The invention subject to the application comprises a spring brake chamber that is used in pneumatic braking systems used in heavy commercial vehicles such as buses, trucks, trailers and tractors, and spring brake chamber which includes power spring, detects the parking position, the driving position and the situation in which the power spring is broken and allows the driver to be notified by sending a signal.
The invention subject to the application comprises a spring brake chamber that is used in pneumatic braking systems used in heavy commercial vehicles such as buses, trucks, trailers and tractors, and spring brake chamber which includes power spring, detects the parking position, the driving position and the situation in which the power spring is broken and allows the driver to be notified by sending a signal.
The brake chambers that are used in the pneumatic brake systems present in heavy commercial vehicles are divided into two categories as service brake chambers and spring brake chambers. Spring brake chambers comprise a service housing that acts similar to the service brake chambers in which service braking is performed and a spring housing in which the spring braking is performed. Said service housing operates when it is desired to slow or stop the vehicle. If it is desired to slow or stop the vehicle while the vehicle is moving, a force is applied onto the foot brake pedal. The pressurized air from the compressor fills the spring brake chamber between the diaphragm and the cover with air. The diaphragm that turns by the effect of the air pushes the shaft forward and enables transmitting the braking force to the wheels of the vehicle. When it is desired to immobilize the vehicle or when there is an air leak for any reason in the system, the spring housing of the spring brake chamber that contains a power spring operates. In this case, the vehicle is immobilized by the forward motion of the shaft due to power spring into the spring chamber. In other words, while the service housing of the spring brake chambers operates when a force is applied on the foot brake pedal in case it is desired to slow down or stop the vehicle as in the service brake chambers; the spring housing operates when a force is applied to the hand (parking) brake.
Brake chambers are braking components that are subjected to the corrosive effects of the outdoor environment. Therefore, there is a possibility for the power spring manufactured from steel to be broken. In the case that the power spring is broken while the vehicle is moving, the vehicle can never provide the parking position and this situation makes it harder to leave the vehicle in a parked position particularly on inclined roads. The length of an average power spring is 150 cm; said fractures may occur at various points on the spring. When it is broken at the ends, the spring can perform its emergency spring function mechanically. However, since its force is decreased, it cannot provide the desired braking force for the vehicle. Besides; the broken parts of the spring or the parts that enter into the chamber from the outside prevents the spring housing of the chamber from being completely set up. When it is desired to take the spring brake chamber out from parking position, if it is not completely set up, the vehicle may act as if it is still braking. This situation may cause overheating of the brake linings and thus burning of the wheels and finally burning of the vehicle. Moreover, there is a possibility for the broken spring parts to damage the diaphragm in the chamber, and there is a possibility for the springs to prevent the chamber from being set up by entering between the coils of the power spring. Therefore, it is a very important and necessary situation to inform the driver when the power spring is broken.
In the known state of the art, to accomplish this, a sensor located on the parking brake handle of the service brake chambers used on heavy commercial vehicles such as busses, trucks, trailer trucks and trailers is used. The invention subject matter of the application provides a solution that can be implemented in all the vehicles that use pneumatic braking systems by easily integrating the related components into a standard pneumatic braking chamber. By checking if an aluminium flange mounted on the lower housing of the spring brake chamber contacts a conductive disk and through a microcontroller, it is detected if the spring is completely set up or if it is broken, the integrity of the spring is tested and a warning signal is sent to the driver. Thus, it is prevented for the parts that have been broken when the power spring is fractured, from entering into the coils and damaging said coils of the power spring or the damaging of the linings and wheels of the vehicle due to not completely setting up by the spring when the power spring is broken is prevented.
The invention subject to the matter of application comprises a spring brake chamber that is used in pneumatic braking systems used in heavy commercial vehicles such as buses, trucks, trailers and tractors, and spring brake chamber which includes power spring, detects the parking position, the driving position and the situation in which the power spring is broken and allows the driver to be notified by sending a signal.
The spring brake chamber of the invention basically comprises a lower housing in which the park braking is performed, an power spring, an electric circuit that contains an aluminium flange, a microcontroller connected to the positive and negative terminals of this circuit, a diaphragm, connection plate, an upper housing in which the service braking is performed, a shaft located inside said upper housing which enables braking through its forward motion and a return spring that enables backward movement of said shaft. Signals are obtained via contact of said flange to a conductive disk and these signals are compared to pre-defined signals by the microcontroller. Depending on the differences emerging on the signal levels, a warning is sent to the driver.
Thanks to the spring brake chamber formed by combining the mechanical parts of the invention together, the present invention has the following advantages.
The driver is informed when the power spring is broken.
It is prevented for parts of a broken power spring to damage other parts, particularly linings and wheels, of the spring brake chamber.
It is ensured that the driver is informed if the power spring is completely set up or not.
It can be used in all the vehicles where the pneumatic brake systems are used.
The figures prepared to better describe the spring brake chamber that enables detection of the parking position and driving position of the power spring and the situation when the power spring is broken which comprises an power spring and enables sending a warning signal to the driver in the spring brake chambers that are used in the pneumatic braking systems present in heavy commercial vehicles such as busses, trucks, tractors and trailers are described below.
The parts/components/items in the figures prepared to better describe the spring brake chamber developed by the invention are individually assigned reference numbers and these numbers refer to the following;
1. Connection Plate
2. Diaphragm
3. Aluminium flange
4. Lower housing
5. Power spring
6. Jack
7. Positive Terminal
8. Negative Terminal
9. Dielectric Disk
10. Conductive Disk
11. Spring Chamber
12. Parking Chamber
13. Shaft
14. Spring Brake Chamber
R: Resistance
CPU: Microcontroller
In the invention subject matter of the application, an spring brake chamber (14) that enables detection of the parking position and driving position of the power spring and the situation when the power spring is broken, which comprises an power spring (5) and enables sending a warning signal to the driver in the spring brake chambers that are used in the pneumatic braking systems present in heavy commercial vehicles such as busses, trucks, tractors and trailers is described. This spring brake chamber (14) comprises a connection plate (1), a lower housing (4) containing a spring chamber (11) in which there is an power spring (5), a diaphragm (2) provided by compressing in the connection region of the connection plate (1) and the lower housing (4), a shaft (13) that performs the braking through its forward movement, an parking chamber (12) into which air from the compressor enters in when force is applied to the foot brake pedal; and particularly has an electronic circuit that contains a microcontroller (CPU) that detects the parking position and driving position of the power spring and the situation if the power spring is broken and sends a signal to the driver. Said microcontroller (CPU) transmits two separate signals to the driver that is the contact signal when the power spring (5) is completely set up and the warning signal when a problem occurs such as a fracture in the power spring (5) etc. The schematic diagram of the electronic circuit provided in the spring brake chamber (14) of the invention is shown in
The length of the power spring (5) used in the spring brake chambers (14) is constant and the same material is used everywhere. Thus, it has a constant resistance (R). Since the resistance (R) on the power spring (5) is constant, a constant voltage is created when a current is passed through this power spring (5). The constant voltage value determined depending on the resistance (R) of this power spring (5) is initially defined in the memory of the microcontroller (CPU). When a fracture occurs in the power spring (5), the known constant value of the resistance (R) will drop and the value of the voltage created when a current is passed will also change depending on the changed resistance (R). The microcontroller (CPU) of this invention enables sending a signal to the driver by detecting said voltage difference.
The detection step of the parking position and driving position of the power spring and the step of sending contact and warning signal to the driver are as described below;
Air from the compressor fills into the parking chamber (12) when force is applied to the foot brake pedal.
The air filled into the parking chamber (12) enables reverse movement of the diaphragm (2) towards the lower housing (4).
The backward moving diaphragm (2) pushes the aluminium (Al) flange (3) provided under it and the power spring (5) in the spring chamber (11) starts to compress.
This movement of the aluminium flange (3) continues until it contacts the conductive disk (10) provided on the base of the lower housing (4).
In case of breaking and fracture of the power spring (5) such that the aluminium flange (3) does not contact the conductive disk (10), the microcontroller (CPU) cannot read any voltage since no current passes through the positive terminal (7) and the negative terminal (8) and sends a warning signal to the driver informing that the power spring (5) has been fractured.
When the aluminium flange (3) contacts the conductive disk (10) on which current passes, the current received from the positive terminal (7) of the cable connected to the jack (6) provided on the lower housing (4) respectively passes through the lower housing (4), power spring (5), aluminium flange (3) and conductive disk (10) and completes a circuit by exiting from the negative terminal (8) of the cable. (Shown in
The microcontroller (CPU) compares the voltage value from the positive terminal (7) and the negative terminal (8) and compares the difference with the value initially defined in its memory according to the resistance (R) of the power spring (5).
When there is no difference between the compared values, the microcontroller (CPU) transmits a contact signal informing the driver that the power spring (5) is completely compressed and the spring brake chamber (14) is completely set up and the vehicle is in normal driving condition.
When there is a difference in the compared values, the microcontroller (CPU) transmits a warning signal informing the driver that there is a fracture in the power spring (5) or the spring brake chamber (14) cannot be completely set up due to a problem.
Number | Date | Country | Kind |
---|---|---|---|
2016/00139 | Jan 2016 | TR | national |
This application is the national phase entry of International Application PCT/TR2016/050513, filed on Dec. 19, 2016 which is based upon and claims priority to Turkish Patent Application No. 2016/00139, filed on Jan. 6, 2016 the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TR2016/050513 | 12/19/2016 | WO | 00 |