The present invention is directed to a spring contact, an inertia switch, and a method of manufacturing an inertia switch. More specifically, the present invention is directed to a split spring contact in an inertia switch, and a method of manufacturing an inertia switch including a split spring contact.
Inertia switches provide a means for detecting changes in axial or lateral forces. Some currently available inertia switch includes acceleration switches, which, as the name implies, are responsive to acceleration. Typically, an acceleration switch includes a system whereby a mass moves relative to an internal sensing element in response to acceleration.
One specific type of acceleration switch includes a mass-spring system having a mass with a flat spring contact secured thereto, the mass being biased in an open or closed position with respect to a conductive lead wire. The mass may be biased through use of a spring that provides a predetermined spring bias. When sufficient axial or lateral forces are applied to overcome the spring bias, the mass moves relative to the conductive lead wire. The movement of the mass separates the flat spring contact from, or brings the flat spring contact into contact with, the conductive lead wire to open or close the switch, respectively. Often, the flat spring contact is pressed into the mass with an interference fit for retention and electrical conductivity. However, the interference fit causes undue stress on the thin spring contact which results in various deformations, adversely affecting the function of the switch.
Additionally, current mass-spring systems utilize a manually-operated arbor tool to press the flat spring contact into the mass, which results in deformation to the spring contact from the high forces required to overcome the interference between the spring contact and the mass. This deformation may cause dimensional changes to the interface between the spring and the spring contact, adversely affecting the function of the switch.
Furthermore, current spring contact manufacturing includes forming a large number of individual spring contacts on a sheet of spring contact material. A break-off tab is provided for separating each spring contact from the sheet. As shown in
A spring contact implemented in an inertia switch, and method of manufacturing an inertia switch with improvements in the process and/or the properties of the components formed would be desirable in the art.
In one embodiment, a spring contact includes a conductive body portion having an outer edge and an inner edge partially surrounding an open area, a split in the conductive body portion, the split extending between the outer edge and the inner edge, and a conductive contact finger extending from the inner edge into the open area.
In another embodiment, an inertia switch includes a shell; a mass movably positioned within the shell; a spring contact positioned within the mass, the spring contact comprising a conductive body portion having an outer edge and an inner edge partially surrounding an open area, a split in the conductive body portion, the split extending between the outer edge and the inner edge, and a conductive contact finger extending from the inner edge into the open area; a header; a biasing member positioned between the spring contact and the header; and a conductive member extending through the header. The biasing member provides a bias between the spring contact within the mass and the conductive member.
In another embodiment, a method of manufacturing an inertia switch includes forming at least one spring contact in a sheet of material, the spring contact comprising a conductive body portion having an outer edge and an inner edge partially surrounding an open area, a split in the conductive body portion, the split extending between the outer edge and the inner edge, a conductive contact finger extending from the inner edge into the open area, and a break-off tab extending between the spring contact and the sheet; separating the at least one spring contact from the sheet; providing a mass; inserting a spring contact of the at least one spring contacts within the mass; providing a shell having a first conductive member secured thereto; positioning the mass within the shell; providing a header having a second conductive member extending therethrough; positioning a biasing member between the header and the spring contact; and securing the header to the shell. The biasing member provides a bias between the spring contact and the second conductive member.
An advantage of the spring contact of the present invention is that the split in the conductive body portion of the spring contact decreases the stresses applied to the spring contact during insertion of the spring contact within the mass.
Another advantage is that the decreased stress applied to the spring contact of the present invention decreases or eliminates spring contact deformation during insertion.
Another advantage is that decreasing or eliminating the deformation of the spring contact of the present invention provides increased performance reliability.
Yet another advantage of the spring contact of the present invention is that a predetermined geometry of the break-off tab decreases particulate formation during insertion of the spring contact within the mass.
Still another advantage is that compressing the spring contact to decrease a size of the split during insertion generates a radially outward force against the mass that provides a uniform or substantially uniform contact between the spring contact and the mass.
A further advantage is that the radially outward force of the spring contact increases a retention of the spring contact of the present invention within the mass.
Another advantage is that the break-off tab is shaped to control deflection of the spring contact of the present invention.
An advantage of the inertia switch is that the spring contact of the present invention decreases or eliminates chatter.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Referring to
The second end 203 is sealed with a cover assembly, such as a header 208. The header 208 is secured to the second end 203 by any suitable method for forming a hermetic seal, such as, but not limited to, welding, diffusion bonding, brazing, or a combination thereof. Alternatively, the header 208 may engage mating threads in the second end 203, and compress an O-ring therebetween, providing the seal. In one embodiment, the hermetically sealed shell may be filled with an inert gas or a liquid for damping purposes. In another embodiment, a second conductive member 213 extends through the header 208 and projects into the shell 201. A portion of the second conductive member 213 is secured within, and surrounded by, an insulated portion 209 of the header 208, the insulated portion 209 being formed from glass, ceramic, polymer, or any other insulating or electrically non-conductive material. The first conductive member 212 and/or the second conductive member 213 may form a lead wire, as illustrated in
A spring contact 220 is positioned within a mass 205, which is movably positioned within the interior of the shell 201. A biasing member 207, such as a coil spring, is also positioned within the interior of the shell 201, between the header 208, and the spring contact 220 and/or the mass 205. The mass 205 is counterbored to provide a recess for receiving the spring contact 220 and the biasing member 207. For example, in one embodiment, the biasing member 207 extends between an annular shoulder 206 of the header 208 and the spring contact 220 within the counterbore of the mass 205. In another example, the biasing member 207 is secured within the counterbore of the mass 205 and to the header 208. The counterbore may include spring guides corresponding to the biasing member 207. In one embodiment, in the absence of sufficient lateral or axial forces, the biasing member 207, or other biasing member, provides a biasing force that maintains an orientation of the spring contact 220 relative to the second conductive member 213. The lateral or axial forces include any forces that act with or against the biasing force of the biasing member 207 or other biasing member, such as, but not limited to, forces from acceleration, impact, applied forces, or a combination thereof.
The first conductive member 212, the second conductive member 213, the shell 201, the mass 205, the spring contact 220, the biasing member 207, and/or the header 208 are formed from any conductive material, such as, but not limited to, a conductive metal, a conductive alloy, or a combination thereof. The first conductive member 212 and/or the second conductive member 213 may be provided with a protective layer of electrically non-conductive insulation, such as is common in, for example, insulated wire. When the second conductive member 213 is brought into contact with the spring contact 220 a continuous electric circuit is formed by the switch 200, the circuit formed between the first conductive member 212 and the second conductive member 213. For example, in one embodiment, on closing the switch 200 a conductive path is formed from the first conductive member 212 to the shell 201, from the shell 201 to the mass 205, from the mass 205 to the spring contact 220, and from the spring contact 220 to the second conductive member 213. In another embodiment, the conductive path is formed from the first conductive member 212 to the shell 201, from the shell 201 to the header 208, from the header 208 to the biasing member 207, from the biasing member 207 to the spring contact 220, and from the spring contact 220 to the second conductive member 213.
To open or close the switch 200, the mass 205 moves within the shell 201, moving the spring contact 220 relative to the second conductive member 213. A shape of the mass 205 may be complementary to, or dissimilar from a shape of the shell 201, so long as the mass 205 is able to move axially or laterally within the shell 201. For example, in one embodiment, the shell 201 has an interior cylindrical shape and the mass 205 includes a cylindrical cup-shaped mass sized to fit within the shell 201. Other suitable shapes of the mass 205 include, but are not limited to, square, triangular, polygonal, conical, frustoconical, any other shape for sliding or otherwise moving within the shell 201, or a combination thereof. As illustrated in
Referring to
Referring to
In another alternative embodiment, the biasing member 207 is positioned between the first end 202 of the shell 201 and the mass 205 (not shown). The biasing member 207 biases the mass 205 toward the second end 203, biasing the spring contact 220 into contact with the second conductive member 213. In the absence of lateral or axial forces sufficient to overcome the spring bias, the inertia switch 200 is maintained in the closed position. When lateral or axial forces are applied to overcome the spring bias the mass 205 moves away from the second end 203, compressing the biasing member 207 between the mass 205 and the first end 202, and breaking the contact between the spring contact 220 and the second conductive member 213.
Referring to
When inserted within the mass 205, at least a portion of the outer edge 402 contacts an inner surface of the mass 205, providing an interference fit between the spring contact 220 and the mass 205. In one embodiment, a radial force is generated between the inner surface of the mass 205 and the spring contact 220. In another embodiment, the split 403 in the body portion 201 at least partially closes or compresses in response to the radial force. In a further embodiment, at least one feature is provided on either side of the split 403, each feature configured to mate with a corresponding feature on an insertion tool. The at least one feature includes, for example, an aperture, a protrusion, a slot, or a combination thereof. When one or more of the at least one features provided on each side of the split 403 is mated with the corresponding feature on the insertion tool, actuating the insertion tool at least partially closes the split 403 to facilitate insertion of the spring contact 220 within the counterbore of the mass 205. The at least partial closing of the split 403 generates a radial spring-loaded force in the spring contact 220. In one embodiment, the radial spring-loaded force is applied against the inner surface of the mass 205, maintaining the position of the spring contact 220 and/or providing electrical conductivity between the spring contact 220 and the mass 205. In another embodiment, a recess is provided within the counterbore of the mass 205, such as, for example, in a base of the mass 205. When the spring contact 220 is inserted to the recess within the mass 205, the partially closed body portion 201 expands into the recess, locking the spring contact 220 within the recess. In another embodiment, the inner surface of mass 205 contains a lead-in angle, so that split 403 of spring contact 220 gets partially closed during the press-in process, resulting in a radial spring-loaded force between spring contact 220 and mass 205. The break-off tab may be designed so that it will separate from the sheet at a pinch point, defined herein as its narrowest point 455.
Additionally, the partial closing of the split 403 provides a controlled deflection during a press-in, or insertion, of the spring contact 220 within the mass 205. Preferably, the controlled deflection produces no permanent deformation of the spring contact 220. The controlled deflection decreases a friction between the outer edge 402 and the inner surface, which decreases an insertion force necessary to insert the spring contact 220 within the mass 205. By decreasing the insertion force necessary to insert the spring contact 220, the split 403 decreases or eliminates deformation of the body portion 201 and/or the conductive contact finger 405 from the insertion force, providing a planar or substantially flat spring contact 220 with the mass 205. The controlled deflection also permits insertion of the spring contact 220 without regard to the circumferential orientation of the spring contact 220, and with no material removal from the mass 205. Furthermore, the decreased or eliminated deformation of the spring contact 220 and/or the radial spring-loaded force increase reliability in the insertion process, increase performance of the switch 200, provide chatter-proof contact between the spring contact 220 and the second conductive member 213, and/or increase an overall acceptable yield of the switch 200.
In one embodiment, the spring contact 220 is formed in a sheet of conductive material 210. A plurality of the spring contacts 200 may be formed in an array, each of the spring contacts 200 being attached to the sheet with a break-off tab 409. As shown in
Alternatively, as shown in
Positioning the remaining portion of the break-off tab 409 within the recess 408 or the split 403 decreases or eliminates contact between the remaining portion and the inner surface of the mass 205 during insertion of the spring contact 220. In one embodiment, decreasing or eliminating contact between the remaining portion and the inner surface of the mass 205 decreases or eliminates the formation of deleterious particulate from the remaining portion scraping the inner surface of the mass 205. In another embodiment, decreasing or eliminating contact between the remaining portion and the inner surface of the mass 205 decreases or eliminates deformation of the spring contact 220 during insertion. In a further embodiment, a geometry of the break-off tab 409 controls deflection of the spring contact 220 during the press-in process, providing increased reliability in the switch 200. The geometry of the break-off tab 409 and of recess 408 may be designed and positioned with a specific relationship to that of contact finger 405 so that conductive body portion 401 deflects in a controlled manner to minimize the stresses and deformation in both body portion 401 and contact finger 403.
A method of manufacturing the inertia switch 200 includes forming at least one spring contact 220 in the sheet of conductive material 210; separating the at least one spring contact 220 from the sheet 410; providing the mass 205; inserting the spring contact 220 within the mass 205, the radial force applied to the spring contact 220 by the mass 205 at least partially closing the split 403 within the body portion 201; providing the shell 201 with the first conductive member 212 secured thereto; positioning the mass 205 within the shell 201; providing the header 208 with the second conductive member 213 extending therethrough; positioning the biasing member 207 between the header 208 and the spring contact 220; and securing the header 208 to the shell 201, opposite the first conductive member 212. The biasing member 207 provides the biasing force between the spring contact 220 and the second conductive member 213.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.