Spring-actuated electrical connector for high-power applications

Information

  • Patent Grant
  • 11223150
  • Patent Number
    11,223,150
  • Date Filed
    Monday, June 22, 2020
    4 years ago
  • Date Issued
    Tuesday, January 11, 2022
    2 years ago
Abstract
The present invention provides an electrical connector assembly for use in a high-power application, such as with motor vehicle electronics, that exposes the connector assembly to elevated temperatures and thermal cycling. The connector assembly includes a first electrically conductive connector formed from a first material, an internal spring member formed from a second material residing within the first connector, and a second electrically conductive connector with a receptacle dimensioned to receive both the first connector and the spring member to define a connected position, wherein the connector assembly withstands the elevated temperatures and thermal cycling resulting from the high-power application. To maintain the first and second connectors in the connected position, the spring arm of the spring member exerts an outwardly directed force on the contact beam of the first connector to outwardly displace the contact beam into engagement with an inner surface of the receptacle of the second connector.
Description
FIELD OF INVENTION

This invention relates to the classification of electrical connectors, and to one or more sub-classifications under spring actuated or resilient securing part. Specifically, this invention is a push-in electrical connector secured by an interior spring mechanism.


BACKGROUND OF INVENTION

Over the past several decades, the amount of electronics in automobiles, and other on-road and off-road vehicles such as pick-up trucks, commercial trucks, semi-trucks, motorcycles, all-terrain vehicles, and sports utility vehicles (collectively “motor vehicles”). Electronics are used to improve performance, control emissions, and provide creature comforts to the occupants and users of the motor vehicles. Motor vehicles are a challenging electrical environments due to vibration, heat, and longevity. Heat, vibration, and aging can all lead to connector failure. In fact, loose connectors, both in the assembly plant and in the field, are one of the largest failure modes for motor vehicles. Considering that just the aggregate annual accrual for warranty by all of the automotive manufacturers and their direct suppliers is estimated at between $50 billion and $150 billion, worldwide, a large failure mode in automotive is associated with a large dollar amount.


Considerable time, money, and energy has been expended to find connector solutions that meet all of the needs of the motor vehicles market. The current common practice is to use an eyelet and threaded fastener on all high-power connections. The current common practice is expensive, time-consuming, and still prone to failure.


A more appropriate, robust connector solution must be impervious to vibration and heat. In order to create a robust solution, many companies have designed variations of spring-loaded connectors, which have a feature that retains the connector in place. Such spring-actuated connectors typically have some indication to show that they are fully inserted. Sometimes, the spring-actuated feature on the connector is made from plastic. Other times, the spring-actuated feature on the connector is fabricated from spring steel. Unfortunately, although the current state of the art is an improvement over connectors using an eyelet and threaded connector, there are still far too many failures.


Part of the reason that spring-actuated connectors still fail in motor vehicle applications is because the spring element is on the periphery of the connector. By placing the spring tab on the exterior surface of the connector, connector manufacturers tried to make engagement obvious to the person assembling the part. Unfortunately, for both plastic and metal, the increased temperatures of an automotive environment make a peripheral spring prone to failure. The engine compartment of the motor vehicle can often reach temperatures approaching 100° C., with individual components of a motor vehicle engine reaching or exceeding 180° C. At 100° C., most plastics start to plasticize, reducing the retention force of the peripheral spring-actuated feature. At 100° C., the thermal expansion of the spring steel will reduce the retention force of a peripheral spring-actuated connector by a small amount. More important, with respect to spring-actuated features fabricated from spring steel is the effect of residual material memory inherent in the spring steel as the spring steel is thermally cycled. After many temperature cycles, the spring steel will begin to return to its original shape, reducing its retention force and making is susceptible to vibration. The motor vehicle market needs a connector that is low-cost, vibration-resistant, temperature-resistant, and robust.


Prior Art Review

There is clearly a market demand for a mechanically simple, lightweight, inexpensive, vibration-resistant, temperature-resistant, and robust electrical connector. The problem is that all of these design criteria can be conflicting in current prior art. Some of the prior art has attempted to solve the problem using a peripheral spring-actuated retention feature. For example, U.S. Pat. No. 8,998,655, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '655”) teaches an electrical terminal in which the contact element is a substantially polyhedron structure, with contact beams. A spring structure, external to the contact beams, exerts force on the contact beams. This arrangement is designed to force positive connection of the contact beams with a substantially round or square terminal pin. U.S. Pat. No. 8,992,270, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '270”) teaches a variation on the Glick '655 patent.


U.S. Pat. No. 8,475,220, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '220”) teaches an electrical connector formed to have at least one pairs of opposing contact legs extending from a body portion, in which each leg extends to a contact point at which it touches the inner surface of the opposing leg contact. A spring clip can be positioned over one or more of the opposing legs to increase a compressive force. The spring clip may include an alignment feature to limit the clip from rotating and/or pitching. Glick '220 is designed to retain a largely flat or planar terminal element. U.S. Pat. No. 8,366,497, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '497”) teaches a variation of Glick '220. All of the Glick patents have the same issue: repeated thermal cycling relaxes the spring steel, reducing the overall retention force. The reduction in the spring-actuated retention force makes the connector more susceptible to wiggling loose due to vibration. Intermittent connections are also a common failure mode. A solution is needed that improves upon the concept of the spring-actuated terminal connector.


Summary of the Invention

This summary is intended to disclose the present invention, a high-power, spring-actuated electrical connector device. The embodiments and descriptions are used to illustrate the invention and its utility, and are not intended to limit the invention or its use.


The present invention has a male terminal and a female connector. The female connector fits inside the male terminal, when making an electrical connection. The present invention relates to using a spring-actuator inside the female connector to force contact beams into electrical contact with the male terminal. The present invention's contribution to the art is that the male terminal element is a metallic tubular member inside which fits the female connector. The female connector has a contact element, with a plurality of contact beams. A spring actuator is nested inside the contact element. The spring actuator applies force on the contact beams, creating a positive connection and retention force.


Unlike the prior art, material memory and thermal expansion will increase, not decrease, the retention force and electrical contact of the present invention.


The male terminal has a metallic tubular member which has an inner surface, an outer surface, and a defined cross-sectional profile. The metallic tubular member is fabricated from a sheet of highly conductive copper. The highly conductive copper can be C151 or C110. One side of the sheet of highly conductive copper can be pre-plated with silver, tin, or top tin, such that the inner surface of the metallic tubular member is plated.


The female connector has a contact element and a spring actuator. The contact element has a plurality of contact beams. In the preferred embodiments, at least four contact beams are needed, so that force is exerted on the inner surface of the metallic tubular member is symmetrical. Four beams can be placed at 90° increments, meaning that each beam has one beam directly opposing it within the metallic tubular member; and two beams orthogonal to each member within the metallic tubular member. Each contact beam has a thickness, a bent-termination end, and a planar surface with a length and a width. The contact beam is connected to a contact base at the distal end from the bent-termination. In the illustrated embodiments, the contact element has an even number of beams, which are symmetrical and are evenly spaced. The contact element base cross-section can be round, square, triangular, or polygonal. The illustrated embodiments show contact elements with square and hexagonal cross-sectional profiles. The illustrated embodiments show contact elements with four and six beams.


A spring actuator is nested inside the contact element. The spring actuator has spring arms and a base. The spring arms are connected to the base at one end. The spring arms have a bent-termination end, a thickness, and a planar surface with a length and width. In the illustrated embodiments, the spring actuator has the same number of spring arms as the contact element has contact beams. In the illustrated embodiment, the spring arms can be mapped, one-to-one, with the contact beams. The spring arms are dimensioned so that the bent-termination end of the associated contact beam contacts the planar surface of the spring arm. The spring arms of the illustrated embodiments are even in number, symmetrical, and evenly spaced.


The contact element fits inside the metallic tubular member such that the contact beams contact the inner surface of the metallic tubular member. The spring arms force the contact beams into electrical connection with the metallic tubular member. The bent-termination end of the contact arm meets the planar surface of the spring arm, forcing the contact beam to form a large obtuse angle with respect to the contact element base.


In the illustrated embodiments of the present invention, although not required, the metallic tubular member has a symmetrical cross-section. The most important design criteria is that the compliance (inverse of stiffness) exerted on each beam, forcing each beam into contact with the inner surface of the metallic tubular member, be balance by the compliance of all of the other contact beam and spring-arm pairs such that the female connector is kept centered within the metallic tubular member by the force exerted by the beam/spring arm pairs.


The male terminal and female connector are both surrounded by a non-conductive shroud. For the male terminal, only the inner surface of the metallic tubular member is exposed. For the female connector, only the contact beams are exposed.


The male terminal can be connected to a busbar or other circuit. For example, in an alternator application, the metallic tubular member can be integral with the alternator busbar. The non-conductive plastic shroud would wrap the exterior of the metallic tubular member leaving the inner surface and the busbar exposed. Typically, in such an application, the busbar of the alternator is going to be interior to the alternator housing.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated with 44 drawings on 12 sheets.



FIG. 1 is an isometric view of a male terminal showing the non-conductive plastic shroud and metallic tubular member.



FIG. 2 is a top view of a male terminal.



FIG. 3 is an isometric view of the female connector without a plastic shroud.



FIG. 4 is an isometric view of the female connector, rotated approximately 90° from FIG. 3.



FIG. 5 is an exploded isometric of the female connector.



FIG. 6 is a lateral cut-away view of the female connector.



FIG. 7 is a lateral view of the female connector.



FIG. 8 is an end view of the female connector.



FIG. 9 is an isometric view of an alternative embodiment of the female connector without a plastic shroud.



FIG. 10 is an isometric view of an alternative embodiment of the female connector, rotated approximately 90° from FIG. 9.



FIG. 11 is an exploded isometric of an alternative embodiment of the female connector.



FIG. 12 is a lateral cut-away view of an alternative embodiment of the female connector.



FIG. 13 is a lateral view of an alternative embodiment of the female connector.



FIG. 14 is an end view of an alternative embodiment of the female connector.



FIG. 15 is an isometric view of an alternative embodiment of the female connector.



FIG. 16 is an isometric view of an alternative embodiment of the second connector.



FIG. 17 is a top view of the alternative embodiment of the second connector and insulating shroud of FIG. 16.



FIG. 18 is an isometric view of an alternative embodiment of the female connector.



FIG. 19 is an isometric view of an alternative embodiment of the insulating shroud used with the female connector.



FIG. 20 is a top view of an alternative embodiment of the insulating shroud.



FIG. 21 is an end view of the female connector with an envelope of the non-conductive plastic shroud drawn as a dotted line.



FIG. 22 is an isolated lateral view of the spring actuator of the female connector.



FIG. 23 is a reverse end view of the female connector.



FIG. 24 is a reverse end view of the female connector, with the insulating shroud in situ.



FIG. 25 is an isometric view of an alternative embodiment of the female connector.



FIG. 26 is an isometric view of an alternative embodiment of the female connector.



FIG. 27 is a rotated isometric view of FIG. 25.



FIG. 28 is a rotated isometric view of FIG. 26.



FIG. 29 is a cut-away lateral view of an alternative embodiment of the female connector.



FIG. 30 is a cut-away lateral view of an alternative embodiment of the female connector.



FIG. 31 is a lateral exploded view of the contact element and spring actuator.



FIG. 32 is an exploded view of the female connector with an alternator connector and cap.



FIG. 33 is an isometric view of a male terminal for an alternator.



FIG. 34 is an isometric view of the plastic shroud of a male terminal for an alternator.



FIG. 35 is an isometric view of the male terminal.



FIG. 36 is an isometric view of the metallic tubular member.



FIG. 37 is a side view of the male terminal.



FIG. 38 is an end view of the male connector.



FIG. 39 is an isometric view of the male terminal metallic tubular member with an integral straight busbar.



FIG. 40 is an isometric view of the male terminal metallic tubular member with an alternative embodiment and orientation of the integral busbar.



FIG. 41 is an isometric view of the female connector implemented on an alternator connector.



FIG. 42 is an alternative isometric view of the female connector implemented on an alternator connector.



FIG. 43 is an isometric view of the present invention implemented on an alternator connector, with the alternator.



FIG. 44 is an isometric view of the present invention implemented on an alternator connector, in situ on an alternator.





DETAILED DESCRIPTION OF THE DRAWINGS

The following descriptions are not meant to limit the invention, but rather to add to the summary of invention, and illustrate the present invention, by offering and illustrating various embodiments of the present invention, a high-power, spring-actuated electrical connector. While embodiments of the invention are illustrated and described, the embodiments herein do not represent all possible forms of the invention. Rather, the descriptions, illustrations, and embodiments are intended to teach and inform without limiting the scope of the invention.



FIGS. 3-4 show the female connector 20 of the present invention, a high-power, spring-actuated electrical connector. The female connector 20 includes a contact element 10 having a contact element 10 base 18, 19 having six sides 18 and six bent segments 19. The cross-section of the contact element 10 base is substantially hexagonal 18, 19. The contact element 10 has six contact beams 11. Each contact beam 11 has a substantially planar surface 12 terminating in a bent-termination portion 13. The end of the contact beam 11 distal from the bent-termination portion 13 is connected to the base 18. The thickness 14 and width of the planar surface 12 dictate the current carrying load of each contact beam 11. In use, the contact beams 11 form a large obtuse angle with the base 18, 19.


The contact element 10 is an integral piece. The contact element 10 is made out of conductive metal, such as copper alloys C151 or C110. It is formed, bent, and folded into the correct shape. The contact element 10 has two planar spade elements 16, 17. The planar spade elements 16, 17 have a thickness 16, 17. The planar spade elements 16, 17 have a planar surface 15, 105. The planar spade elements 16 transitions 106 from the hexagonal base 18, 19. The transition 106 has a thickness 107.



FIG. 5 further illustrates the female connector 20 by showing the spring actuator 30 that is inside the contact element 10. Still visible in the contact element 10 are the contact beams 11, the hexagonal base 18, 19, and the planar spade elements 16, 17. The planar surface 15, 105 and transition thickness 107 are also visible. The spring actuator 30 has a plurality of spring arms 31. The spring arms 31 have a substantially planar surface 32, a thickness 34, and a bent-termination portion 33, 333. The spring actuator 30 base is substantially hexagonal with six flat sides 38 and six bent portions 39. The spring actuator 30 is fabricated from spring steel. The spring arms 31 of the spring actuator 30 form a large obtuse angle with the spring actuator 30 base 38, 39.


The spring actuator 30 fits inside the contact element 10. The spring actuator 30 spring arms 31 contact the inside planar surface 122 of the contact element 10 contact beams 11. The inside planar surface 122 of the contact beams 11 is obverse to the outside planar surface 12 of the contact beams 11. The bent-termination portion 13 of the contact element 10 allows the female connector 20 to be compressed as it is inserted into a connector block. The spring actuator 30 spring arms 31 will provide a consistent retention force against the inside surface 122 of the contact element 10 contact beams 11. In practice, it is advisable to use a minimum of four (4) contact beams 11 in any embodiment.



FIGS. 6-7 show a lateral cutaway (FIG. 6) and a lateral view (FIG. 7). The relation of the planar spade elements 16, 17 to the contact beams 11 and bent-termination portion 13 is illustrated and evident. The spring actuator 30 spring arm 31 flat planar surface 32 and flat side 38 are shown in the cutaway. The relation of the six sides 18 of the hexagonal base 18, 19 to the planar surface 12 of the contact beams 11 is shown.



FIG. 8 shows an end-view of the spring actuator 30 inside the contact element 10. The bent-termination portion 333, 33 of the spring actuator 30 push the bent-termination portion 13 of the contact element 10 outward.



FIGS. 9-10 show an alternative embodiment of the present invention a high-power, spring-actuated electrical connector. The female connector 70 includes a contact element having a contact element 60 base having six sides 68 and bent portions 69. The contact element 60 base is substantially hexagonal 68, 69, 168. The contact element 60 has a six contact beams 61. Each contact beam 61 has a substantially planar surface 62 terminating in a bent-termination portion 63. The thickness 64 and surface area of the planar surface 62 dictate the current carrying load of each contact beam 61. The contact beams 61 form a large obtuse angle with the base 68, 69, 168. In this embodiment, the contact beams 61 have been reversed relative to the spade elements 66, 67. In this embodiment, there is flat portion 68 of the base that connects to the contact beams 61 and an additional flat portion 168 of the base near the bent-termination portion 63. The bent-termination portion 63 extends past the additional flat portion 168.


The contact element 60 is an integral piece. The contact element 60 is made out of conductive metal, such as copper alloys C151 or C110. It is formed, bend, and folded into the correct shape. The contact element 10 has two planar spade elements 66, 67. The planar spade elements 66, 67 have a thickness 616, 67. The planar spade elements 66, 67 have a planar surface 65, 155. The planar spade elements 66 transitions 156 from the hexagonal base 68, 69, 168. The transition 156 has a thickness 171.



FIG. 11 further illustrates the female connector 70 of the present invention by showing the spring actuator 80 that is inside the contact element 60. Still visible in the contact element 60 are the contact beams 61, the hexagonal base 168, and the planar spade elements 65, 66, 67, 155. The gap 200 caused by forming the contact element 60 out of a single piece of copper is also visible in this orientation. The spring actuator 80 has a plurality of spring arms 81. The spring arms 81 have a substantially planar surface 82 and a bent-termination portion 83. The spring actuator 80 base is substantially hexagonal with six flat sides 88 and five bent portions 89. The spring actuator 80 is fabricated from spring steel. The spring arms 81 of the spring actuator 80 form a large obtuse angle with the spring actuator 80 base 88, 89.


The spring actuator 80 fits inside the contact element 60. The spring actuator 80 spring arms 81 contact the inside planar surface 222 of the contact element 60 contact beams 61. The bent-termination portion 63 of the contact element 60 allows the female connector 70 to be compressed as it is inserted into a connector block. The spring actuator 80 spring arms 81 will provide a consistent retention force against the inside surface 222 of the contact element 60 contact beams 61.



FIGS. 12-13 show a lateral cutaway (FIG. 8) and a lateral view (FIG. 9). The relation of the planar spade elements 66, 67 to the contact beams 61 is illustrated. The spring actuator 80 spring arms 81 and bent-termination 83 are shown in the cutaway. The relation of the six sides 68 of the hexagonal base 68, 69, 168 to the planar surface 62 of the contact beams 61 is shown. The female connector 70 has, generally, a length 76 and a width 71. A ratio of length 76 to width 71 is the aspect ratio of the female connector 70.



FIG. 14 shows an end-view of the spring actuator 80 inside the contact element 60. The bottom bent-termination 242 of the spring actuator 80 is visible.



FIGS. 1-2 show the male terminal portion 1 of the present invention. The male terminal portion 1 of the present invention consists of a cylindrical plastic shroud 5; and a cylindrical stamped metallic terminal (“male terminal”) 6, 7, 8, 9, 102, 103, 104. The plastic shroud 5 is a cylinder with an outer surface 2, an inner surface 8, an upper edge 3 and a taper 4 connecting the inner cylindrical surface 8 and the upper edge 3. The plastic shroud 5 is made from high-temperature polymers, such as high-temperature polyamide (e.g., nylon 66). The male terminal has an outer cylindrical surface 104, an inner cylindrical surface 9, an upper edge 6, a taper 7 connecting the upper edge 6 and the inner cylindrical surface 9, and two fillets 102, 103.


The female connector 20, 70 fits inside the male terminal portion 1. At elevated temperatures, the contact element 10, 60, and the spring actuator 30, 80, will tend to expand outwards due to metal memory and thermal expansion. This will increase the outward directed spring force exerted by the spring arms 31, 81 on the contact beams 11, 61. In turn, this will increase the contact force between the contact beams 11, 61 and the inner cylindrical surface 9 of the male terminal portion 1. As a result, the increased temperatures present in a motor vehicle engine compartment will increase, rather than decrease, the contact force of the connector.



FIGS. 21-24 illustrate the interaction of the female connector 70 and the male terminal 1. The inner diameter 90 of the inner cylindrical surface 9 of the male terminal 1 contacts the contact element 60. The spring actuator 80 exerts outward force on the contact element 60 pushing the contact beams 61 of the contact element into the connector. The bent-termination portion 63 of the contact beams 61 are the part that contact the inner diameter 90. The upper edge 6 and taper 7, and fillets are oriented nearer the bent-termination portion 63 of the beams 61, in this embodiment.



FIG. 15 shows another alternative embodiment of the first female connector 320 of the present invention, a high-power, spring-actuated electrical connector. The female connector 320 includes a contact element 310 base 350 having four sides 318 and four bent portions 319. The cross-section of the contact element 310 is substantially a square or rounded square with rectangular planar surfaces: the four side walls 318, the four rounded portions 319 extending between adjacent side walls 318, and the base 350. The contact element 310 has four contact beams 311. Each contact beam 311 has a substantially planar surface 312 terminating in a bent-termination portion 313. The contact beams 311 form extend at an angle to the base 350 and the side walls 318, and, as a result, the rounded termination end 313 is external to the side wall 318.


The contact element 310 is an integral piece. The contact element 310 is fabricated from a conductive metal, such as copper alloys C151 or C110. It is formed, bent, pressed, and/or folded into the correct shape. The contact element 310 has two planar spade elements 316, 317. The planar spade elements 316, 317 have a planar surface 315. The planar spade elements 316, 317 transition from the base 350 and have a thickness 357. A spring actuator 330, 530, 630 as shown in FIG. 15, is interior to the contact element 310 within an internal receiver formed by the side walls 318 of the contact element 310, that extends from an open first end to a second, closed end at the base 350 of the first connector 320.



FIGS. 16-17 show an alternative embodiment of the male terminal/connector 360 that mates with the first connector 320, shown in FIGS. 15 and 25-31, with a square cross-sectional base. In these drawings, the plastic shroud of the male terminal (or second connector 360) is omitted for clarity. The male terminal 360 has an outer surface 362, 361, an inner surface 365, an upper edge 363, and a taper 364 that connects the upper edge 363 to the inner surface 365. The female connector 320 fits inside the male terminal 360, thus the second connector 360 is cooperatively dimensioned to receive the female connector 320. The second connector 360, perhaps having differing overall dimensions, may be used with embodiments of the first connector 320, 520, 620 shown in FIGS. 15 and 25-31.



FIG. 18 is another embodiment of the female connector 420 of the present invention, a high-power, spring-actuated electrical connector, with is similar to that shown in FIGS. 9-14, except with a different aspect ratio. The female connector 420 includes a contact element having a contact element 410 base having six sides 418 and six bent portions 419. The cross-section of the contact element 410 base is substantially hexagonal with rectangular planar surfaces 418, 419. The contact element 410 has a six contact beams 411. Each contact beam 411 has a substantially planar surface 412 terminating in a bent-termination portion 413. The contact beams 411 form a large obtuse angle with the base 418.


The contact element 410 is an integral piece. The contact element 410 is fabricated from a conductive metal, such as copper alloys C151 or C110. It is formed, bend, pressed, and/or folded into the correct shape. The contact element 410 has two planar spade elements 416, 417. The planar spade elements 416, 417 have a thickness 416, 417. The planar spade elements 416, 417 have a planar surface 455. A spring actuator 430, with spring arms 431 is interior to the contact element 410. The female connector 420 has, generally, a length 470 and a width 471. A ratio of length 470 to width 471 is the aspect ratio of the female connector 420.



FIGS. 19-20 show an alternative embodiment of the male terminal 460 that would mate with a female connector 420 with a hexagonal cross-sectional base. In these drawings, the plastic shroud of the male terminal portion is omitted for clarity. The male terminal 460 has an outer surface 462, an inner surface 461, an upper edge 463, and a taper 464 that connects the upper edge 463 to the inner surface 461. The female connector 420 fits inside the male terminal 460.



FIGS. 25-28 show two additional alternative embodiments of a first, female connector 520, 620 with a square or substantially square cross-section. As shown in these figures, the embodiments have many elements in common: four side walls 518, 525, 618, 625 with an aperture 566, 666; four bent or rounded portions 519, 619 extending between a pair of adjacent side walls 518, 525, 618, 625; contact beams 511, 611 that have planar surfaces 512, 612 a curvilinear, bent-termination portion 513, 613 adjacent to a free end 568; a bottom plate 515; and a spring actuator 530, 630 positioned within the first connector 520, 620. These two alternative embodiments also have planar spade elements: 560, 515, 516, 517; and 660, 615, 616, 617. In one embodiment 520, the spade element 560, 515, 516, 517 is parallel with two of the four sides 518, 525. In the other embodiment 620, the spade element 660, 615, 616, 617 is orthogonal to all four sides 618, 625.



FIGS. 29-30 are an isometric cutaway and a lateral cutaway of the first, female connector 520 with a square or substantially square cross-section, respectively. FIG. 31 is an isometric exploded view of the female connector 520, previously illustrated in FIGS. 25-28, with a square or substantially square cross-section. The spring actuator 530 sits inside an internal receiver 540 formed therein have a centerline 542 (see FIGS. 30 and 31) passing substantially through the center(s) thereof. The spring actuator 530 has spring arms 531 and a base portion 538 made of spring steel and/or stainless steel. The spring arms 531 have a flat planar surface 532 which exert outward force on the contact beams 511. As shown by the arrows in FIG. 29, a biasing force F exerted by the spring arms 531 is directed outward and away from the centerline 542 of the receiver 540 and a first connector 520. The contact beams 511 have a flat planar surface 512 and a curvilinear shoulder or bent portion 513 adjacent to the free end 568. The free end 568 of the contact beam 511 contacts the flat planar surface 532 of the corresponding spring arm 531. This allows the spring arms 531 to be coplanar with the base portion 538 of the spring actuator 530 so that they do not become overstressed during the fabrication process.


The alternator terminal assembly 700 mates with the male terminal 703, as shown in FIG. 33-36. The male terminal 703 has a metallic, square tube 777 and a high temperature, non-conductive polymer shroud 711 with flange 709. The metallic, square tube 777 is electrically integral with the alternator busbar 708. The metallic square tube 777 is commonly made out of copper C110 or C151. The metallic square tube 777 has an outer surface composed of flat segments 769 and curved segments 768, an inner contact surface 710, a busbar 708, and an upper edge 770, distal from the busbar 708. The plastic shroud 711 has an inner surface 750, an outer surface 711, a flange 709, an upper edge 757 distal from the flange 709, and a mating protrusion 755. The mating protrusion 755 can be used to insure positive engagement between the female connector and the male terminal.



FIGS. 37-38 show two angles of the male terminal 703 with a mating protrusion 755 highlighted.



FIG. 32 shows the female connector 520 assembled into an alternator terminal assembly 700. A spade surface 515 (the reverse spade surface 566 is visible in FIG. 32) is ultrasonically welded or crimped to the wire 701. A cap 705 fabricated from high temperature polymers, such as high temperature polyamides, covers spade 566 of the female connector 520 and the wire weld. The rest of the female connector 520 fits into an alternator connector 702.



FIG. 39-40 show two different embodiments of the metallic, square tube 778, 777. In one, the busbar 708 is parallel to the metallic tube 777. The busbar 708 is integral with the surface of the metallic tube 769. In the other embodiment, the busbar 779 is orthogonal to the surfaces 789, 788 of the metallic tube 778.



FIGS. 41-42 show the female connector 520 in situ in an alternator terminal assembly 700. The cap 705 segment is joined to the alternator connector segment 702. The alternator connector segment has a plastic shroud 729 to prevent premature electrical contact. The beams 511 extend pass the plastic shroud 729, creating an electrical connection when mated with the male terminal 703. The alternator terminal assembly 700 has a connector position assurance indicator 720.



FIGS. 43-44 show the alternator terminal assembly 700 in situ with an alternator 704. The male terminal 703 is integral to the alternator 704. The alternator terminal assembly 700 with the female connector 520 mates with the male terminal 703 as shown in FIG. 42. The connector position assurance indicator 720 shows whether the connector is fully engaged and locked.

Claims
  • 1. An electrical connector assembly for use in a high-power application, the connector assembly comprising: a first electrically conductive connector formed from a first material, the first connector having a side wall arrangement defining a receiver, the side wall arrangement having at least one side wall with (i) an aperture and (ii) a first contact beam extending from a first portion of the side wall, across an extent of the aperture, and towards a second portion of the side wall;an internal spring member formed from a second material and dimensioned to reside within the receiver of the first connector, the spring member having a first spring arm;a second electrically conductive connector with a receptacle dimensioned to receive a portion of both the first connector and the spring member residing within the receiver of the first connector to define a connected position;wherein in the connected position, the first spring arm of the spring member exerts an outwardly directed force on the first contact beam of the first connector to retain engagement between the first contact beam and an inner surface of the receptacle of the second connector.
  • 2. The electrical connector assembly of claim 1, wherein the first contact beam includes a free-end that resides against an outer surface of the first spring arm when the spring member is positioned within the receiver of the first connector, and wherein a portion of the outwardly directed force exerted by the first spring arm is applied to said free-end of the first contact beam.
  • 3. The electrical connector assembly of claim 2, wherein the free-end of the first contact beam is configured to be directed inward against an extent of the first spring arm when the electrical connector assembly is in the connected position.
  • 4. The electrical connector assembly of claim 1, wherein the first connector includes a second contact beam and the spring member includes a second spring arm, and wherein in the connected position, the first spring arm exerts a first outwardly directed force on the first contact beam and the second spring arm exerts a second outwardly directed force on the second contact beam, and wherein the first outwardly directed force is oriented in a different direction than the second outwardly directed force.
  • 5. The electrical connector assembly of claim 4, wherein the first connector includes a third contact beam, a fourth contact beam, and the spring member includes a third spring arm and a fourth spring arm, and wherein in the connected position, the third spring arm exerts a third outwardly directed force on the third contact beam and the fourth spring arm exerts a fourth outwardly directed force on the fourth contact beam, andwherein: (i) the first outwardly directed force is oriented substantially opposite the third outwardly directed force, and (ii) the second outwardly directed force is oriented substantially opposite the fourth outwardly directed force.
  • 6. The electrical connector assembly of claim 1, wherein the outwardly directed force applied by the first spring arm on the first contact beam in the connected position is increased by thermal expansion during operation of the electrical connector assembly.
  • 7. The electrical connector assembly of claim 1, wherein the outwardly directed force applied by the first spring arm on the first contact beam in the connected position is increased by residual material memory during operation of the electrical connector assembly.
  • 8. The electrical connector assembly of claim 1, wherein the spring member includes a base that the first spring arm extends therefrom, and wherein an outer surface of the base is placed in contact with an inner surface of the first portion of the side wall when the spring member is positioned within the receiver of the first connector.
  • 9. The electrical connector assembly of claim 1, further comprising an electrically non-conductive shroud that covers an extent of the first connector and includes a connector position assurance indicator.
  • 10. An electrical connector assembly for use in a high-power application, the connector assembly comprising: a first electrically conductive connector formed from a first material, the first connector having a plurality of elongated contact beams arranged to define a receiver;an internal spring member formed from a second material, the spring member having a rearmost segment and a plurality of spring arms; andwherein when the spring member is inserted into the receiver of the first electrically conductive connector, (i) the rearmost segment of the internal spring member resides within the receiver of the first connector, and (ii) a spring arm of the plurality of spring arms is configured to provide a biasing force on a contact beam of the plurality of elongated contact beams under certain operating conditions of the electrical connector assembly.
  • 11. The electrical connector assembly of claim 10, wherein a first elongated contact beam includes a free-end that resides against an outer surface of a first spring arm, and wherein an extent of the biasing force exerted by the spring arm is applied to said free-end of the contact beam.
  • 12. The electrical connector assembly of claim 10, wherein a first elongated contact beam of the plurality of elongated contact beams is positioned on a first side of the receiver and a second elongated contact beam of the plurality of elongated contact beams is positioned on a second side of the receiver that is opposite to the first side of the receiver.
  • 13. The electrical connector assembly of claim 12, wherein a third elongated contact beam of the plurality of elongated contact beams is positioned on a third side of the receiver and a fourth elongated contact beam of the plurality of elongated contact beams is positioned on a fourth side of the receiver that is substantially perpendicular to the first side of the receiver.
  • 14. The electrical connector assembly of claim 10, wherein the plurality of elongated contact beams extend from a base of the first connector, and wherein said base forms an extent of the receiver.
  • 15. The electrical connector assembly of claim 10, wherein the first connector includes a plurality of side walls, and wherein a side wall has at least one contact beam.
  • 16. The electrical connector assembly of claim 10, wherein a residual material memory of the spring member will increase the biasing force on the plurality of elongated contact beams during operation of the electrical connector assembly.
  • 17. The electrical connector assembly of claim 10, further comprising a shroud that includes a connector position assurance indicator.
  • 18. The electrical connector assembly of claim 10, wherein the first material of the first connector includes copper and the second material of the spring member includes steel.
  • 19. An electrical connector assembly for use in a high-power application, the connector assembly comprising: a first electrically conductive connector formed from a first material, the first connector having a contact beam;an internal spring member formed from a second material and configured to reside within an extent of the first connector, the spring member having at least one spring arm;a second electrically conductive connector with a receptacle dimensioned to receive a portion of both the first connector and the spring member to define a connected position;wherein in the connected position, the spring arm exerts an outwardly directed force on the contact beam to retain engagement between the contact beam and an inner surface of the receptacle of the second connector.
  • 20. The electrical connector assembly of claim 19, wherein the first connector includes a second contact beam and the spring member includes a second spring arm, and wherein in the connected position, the second spring arm exerts an outwardly directed force on the second contact beam to retain engagement between the second contact beam and an inner surface of the receptacle of the second connector.
  • 21. The electrical connector assembly of claim 19, wherein the contact beam includes a free-end that resides against an outer surface of the spring arm when the spring member is positioned within a receiver of the first connector, and wherein a portion of the outwardly directed force exerted by the spring arm is applied to said free-end of the contact beam.
  • 22. The electrical connector assembly of claim 21, wherein the free-end of the contact beam is configured to be directed inward against an extent of the spring arm when the electrical connector assembly is in the connected position.
  • 23. The electrical connector assembly of claim 19, wherein the outwardly directed force applied by the spring arm on the contact beam in the connected position is increased by thermal expansion during operation of the electrical connector assembly.
  • 24. The electrical connector assembly of claim 19, wherein the outwardly directed force applied by the spring arm on the contact beam in the connected position is increased by residual material memory during operation of the electrical connector assembly.
  • 25. The electrical connector assembly of claim 19, wherein the spring member includes a base that the spring arm extends therefrom, and wherein an outer surface of the base is placed in contact with an inner surface of the first connector when the spring member is positioned within the first connector.
  • 26. The electrical connector assembly of claim 19, further comprising an electrically non-conductive shroud that covers an extent of the first connector and includes a connector position assurance indicator.
  • 27. An electrical connector assembly for use in a high-power application, the connector assembly comprising: a first electrically conductive connector formed from a first material that includes copper, the first connector having a plurality of elongated contact beams arranged to define a receiver;an internal spring member formed from a second material that includes steel, the spring member having a plurality of spring arms; andwherein when the spring member is inserted into the receiver of the first electrically conductive connector, a spring arm of the plurality of spring arms is configured to provide a biasing force on a contact beam of the plurality of elongated contact beams under certain operating conditions of the electrical connector assembly.
  • 28. The electrical connector assembly of claim 27, wherein a first elongated contact beam includes a free-end that resides against an outer surface of a first spring arm, and wherein an extent of the biasing force exerted by the spring arm is applied to said free-end of the contact beam.
  • 29. The electrical connector assembly of claim 27, wherein a first elongated contact beam of the plurality of elongated contact beams is positioned on a first side of the receiver and a second elongated contact beam of the plurality of elongated contact beams is positioned on a second side of the receiver that is opposite to the first side of the receiver.
  • 30. The electrical connector assembly of claim 29, wherein a third elongated contact beam of the plurality of elongated contact beams is positioned on a third side of the receiver and a fourth elongated contact beam of the plurality of elongated contact beams is positioned on a fourth side of the receiver that is substantially perpendicular to the first side of the receiver.
  • 31. The electrical connector assembly of claim 27, wherein the plurality of elongated contact beams extend from a base of the first connector, and wherein said base forms an extent of the receiver.
  • 32. The electrical connector assembly of claim 27, wherein a residual material memory of the spring member increases the biasing force on the plurality of elongated contact beams during operation of the electrical connector assembly.
  • 33. The electrical connector assembly of claim 27, further comprising a shroud that includes a connector position assurance indicator.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of and comprises a continuation of U.S. patent application Ser. No. 16/194,891, filed Nov. 19, 2018, which is a continuation of U.S. Pat. No. 10,135,168, filed Feb. 26, 2018, which is a continuation of U.S. Pat. No. 9,905,953, filed Sep. 30, 2016, the entirety of which are hereby incorporated by reference herein.

US Referenced Citations (219)
Number Name Date Kind
4534610 Takihara Aug 1985 A
4540235 Lolic Sep 1985 A
4583812 Gross et al. Apr 1986 A
4593464 Williams et al. Jun 1986 A
4632483 Verin Dec 1986 A
4632843 Pich et al. Dec 1986 A
4713018 Sutton Dec 1987 A
4895531 Vignoli Jan 1990 A
4932877 Zinn Jun 1990 A
4938720 Romak Jul 1990 A
4975066 Sucheski et al. Dec 1990 A
4983127 Kawai et al. Jan 1991 A
5007865 Jakobeit Apr 1991 A
5035661 Steinhardt Jul 1991 A
5094636 Zinn et al. Mar 1992 A
5120255 Kouda Jun 1992 A
5162004 Kuzuno et al. Nov 1992 A
5188545 Hass et al. Feb 1993 A
5240439 Egenolf Aug 1993 A
5288252 Steinhardt et al. Feb 1994 A
5295873 Walbrecht Mar 1994 A
5334058 Hotea Aug 1994 A
5338229 Egenolf Aug 1994 A
5362262 Hotea Nov 1994 A
5415571 Lutsch May 1995 A
5419723 Villiers et al. May 1995 A
5437566 Zinn Aug 1995 A
5486123 Miyazaki Jan 1996 A
5536184 Wright et al. Jul 1996 A
5551897 Alwine Sep 1996 A
5562506 Wright Oct 1996 A
5573434 Ittah et al. Nov 1996 A
5607328 Joly Mar 1997 A
5624283 Hotea Apr 1997 A
5664972 Zinn Sep 1997 A
5716245 Kameyama et al. Feb 1998 A
5810627 Gierut et al. Sep 1998 A
5827094 Aizawa et al. Oct 1998 A
5863225 Liebich et al. Jan 1999 A
5868590 Dobbelaere Feb 1999 A
5938485 Hotea et al. Aug 1999 A
5941740 Neuer et al. Aug 1999 A
5951338 Seko et al. Sep 1999 A
5954548 Stabroth Sep 1999 A
5975964 Seko et al. Nov 1999 A
5980336 Hall et al. Nov 1999 A
6042433 Chen Mar 2000 A
6062918 Myer May 2000 A
6102752 Bommel Aug 2000 A
6126495 Lolic Oct 2000 A
6186840 Geltsch Feb 2001 B1
6257931 Sakurai Jul 2001 B1
6273766 Zennamo, Jr. Aug 2001 B1
6361377 Saka Mar 2002 B1
6371813 Ramey Apr 2002 B2
6394858 Geltsch May 2002 B1
6402571 Muller Jun 2002 B1
6475040 Myer et al. Nov 2002 B1
6514098 Marpoe, Jr. Feb 2003 B2
6561841 Norwood May 2003 B2
6565396 Saka et al. May 2003 B2
6679736 Saka Jan 2004 B2
6695644 Zhao et al. Feb 2004 B2
6722926 Chevassus-More Apr 2004 B2
6761577 Koehler Jul 2004 B1
6814625 Richmond Nov 2004 B2
6872103 Flieger et al. Mar 2005 B1
6921283 Zahlit Jul 2005 B2
6994600 Coulon Feb 2006 B2
7014515 Lutsch et al. Mar 2006 B2
7150660 Allgood et al. Dec 2006 B2
7175488 Pavlovic et al. Feb 2007 B2
7192318 Hotea Mar 2007 B2
7278891 Cvasa Oct 2007 B2
7300319 Lutsch et al. Nov 2007 B2
7329132 Kamath Feb 2008 B1
7338305 Norwood Mar 2008 B2
7491100 Johannes et al. Feb 2009 B2
7494352 Furio et al. Feb 2009 B2
7497723 Brassell Mar 2009 B2
7503776 Pavlovic et al. Mar 2009 B1
7520773 Siebens Apr 2009 B2
7568921 Pavlovic et al. Aug 2009 B2
7595715 Pavlovic et al. Sep 2009 B2
7613003 Pavlovic et al. Nov 2009 B2
7651344 Wu Jan 2010 B2
7682180 Brown Mar 2010 B2
7713096 Pavlovic et al. May 2010 B2
7758369 Miller Jul 2010 B2
7766706 Kawamura et al. Aug 2010 B2
7780489 Stuklek Aug 2010 B2
7837519 Copper et al. Nov 2010 B2
7876193 Pavlovic et al. Jan 2011 B2
7892050 Pavlovic Feb 2011 B2
7927127 Glick et al. Apr 2011 B1
7942682 Copper et al. May 2011 B2
7942683 Copper et al. May 2011 B2
7963782 Hughes Jun 2011 B2
7976351 Boemmel et al. Jul 2011 B2
7988505 Hotea et al. Aug 2011 B2
8128426 Glick et al. Mar 2012 B2
8202124 Natter et al. Jun 2012 B1
8206175 Boyd Jun 2012 B2
8235292 Talboys Aug 2012 B2
8242874 Pavlovic et al. Aug 2012 B2
8277243 Hernandez Oct 2012 B1
8282429 Glick et al. Oct 2012 B2
8366497 Glick Feb 2013 B2
8388389 Costello et al. Mar 2013 B2
8430689 Myer et al. Apr 2013 B2
8446733 Hampo et al. May 2013 B2
8449338 Gong May 2013 B2
8475220 Glick et al. Jul 2013 B2
8651892 Arant Feb 2014 B2
8662935 Jouas et al. Mar 2014 B2
8668506 Stack et al. Mar 2014 B2
8678867 Glick et al. Mar 2014 B2
8758043 Ohyama Jun 2014 B2
8795007 Itou et al. Aug 2014 B2
8840436 Mott et al. Sep 2014 B2
8858264 Mott et al. Oct 2014 B2
8858274 Jakoplic et al. Oct 2014 B2
8941731 Barba Jan 2015 B2
8944844 Myer Feb 2015 B2
8956190 Natter et al. Feb 2015 B2
8968021 Kennedy et al. Mar 2015 B1
8992270 Glick Mar 2015 B2
8998655 Glick Apr 2015 B2
9011186 Wirth Apr 2015 B2
9048552 Eyles Jun 2015 B2
9059542 Oh Jun 2015 B2
9077114 Oh Jul 2015 B2
9142902 Glick et al. Sep 2015 B2
9166322 Glick et al. Oct 2015 B2
9190756 Glick et al. Nov 2015 B2
9225116 Mckibben Dec 2015 B2
9236682 Glick et al. Jan 2016 B2
9257804 Beck et al. Feb 2016 B1
9293852 Glick et al. Mar 2016 B2
9300069 Morello et al. Mar 2016 B2
9353894 Richards May 2016 B2
9368904 Natter et al. Jun 2016 B2
9379470 Glick et al. Jun 2016 B2
9431740 Glick et al. Aug 2016 B2
9437974 Glick et al. Sep 2016 B2
9444168 Horiuchi et al. Sep 2016 B2
9444205 Rangi et al. Sep 2016 B2
9455516 Gutenschwager et al. Sep 2016 B2
9502783 Bleicher et al. Nov 2016 B2
9525254 Chen Dec 2016 B2
9537241 Rivera et al. Jan 2017 B2
9548553 Glick et al. Jan 2017 B2
9583860 Dewitte Feb 2017 B1
9608369 Brandt Mar 2017 B1
9620869 Listing et al. Apr 2017 B2
9680256 Lane Jun 2017 B1
9705229 Itou Jul 2017 B2
9705254 Lampert et al. Jul 2017 B2
9711885 Hamai et al. Jul 2017 B2
9748693 Exenberger Aug 2017 B1
9841454 Gelonese Dec 2017 B2
9847591 Glick et al. Dec 2017 B2
9876317 Glick et al. Jan 2018 B2
9905950 Marsh et al. Feb 2018 B2
9905953 Pavlovic Feb 2018 B1
10014614 Davies et al. Jul 2018 B2
10014631 Chambly Jul 2018 B1
10038278 Lane Jul 2018 B2
10044140 Gianrossi Aug 2018 B1
10122117 Miller Nov 2018 B2
10135168 Pavlovic Nov 2018 B2
10184970 Maalouf Jan 2019 B2
10218117 Probert Feb 2019 B1
10283889 Glick May 2019 B2
10355414 Alvarado Jul 2019 B1
10693252 Pavlovic Jun 2020 B2
11069999 Fisher Jul 2021 B2
20010019924 Heimueller Sep 2001 A1
20010021602 Zanten Sep 2001 A1
20020019156 Fukamachi Feb 2002 A1
20020049005 Leve Apr 2002 A1
20020081888 Regnier et al. Jun 2002 A1
20040150224 Lee Aug 2004 A1
20050134037 Bruno Jun 2005 A1
20050211934 Garber Sep 2005 A1
20060040555 Chen et al. Feb 2006 A1
20060172618 Yamashita et al. Aug 2006 A1
20070123093 Lutsch et al. May 2007 A1
20070149050 Oka et al. Jun 2007 A1
20110130023 Kataoka Jun 2011 A1
20110168778 Talboys Jul 2011 A1
20120094551 Corman et al. Apr 2012 A1
20120129407 Glick et al. May 2012 A1
20120244756 Jouas et al. Sep 2012 A1
20130002102 Chen Jan 2013 A1
20130004050 Wu Jan 2013 A1
20130040505 Hirakawa Feb 2013 A1
20130078874 Itou et al. Mar 2013 A1
20130109224 Chin et al. May 2013 A1
20130210292 Schmidt et al. Aug 2013 A1
20130337702 Pavlovic et al. Dec 2013 A1
20140087601 Glick et al. Mar 2014 A1
20140227915 Glick Aug 2014 A1
20150038000 Glick Feb 2015 A1
20150074996 Glick Mar 2015 A1
20150079859 Glick Mar 2015 A1
20150162706 Kennedy Jun 2015 A1
20150255912 Natter Sep 2015 A1
20150255924 Glick Sep 2015 A1
20150280381 Rangi et al. Oct 2015 A1
20160028169 Glick Jan 2016 A1
20160336572 Yoshida Nov 2016 A1
20170338600 Tanaka Nov 2017 A1
20180090900 Horiuchi et al. Mar 2018 A1
20180191095 Pavlovic Jul 2018 A1
20180351282 Duan Dec 2018 A1
20190052025 Buechli Feb 2019 A1
20190089083 Pavlovic Mar 2019 A1
20190372262 Christiano Dec 2019 A1
Foreign Referenced Citations (15)
Number Date Country
103141000 Jun 2013 CN
104614564 May 2015 CN
105225040 Jan 2016 CN
206962160 Feb 2018 CN
102013211208 Dec 2014 DE
1291979 Dec 2004 EP
10-040995 Feb 1998 JP
10-050376 Feb 1998 JP
10-050377 Feb 1998 JP
2011-049107 Mar 2011 JP
2012043739 Mar 2012 JP
2017010755 Jan 2017 JP
20160138442 Dec 2016 KR
2017195092 Nov 2017 WO
2019229587 Dec 2019 WO
Non-Patent Literature Citations (7)
Entry
International Search Report from PCT/US2018/019787 dated Nov. 26, 2018 (3 pages).
Written Opinion from PCT/US2018/019787 dated Nov. 26, 2018 (10 pages).
International Search Report and Written Opinion issued in PCT/US2019/036070, dated Sep. 27, 2019, 8 pages.
International Search Report and Written Opinion issued in PCT/US2019/036010, dated Sep. 30, 2019, 13 pages.
International Search Report and written Opinion issued in POT/US2019/036127, dated Oct. 4, 2019, 11 pages.
International Search Report and written Opinion issued in PCT/US2020/049870, dated Dec. 10, 2020, 20 pages.
International Search Report and written Opinion issued in PCT/US20/013757, dated Dec. 10, 2020, 7 pages.
Related Publications (1)
Number Date Country
20200395702 A1 Dec 2020 US
Continuations (3)
Number Date Country
Parent 16194891 Nov 2018 US
Child 16908646 US
Parent 15905806 Feb 2018 US
Child 16194891 US
Parent 15283242 Sep 2016 US
Child 15905806 US