The present invention relates to a valve assembly and, more particularly, to a valve assembly including a faucet handle assembly that provides for rotational alignment of a handle relative to a valve stem.
According to an illustrative embodiment of the present disclosure, a valve assembly provides for a screw down widespread handle assembly to be rotationally aligned by lifting up on a handle. Illustratively, a hub threadably engages a mounting base or valve body secured to a mounting deck. The handle can then be lifted against the force of a spring, thereby uncoupling splines that are configured to transmit rotational force to a valve stem. The handle can then be rotated independent of the valve stem, placed in a user preferred rotational angle and released to reengage the splines.
According to an illustrative embodiment of the present disclosure, a valve assembly for a faucet includes a valve body, and a valve cartridge received within the valve body and including a valve stem defining a longitudinal axis and having a plurality of first splines. A hub includes an internal chamber extending between a lower end and an upper end, the lower end being coupled to the valve body. A stem adapter extends along the longitudinal axis between a lower end and an upper end, the lower end having a plurality of second splines. A handle is operably coupled to the upper end of the stem adapter. A spring extends between the hub and the stem adapter, the spring biasing the plurality of second splines into engagement with the plurality of first splines.
According to another illustrative embodiment of the present disclosure, a handle assembly for operating a valve cartridge received within a valve body of a faucet includes a hub, a stem adapter extending between a lower end and an upper end, the lower end of the stem adapter including a plurality of internal splines, and a handle operably coupled to the upper end of the stem adapter. A spring extends between a downwardly facing surface of the hub and an upwardly facing surface of the stem adapter. The spring biases the plurality of internal splines into engagement with a plurality of external splines of the valve cartridge. A lower retaining cup receives a lower end of the spring and is supported by the upwardly facing surface of the stem adapter. An upper retaining cup receives an upper end of the spring and is supported by the downwardly facing surface of the hub.
According to a further illustrative embodiment of the present disclosure, a valve assembly for a faucet includes a valve body, and a valve cartridge received within the valve body and including a valve stem defining a longitudinal axis and having a plurality of first splines. A hub includes an internal chamber extending between a lower end and an upper end, the lower end being coupled to the valve body. A stem adapter extends along the longitudinal axis between a lower end and an upper end, the lower end of the stem adapter having a plurality of second splines. A handle is operably coupled to the upper end of the stem adapter. A spring extends between an upwardly facing surface on the stem adapter and a downwardly facing surface of the hub. The spring biases the plurality of second splines into engagement with the plurality of first splines. The stem adapter includes a flange defining the upwardly facing surface, and the spring concentrically receives the stem adapter.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.
A detailed description of the drawings particularly refers to the accompanying figures, in which:
The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to the precise form disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention.
Referring initially to
With reference to
The valve cartridge 16 illustratively includes a cartridge or valve stem 32 defining a longitudinal axis 34. The valve stem 32 includes a plurality of first splines 36, illustratively external splines extending parallel to the longitudinal axis 34. The valve stem 32 is operably coupled to internal flow control members (not shown), such as a rotatable fluid flow plate or disc fluidly coupled to a fixed fluid flow plate or disc. The valve cartridge 16 may be similar to that detailed in U.S. Pat. No. 8,881,755 to Thomas et al., the disclosure of which is expressly incorporated herein by reference.
A stem adapter 38 extends upwardly from the valve cartridge 16 from a lower end 40 to an upper end 42. The lower end 40 of the stem adapter 38 includes a plurality of second splines 44, illustratively internal splines extending parallel to the longitudinal axis 34. The handle 20 is operably coupled to the upper end 42 of the stem adapter 38. Illustratively, the upper end 42 of the stem adapter 38 includes external threads 46 operably coupled to internal threads 48 formed within the handle 20. A spacer 50 is illustratively supported by the stem adapter 38 and positioned intermediate a shoulder 52 of the stem adapter 38 and a lower surface 54 of the handle 20. Decorative pins or buttons 55 are illustratively coupled to the spacer 50.
A hub 56 illustratively includes a body 58 defining an internal chamber 60 extending between a lower end 62 and an upper end 64. The stem adapter 38 extends within the internal chamber 60, wherein the lower end 40 of the stem adapter 38 extends through a lower opening 65 of the hub 56. The upper end of the stem adapter 38 extends through an upper opening 67 of the hub 56. A retainer, illustratively an o-ring 69, is received within the upper opening 67 intermediate the stem adapter 38 and the hub 56 to assist in maintaining an axial position of the stem adapter 38 relative to the hub 56, and to reduce radial play or wobble in the stem adapter 38. The lower end 62 of the body 58 illustratively includes internal threads 66 configured to operably couple with external threads 68 supported by the flange 26 of the valve body 12.
A spring 70 illustratively extends between the hub 56 and the stem adapter 38. The spring 70 is configured to downwardly bias the stem adapter 38 along the longitudinal axis 34 toward the valve stem 32, and thereby bias the plurality of second splines 44 of the stem adapter 38 into engagement with the plurality of first splines 36 of the valve stem 32. More particularly, the spring 70 is illustratively a compression spring extending between a lower end 72 and an upper end 74, and concentrically receiving the stem adapter 38. The spring 70 extends between a flange 76 on the stem adapter 38 defining an upwardly facing surface 78, and an upper wall 80 of the hub 56 defining a downwardly facing surface 82. Illustratively, a lower retaining cup 84 receives the lower end 72 of the spring 70, while an upper retaining cup 86 receives the upper end 74 of the spring 70.
In a normal mode of operation as shown in
A further illustrative embodiment valve assembly 10′ is shown in
The valve assembly 10′ illustratively includes a fastener 90, such as a bolt, that couples the stem adapter 38′ to the handle 20. A lower end of the spacer 50′ includes a groove 92 receiving a protrusion 94 on the upper end of the stem adapter 38′, thereby rotationally securing the spacer 50′ to the stem adapter 38′.
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/637,366, filed Mar. 1, 2018, the disclosure of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1654550 | Muend | Feb 1927 | A |
2064623 | Mueller | Dec 1936 | A |
4186761 | Guarnieri | Feb 1980 | A |
4515037 | Block | May 1985 | A |
4593430 | Spangler et al. | Jun 1986 | A |
4961443 | Buccicone et al. | Oct 1990 | A |
5082023 | D'Alayer de Costemore d'Arc | Jan 1992 | A |
5257645 | Scully et al. | Nov 1993 | A |
2355736 | Klein | Aug 1994 | A |
5551124 | Zeringue | Sep 1996 | A |
5671904 | Minutillo | Sep 1997 | A |
5947149 | Mark | Sep 1999 | A |
6170799 | Nelson | Jan 2001 | B1 |
6279604 | Korb et al. | Aug 2001 | B1 |
6438771 | Donath, Jr. et al. | Aug 2002 | B1 |
8567430 | Allen et al. | Oct 2013 | B2 |
8881755 | Thomas et al. | Nov 2014 | B2 |
9062796 | Horsman et al. | Jun 2015 | B2 |
9481985 | Chen et al. | Nov 2016 | B1 |
10436343 | Crowe et al. | Oct 2019 | B2 |
20150152975 | Jonte | Jun 2015 | A1 |
20160326730 | Chen et al. | Nov 2016 | A1 |
20190178403 | Crowe | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
201661742 | Dec 2010 | CN |
201944369 | Aug 2011 | CN |
206770667 | Dec 2017 | CN |
Number | Date | Country | |
---|---|---|---|
20190271140 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62637366 | Mar 2018 | US |