The invention relates to a spring-action suction head on a separating device for sheets, in particular for lifting sheets from a sheet stack of a sheet processing machine, e.g. a printing press.
It is necessary here for a suction head which can be acted on pneumatically to attract the sheet by suction in a lower position, for it to lift the sheet to a higher level and remain in the upper position for a short time after letting go of the sheet, until the suction head is again lowered onto the sheet stack to lift a subsequent sheet.
German Patent DE 1 929 714 C discloses a mechanical gear mechanism that holds the spring-action suction head in a raised position and lowers it initially quickly and, in the lower region, slowly, in order to pick up the subsequent sheet. Mechanical gear mechanisms are very expensive, however, and require a large amount of installation space.
German Patent DE 932 495 discloses a spring-action suction head that is equipped with a pneumatic configuration for holding the spring-action suction head in a raised position. In the case of the spring-action suction head according to DE 932 495, it is, however, not possible to control the lowering speed of the spring-action suction head.
It is accordingly an object of the invention to provide a spring-action suction head that overcomes the above-mentioned disadvantages of the prior art devices of this general type, which makes it possible to hold the spring-action suction head pneumatically in a raised position, the intention being also to make retarded lowering of the spring-action suction head in order to pick up a subsequent sheet possible.
With the foregoing and other objects in view there is provided, in accordance with the invention, a spring-action suction head. The suction head contains a first suction chamber having a volume for lifting the spring-action suction head and the volume being varied by applying a vacuum, and a second suction chamber coaxially surrounding the first suction chamber for holding the spring-action suction head and for reducing a lowering speed of the spring-action suction head.
It is an advantage of the invention that the device according to the invention requires only a small amount of installation space and that the retarded lowering and gentle contact between the spring-action suction head and the sheets which are to be separated prevent double or multiple sheets from being attracted by suction. This measure ensures a continuous sheet feed free of disturbances.
In accordance with an added feature of the invention, a controlled vacuum supply fluidically communicates with the second suction chamber.
In accordance with another feature of the invention, an adjustable cross-flow channel is provided and the second suction chamber is operatively connected to the adjustable cross-flow channel. Preferably, the adjustable cross-flow channel has an adjustable length.
In accordance with an additional feature of the invention, a lifting cylinder delimits both the first suction chamber and the second suction chamber. Preferably, the lifting cylinder has at least one non-return valve. The non-return valve is disposed in a through opening between the second suction chamber and atmosphere.
In accordance with a further feature of the invention, dedicated rotary valves are provided and include a first rotary valve connected to the first suction chamber and a second rotary valve connected to the second suction chamber.
In accordance with a further added feature of the invention, an adjustable restrictor is provided and the second rotary valve is connected to the atmosphere through the adjustable restrictor. It is thus possible to ventilate the second suction chamber through the adjustable restrictor.
In accordance with another additional feature of the invention, the adjustable cross-flow channel has a bore that is disposed axially parallel to the lifting cylinder. The second suction chamber has at least one opening connecting the second suction chamber to the bore of the cross-flow channel. A closing element is disposed in the bore of the adjustable cross-flow channel, the bore has an operable length being adjusted by a position of the closing element in the bore. Optionally, the opening in the second suction chamber is one of a plurality of openings connecting the second suction chamber to the bore. The positioning of the closing element determines the number of the openings available for fluidically communicating between the second suction chamber and the bore.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a spring-action suction head, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
The sheet stack 8 lies on a stack plate 10 which can be raised under control. The removal of the sheets 7 takes place from the top of the sheet stack 8 by a suction head 18, as it is known, which inter alia has a number of lifting and dragging suction heads 19, 21 to separate the sheets 7. Furthermore, blowing devices 22 for loosening the top sheet layers and sensing elements 23 for tracking the stack are provided. In order to align the sheet stack 8, in particular the top sheets 7 of the sheet stack 8, a number of side and rear stops are provided.
The lifting suction heads 19 are configured as spring-action suction heads, as they are known, i.e. the volume of a first suction chamber 26 is changed when the first suction chamber 26 is subjected to vacuum and at the same time a suction nozzle 27 is covered by the sheet 7 to be separated, the change in volume causing the suction nozzle 27 and thus the sheet 7 to be raised (
An adjustable closing element 39 is disposed in a bore 38 that is axially parallel to both the first suction chamber 26 and the second suction chamber 33. The bore 38 is connected to the second suction chamber 33 by a number of openings 41 disposed in the axial direction, or by a longitudinal slot. It is possible to set the length of the bore or cross-flow channel 38 by adjusting the closing element 39.
Via a first rotary valve 42, it is possible to connect the first suction chamber 26, in a controlled manner, to a vacuum source 43 or to atmosphere. Via a second rotary valve 44, it is possible to connect the second suction chamber 33, in a controlled manner, to the vacuum source 43 or to atmosphere, an adjustable restrictor 46 being connected between the rotary valve 44 and atmosphere.
It is of course also possible to implement the ventilation of the second suction chamber 33 by earlier activation of the second rotary valve 44 with vacuum.
Number | Date | Country | Kind |
---|---|---|---|
102 49 730 | Oct 2002 | DE | national |
103 40 172 | Sep 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3695606 | Wirz | Oct 1972 | A |
3973682 | Neff | Aug 1976 | A |
4266905 | Birk et al. | May 1981 | A |
4399990 | Jiruse | Aug 1983 | A |
4736938 | Jiruse et al. | Apr 1988 | A |
4759537 | Illig et al. | Jul 1988 | A |
4869489 | Wirz et al. | Sep 1989 | A |
5447300 | Junger | Sep 1995 | A |
6244640 | Le Bricquer et al. | Jun 2001 | B1 |
Number | Date | Country |
---|---|---|
932 495 | Sep 1955 | DE |
1 782 267 | Feb 1959 | DE |
1 929 714 | May 1974 | DE |
62-249834 | Oct 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20040084834 A1 | May 2004 | US |