The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference is now made in detail to the exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like parts.
In the embodiment depicted in
One end of shaft 221 is connected to spring 221. The other end of shaft 221 is connected to plunger 230. Shaft 221 is also engaged by lock mechanism 224. Lock mechanism 224 has a lock mechanism release 227. Lock mechanism release 227 is in the form of a button or switch located on housing 265. Plunger 230 is located in cannula 239. Plunger 230 is fluidly sealed to an interior surface of cannula 239. A substance to be injected into an eye is also located in cannula 239. Dispensing tip 236 is located on the distal end of cannula 239. Dispensing tip 236 and cannula 239 are one continuous structure for conveying substance 233. Dispensing tip 236 has an opening to allow substance 233 to be delivered into an eye. Collectively dispensing tip 236 and cannula 239 form a dispensing member.
Optional heating mechanism 242, 245 is located on either side of cannula 242. Alternatively, heating mechanism 242, 245 may surround cannula 239. Housing 265 encloses the parts as shown in
In operation, the spring actuated delivery device 200 of
Controller 206 may also control whether lock mechanism release 227 can be activated. In this embodiment, controller 227 activates heat mechanism 242, 245 to heat substance 233 to a predetermined temperature. This predetermined temperature is a desired temperature for administration of substance 233 into an eye. For example, substance 233 may be in a solid, semi-solid, or viscous state at room temperature. Heat can be applied to substance 233 to decrease its viscosity so that it can be delivered through dispensing tip 236. Additionally, heat may be applied to substance 233 to raise it to a temperature at which it may be more effective when delivered into the eye.
In one embodiment, controller 206 heats substance 233 for a predetermined period of time. Since substance 233 is pre-loaded into spring actuated delivery system 200, the quantity of substance 233 is known as are the heat transfer characteristics of cannula 239. Therefore, heat from heat mechanism 242, 245 can be applied for a predetermined period of time to bring substance 233 up to the desired temperature.
In another embodiment, controller 206 receives an input that corresponds to the temperature of substance 233. In this configuration, a thermocouple, temperature senor, or other similar device measures the temperature of substance 233 or cannula 239. The measurement is sent to the controller 206.
Heating mechanism 242, 245 is optional. In some cases, it is not necessary to heat substance 233. In such a case, none of the heating steps occurs. In addition, the controller 206 may be absent in such a configuration as it is not necessary to have a controller to operate the heating mechanism 242, 245.
Dispensing tip 236 is inserted into the eye, typically through the pars plana region. Dispensing tip 236 is usually a needle, such as those used for drug delivery. Dispensing tip 236 typically has a trocar on its end to assist in the insertion of dispensing tip 236 into the eye.
After dispensing tip 236 is inserted into the eye, lock mechanism release 227 is activated. Lock mechanism release 227 may be in the form of a button or switch. When lock mechanism release 227 is activated, lock mechanism 224 releases shaft 221.
Before lock mechanism release 227 is activated, lock mechanism 224 holds shaft 221 in a first position such that spring 218 is in a compressed state. Since shaft 221 is connected to spring 218, in this position, the spring is ready to expand when lock mechanism 224 releases shaft 221.
When lock mechanism 224 releases shaft 221, spring 218 expands applying a force on shaft 221. Shaft 221 travels in a direction toward dispensing tip 236. Since shaft 221 is connected to plunger 230, the spring force provided by spring 218 pushes plunger toward dispensing tip 236. Plunger 230 contacts substance 233 and pushes it out of dispensing tip 236.
This is more clearly shown in
In
Other types of stops for plunger 230 may also be employed. In other embodiments consistent with the principles of the present invention, a groove or ridge may be present on the interior surface of dispensing tip 236 or cannula 239. A corresponding ridge or groove may be present on plunger 230 or shaft 221. Alternatively, lock mechanism 224 may be re-engaged to hold shaft 221 and plunger 230 in a particular position.
The use of spring 218 assists in delivering the substance 233 into the eye in a smooth and steady manner. The flow rate of the substance 233 can be controlled by selecting a spring 218 with an appropriate spring constant. A faster flow rate can be achieved by selecting a spring with a larger spring constant. A slower flow rate can be achieved by selecting a spring with a smaller spring constant. The spring constant also depends on the amount of substance to be expelled from the dispensing tip, the viscosity of the substance, and the size of the dispensing tip and cannula.
Plunger 230 rests in cannula 239 adjacent to substance 233. Plunger 230 is typically made of an elastomeric material so that it can be fluidly sealed to an interior surface of cannula 239. Shaft 221 is connected to plunger 230. Shaft 221 is typically made of a rigid polymer but may also be made of any other rigid material. In addition shaft 221 may have one or more linkages (not shown).
Lock mechanism 224 has two grips 405, 410 that hold shaft 221 in place. These two grips 405, 410 can be made of any suitable material that provides the necessary gripping capacity to hold shaft 221 in place. When actuated, lock mechanism release 227 releases grips 405, 410 and allows shaft 221 to be moved by the spring force.
Controller 206 includes a logic circuit 505. Logic circuit 505 receives an input from switch 212 via interface 215. Logic circuit 505 controls the operation of the heating mechanism. Typically, logic circuit 505 is a simple integrated circuit.
In 650, the lock mechanism release is enabled. As previously discussed, the heating mechanism may run for a preset period of time before the lock mechanism is enabled or the system may have some form-of temperature sensing capabilities. Once the lock mechanism is enabled, the medical professional or surgeon can actuate the lock release mechanism to release the shaft.
In 660, the shaft held in place by the lock mechanism is released thereby allowing the compressed spring to extend and push the plunger located in the cannula. As the plunger moves, it expels the substance from the dispensing tip.
In 670, the plunger is retained in an extended position by the application of a force supplied by the spring. In this position, the plunger is engaged with the tapered end of the dispensing member.
The spring loaded delivery system 200 is appropriate as a single use consumable product. Such a disposable product can be assembled at a factory with a dosage of a substance installed. In this manner, the system allows for precise dosing. A precise volume of a substance can be preloaded into the delivery device. This helps to prevent dosing error on the part of the medical professional.
Additionally, proper storage and handling of the substance can be more easily assured. Since the substance is loaded into the system at the factory, the substance can be stored under precise conditions. Shipment of a preloaded system can also be under precise conditions.
From the above, it may be appreciated that the present invention provides an improved system and methods for delivering precise volumes of a substance into an eye. The present invention provides a single use, disposable delivery device that is capable of delivering a precise dosage without reflux. The present invention is illustrated herein by example, and various modifications may be made by a person of ordinary skill in the art.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.