a patient's vascular system at act 806 before and/or after the spring of the medical device is placed in the loaded state at act 802. For example, in one implementation, the user may first position the distal tip of the medical device to be near the occlusion before placing the spring in the loaded state. In another implementation, the spring may be placed in the loaded state before the distal tip is positioned to be near the occlusion.
The medical device may be positioned so that the distal tip 112 of the wire guide 102 is within a force transfer range of an occlusion in a body lumen, such as a vascular passage. The force transfer range may be the range of distances from which the distal tip may transfer a force to an occlusion in a body lumen in response to being actuated, such as being struck by a hammer component. In one implementation, a user may position the distal tip 112 of the wire guide 102 to be within a tip movement range of an occlusion in a vascular passage. The tip movement range may be the distance that the distal tip 112 travels in a distal direction when the hammer component 106 strikes the distal tip 112. In another implementation, the user may position the distal tip 112 to abut an occlusion in a vascular passage. Therefore, the distal tip 112 may transfer force to the occlusion even if the distal tip 112 is constrained from substantial movement in the distal direction, such as by the safety wire 114.
At act 808, the spring of the medical device is released from the compressed or extended state. If the triggering mechanism is used to hold the spring 104 in the extended state, the trigger wire may be released from the retracted position when the protuberance is disengaged from the recess which allows the spring 104 to push or propel the hammer component 106 forward in a distal direction. The spring may be configured to extend from the compressed state quickly. The quick movement of the spring may allow the distal tip to penetrate the occlusion. Because the distal tip may be positioned to be within the tip movement range (e.g., a force transfer range either through tip movement or direct force transfer without tip movement) of the occlusion at act 806, the distal tip may make contact with the occlusion, and/or transfer force to the occlusion, when the hammer component 106 strikes the distal tip. In some instances, the distal tip will make contact with the occlusion without passing through the occlusion. In other instances, the distal tip will pass through the occlusion.
At act 810, it is determined whether the occlusion has been sufficiently cleared. The user may determine whether a sufficiently large passage has been created by the spring action of the medical device. If the user determines that the occlusion has not been sufficiently cleared at act 810, then the spring may be recompressed/stretched at act 802 for a second attempt at clearing the occlusion. This recompression/stretching may occur while the distal tip remains within the patient. After one or more compressions/stretches and releases of the spring, the user may determine that the occlusion is sufficiently cleared. When that occurs, the user may continue feeding the medical device through the patient's vascular system to the desired destination at act 812. In some instances, the objective of the procedure may be to clear one or more occlusions. In that case, the medical device would be steered to the next occlusion and the spring action occlusion clearing process may begin again for the next occlusion.
Although the invention has been described and illustrated with reference to specific illustrative embodiments thereof, it is not intended that the invention be limited to those illustrative embodiments. For example,
The medical devices described herein may be dimensioned to fit within a vascular passage or other body lumen. The wire guide may generally have a length in the range of 30-600 cm. In some implementations, the length of the wire guide may be in the range of 90-300 cm. The wire guide may generally have an outer diameter in the range of 0.204-1.321 mm (0.008-0.052 inches). In some implementations, the outer diameter may be in the range of 0.254-2.286 mm (0.01-0.09 inches). For example, one type of wire guide may have an outer diameter of about 0.889 mm (0.035 inches). A catheter may be dimensioned to receive a wire guide. The outer diameter of a catheter may be in the range of 2-36 French (Fr.). In some implementations, the outer diameter may be in the range of 4-8 Fr. For example, one type of catheter may have an outer diameter of 5 Fr.
This application is a 35 U.S.C. §371 filing based on International Application Serial No. PCT/US2010/041382, filed Jul. 8, 2010, which claims the benefit of U.S. Provisional Application No. 61/224,232, filed Jul. 9, 2009, both of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/041382 | 7/8/2010 | WO | 00 | 3/8/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/005971 | 1/13/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2617651 | Gerhold | Nov 1952 | A |
2639709 | Volgenau | May 1953 | A |
3552384 | Pierie et al. | Jan 1971 | A |
4215703 | Willson | Aug 1980 | A |
4307722 | Evans | Dec 1981 | A |
4456017 | Miles | Jun 1984 | A |
4549535 | Wing | Oct 1985 | A |
4561439 | Bishop et al. | Dec 1985 | A |
4676249 | Arenas et al. | Jun 1987 | A |
4757827 | Buchbinder et al. | Jul 1988 | A |
5172701 | Leigh | Dec 1992 | A |
5250034 | Appling et al. | Oct 1993 | A |
5363736 | Huang | Nov 1994 | A |
5476502 | Rubin | Dec 1995 | A |
5505261 | Huber et al. | Apr 1996 | A |
5573010 | Pflugbeil | Nov 1996 | A |
5743900 | Hara | Apr 1998 | A |
5776079 | Cope et al. | Jul 1998 | A |
5891086 | Weston | Apr 1999 | A |
5906623 | Peterson | May 1999 | A |
5957886 | Weston | Sep 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
6146339 | Biagtan et al. | Nov 2000 | A |
6183420 | Douk et al. | Feb 2001 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6371939 | Bergens et al. | Apr 2002 | B2 |
6685696 | Fleischhacker et al. | Feb 2004 | B2 |
7470237 | Beckman et al. | Dec 2008 | B2 |
8114119 | Spivey et al. | Feb 2012 | B2 |
20010039394 | Weston | Nov 2001 | A1 |
20030163064 | Vrba et al. | Aug 2003 | A1 |
20030208885 | Zaltron | Nov 2003 | A1 |
20040035491 | Castellano | Feb 2004 | A1 |
20040254526 | Weston | Dec 2004 | A1 |
20040254599 | Lipoma et al. | Dec 2004 | A1 |
20040260201 | Mueller, Jr. | Dec 2004 | A1 |
20040267307 | Bagaoisan et al. | Dec 2004 | A1 |
20050096586 | Trautman et al. | May 2005 | A1 |
20050113862 | Besselink et al. | May 2005 | A1 |
20050192530 | Castellano | Sep 2005 | A1 |
20050277980 | Yassinzadeh | Dec 2005 | A1 |
20060293612 | Jenson et al. | Dec 2006 | A1 |
20070066935 | Morishita et al. | Mar 2007 | A1 |
20070088377 | LeVaughn et al. | Apr 2007 | A1 |
20070203427 | Vetter et al. | Aug 2007 | A1 |
20070208273 | Vetter et al. | Sep 2007 | A1 |
20070219565 | Saadat | Sep 2007 | A1 |
20080077165 | Murphy | Mar 2008 | A1 |
20090082851 | Brumleve et al. | Mar 2009 | A1 |
20110245736 | Foehrenbach | Oct 2011 | A1 |
20120065615 | Boyd et al. | Mar 2012 | A1 |
20130226098 | Tokumoto et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
40 36 570 | May 1992 | DE |
41 30 042 | Mar 1993 | DE |
2 645 009 | Oct 1990 | FR |
Number | Date | Country | |
---|---|---|---|
20120165850 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61224232 | Jul 2009 | US |