Embodiments of the subject matter disclosed herein generally relate to pump systems, and in particular to valve assemblies used in pump systems.
Pumping systems may be used in a variety of applications, such as industrial applications where pumping systems are used to elevate a working fluid pressure. One such application is hydraulic fracturing systems, where pumps are used to increase a fluid pressure of a working fluid (e.g., fracturing fluid, slurry, etc.) for injection into an underground formation. The working fluid may include particulates, which are injected into fissures of the formation. When the fluid is removed from the formation, the particulates remain and “prop” open the fissures, facilitating flow of oil and gas. In many applications, reciprocating pumps are used where a fluid is introduced into a fluid end inlet passage and out through an outlet passage. A plunger reciprocates within a bore to add energy to the fluid.
Applicant recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for valve assemblies, and in various embodiments, fluid ends containing one or more valve seats.
In accordance with one or more embodiments, a valve member for a spring-loaded valve assembly includes a top portion having a spring retaining recess, the spring retaining recess extending into the top portion to form a void space, the void space to receive at least one coil of a spring, the spring retaining recess having a recess diameter that is smaller than a top portion diameter, wherein the recess diameter is larger than a rest diameter of a spring base including the coil, the spring retaining recess blocking expansion of the at least one coil when the spring is compressed. The valve member also includes a bottom portion coupled to the top portion. The valve member further includes a sealing element positioned axially below a shoulder of the top portion and legs coupled to the bottom portion.
In accordance with another embodiment, a valve assembly includes a valve seat having a strike face and a valve member configured to reciprocate such that a sealing element of the valve member moves into contact with the strike face and out of contact with the strike face, wherein movement of the valve member is driven, at least in part, by a spring biasing the valve member toward the valve seat. The valve member includes a bottom portion and legs coupled to the bottom portion. The valve member also includes a top portion coupled to the bottom portion, the sealing element being positioned, at least partially, between the top portion and the bottom portion, wherein a spring retaining recess is formed in the top portion along a top surface, the spring retaining recess having a depth that extends axially lower than the top surface to receive at least a portion of the spring such that a contact area between the spring and the top portion is axially lower than the top surface, and a diameter of the spring retaining recess being selected based, at least in part, on a spring base diameter to block expansion of a spring base beyond a predetermined position.
In accordance with another embodiment, a pump assembly includes a fluid end block having a first bore, a second bore, a third bore, and a fourth bore, the first bore extending from an external surface to an internal chamber, and the second bore extending from an opposite external surface to the internal chamber, the third and fourth bore extending independently toward the internal chamber, the internal chamber connecting each of the first bore, the second bore, the third bore, and the fourth bore. The pump assembly also includes a valve assembly arranged in at least one of the first bore or the second bore. The valve assembly includes a valve member having a bottom portion, legs coupled to the bottom portion, and a top portion coupled to the bottom portion, wherein a spring retaining recess is formed in the top portion along a top surface, the spring retaining recess having a depth that extends axially lower than the top surface to receive at least a portion of a spring such that a contact area between the spring and the top portion is axially lower than the top surface, and a diameter of the spring retaining recess being selected based, at least in part, on a spring base diameter to block expansion of a spring base beyond a predetermined position. The valve assembly also includes a valve seat arranged within at least one of the first bore or the second bore and positioned to receive contact from the valve member responsive to movement of the valve member.
In accordance with another embodiment, a valve member for a reciprocating pump assembly includes a valve body comprising a frustoconical surface, the valve body defining an outside annular cavity adjacent to the frustoconical surface and bounded by a top surface of the valve. The valve member also includes a seal arranged in the outside annular cavity, the seal positioned such that the seal is not on the top surface of the valve. The valve member further includes a recessed pocket sitting below the top surface of the valve and a conical spring retained in the recessed pocket.
The present technology will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:
The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.
When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions. Additionally, like reference numerals may be used for like components, but such use is for convenience purposes and not intended to limit the scope of the present disclosure. Moreover, use of terms such as substantially or approximately may refer to +/−10 percent.
Embodiments of the present disclosure are directed valve assembly configurations to facilitate spring retention and reduce spring fatigue. In at least one embodiment, a top portion of a valve member (e.g., valve, valve body) may include a spring recess (e.g., a pocket, a groove, a spring retainer) to retain at least a portion of a spring within a predefined radial extent, thereby limiting radial expansion/growth of at least a portion of the spring during compression. In at least one embodiment, at least a portion of the spring is positioned within the spring recess, which may lower a contact area of a spring base with respect to a top portion of the valve member. Accordingly, various areas of the top portion of the valve member, such as a shoulder positioned over one or more sealing elements, may be thicker, which may improve sealing element life by providing a larger area for heat dissipation, among other benefits.
In operation, a valve member may reciprocate between an open position and a closed position, where a spring may be arranged to drive the valve body toward the closed position and, when overcome by a fluid pressure, the valve body may move away from a sealing surface to permit flow of a fluid. As fluid pressure decreases, the valve body may be driven back toward the sealing surface via a spring force of the valve. While in the open position (and also at least partially during an installation position and/or a closed position), the spring may be compressed such that at least a portion of the spring “walks out” toward the outer diameter of the valve body. That is, a conical spring may be arranged such that a downward force applied to the spring may, at least in part, include one or more horizontal force elements that drive at least a portion of the spring base radially outward away from an axis extending through a center of the spring. This reduces a closing force of the spring, thereby potentially leading to more frequent maintenance intervals, which increases costs associated with various operations. Various embodiments of the present disclosure address this problem by incorporating a pocket or groove, which may generally be referred to as a recess or a recessed portion, into a top portion of the valve body. At least a portion of the spring may be seated within the pocket or groove. The pocket or groove may have a predetermined diameter that permits a predetermined amount of radial movement of the spring and also permits simplified installation. In at least one embodiment, outward movement of the spring base relative to the axis is restricted due to contact between the spring base and walls of the pocket of groove. Accordingly, various embodiments provide for a valve assembly arrangement to address early spring failures.
Embodiments may further be directed toward an increased shoulder thickness proximate a sealing element. For example, incorporation of the pocket or groove may permit for an increased height at a top portion of the spring, which may be positioned axially above the sealing element, which permits faster heat dissipation, which may further be associated with improved seal life. In at least one embodiment, the sealing element may be a polymer, an ethylene, a fluoropolymer, a tetrafluoroethylene, or any combination thereof. For example, in at least one embodiment, the sealing element is a polytetrafluorethylene (PTFE) that may be particularly selected for various pumping applications.
It should be appreciated that various components of the pump assembly 100 have been removed for clarity with the following discussion. For example, a power end has been removed in favor of focusing on the illustrated fluid end 102 of the pump assembly 100. The power end may include a crankshaft that is driven by an engine or motor to facilitate operations. The fluid end 102 includes a fluid end block 104 that may house one or more components discussed herein. A plunger rod 106 is driven (e.g., via the crankshaft) to reciprocate within the fluid end block 104 along a plunger axis 108. The plunger rod 106 is positioned within a bore 110 extending through at least a portion of the fluid end block 104. The illustrated bore 110 is arranged along the plunger axis 108 (e.g., first axis) and intersects a pressure chamber 112, which is arranged along a pressure chamber axis 114 (e.g., second axis), which is positioned substantially perpendicular to the plunger axis 108. It should be appreciated that the pump assembly 100 may include multiple plunger rod and pressure chamber arrangements, which may be referred to as a plunger throw. For example, the pump assembly 100 may be a triplex pump, quadplex pump, quintuplex pump, and the like.
The illustrated fluid end block 104 includes an inlet passage 116 and an outlet passage 118, which are generally coaxial and arranged along the pressure chamber axis 114. In other words, the inlet passage 116 and the outlet chamber 118 are axially aligned with respect to one another and/or the pressure chamber 112. In various embodiments, fluid enters the pressure chamber 112 via the inlet passage 116, for example on an up stroke of the plunger rod 106, and is driven out of the pressure chamber 112 to an outlet passage 120, for example on a down stroke of the plunger 106.
Respective valve assemblies 122, 124 are arranged within the inlet passage 116 and the outlet chamber 118. These valve assemblies 122, 124 are spring loaded in the illustrated embodiment, but it should be appreciated that such an arrangement is for illustrative purposes only. In operation, a differential pressure may drive movement of the valve assemblies. For example, as the plunger rod 106 is on the upstroke, pressure at the inlet passage 116 may overcome the spring force of the valve assembly 122, thereby driving fluid into the pressure chamber 112. However, on the down stroke, the valve assembly 122 may be driven to a closed position, while the spring force of the valve assembly 124 is overcome, thereby enabling the fluid to exit via the outlet passage 120.
In one or more embodiments, springs utilized within the system may be conical springs that undergo various cycles while valve bodies move between open positions and closed positions. For example, when a valve opens, the valve body may move axially away from the seal sealing surface to a position that is limited and/or controlled by a conical spring arranged at a top portion of the valve. Repeated operation may fatigue the spring, thereby reducing its effectiveness, and as a result, the spring may be scheduled for service or replacement at a same time as its associated valve assembly. However, operators may try to extend a useful life of their equipment, so springs may not be changed during valve assembly maintenance. Additionally, it may be desirable to maintain spring use for as long as the springs are effective to reduce costs. Springs used in these assemblies may have a failure mode in which a diameter of a base of the spring expands, allowing the spring to experience more axial compression and higher stresses than originally designed. These higher stresses in turn reduce the overall life of the spring, which may lead to potential pump failures where valves are no longer closing. Embodiments of the present disclosure may overcome these problems by incorporating a spring recess (e.g., a groove, a pocket, etc.) into a top portion of the valve member to restrict or otherwise block spring diameter increases beyond a predetermined position. Additionally, embodiments may incorporate a boss or knob associated with the spring recesses to facilitate installation and/or centering of the components. Furthermore, various embodiments enable an increased height to one or more top portions of the valve body, such as a shoulder proximate a sealing element, in order to improve heat dissipation and increase seal life.
In various embodiments, guide legs 212 of the valve member 204 may also lead to damage to various portions of the valve seat 202. For example, in the illustrated embodiment, the guide legs 212 extend into a bore 214 of the valve seat 202. Due to the presence of the corrosive fluid and/or the particulates, damage may occur along the bore 214, such as scarring. As a result, the pump assembly may be taken out of service for repairs, which may be expensive and also contribute to non-productive time at the well site.
As noted, operation of the illustrated valve assembly 200 may be, at least partially, spring loaded, where the spring has been removed in
In operation, the spring (not pictured) may be seated on the top surface 226. Over time, various periods of compression and expansion may cause forces to act on the spring base positioned on the top surface 226 to drive the spring base radially outward away from the axis 206. When this occurs, a closing force is reduced, thereby reducing the effectiveness of the valve assembly 200. For example, with a reduced closing force, the sealing element 216 may not be driven against the strike face 210 at the appropriate time, or at all, thereby causing leaks and other inefficiencies. However, the illustrated boss 224 does not overcome this issue at least because it does not affect outward radial movement of the spring base, and is merely positioned to act as either a hard stop to limit movement and/or for installation purposes. Accordingly, prior art valve assemblies cannot address the problems associated with spring base walk out.
In at least one embodiment, systems and methods of the present disclosure address problem associated with various valve members 204 by incorporating a spring recess (e.g., a pocket, a groove, etc.) into the top portion 218 that extends into and below the top surface 226. As will be described below, the spring recess may receive and support at least a portion of a spring and restrict expansion of a spring diameter beyond a predetermined point, thereby increasing a life of the spring. Furthermore, embodiments may include one or more features to facilitate installation and removal of the valve member 204 and/or the spring while also increasing an axial height of the top portion 218 to provide improved heat dissipation for the sealing element 216, thereby increasing seal life.
As noted above, the fluid end 304 operates based upon a controlled cavity restrained by two check valves (e.g., valve assemblies including valve members and valve seats) with one allowing relatively low pressure fluid (e.g., <200 psi) into the chamber and the second one preventing the water from existing the chamber to the higher pressure discharge chamber (e.g., >6000 psi). This allows the main pressure of the fluid end to fill up between strokes and then when the plunger is driven into the chamber, the fluid pressure increases until the discharge side valve opens, allowing the higher pressure fluid to exit into the discharge chamber and out of the fluid end. When the pressure equalizes over time, the conical spring 310 on the top of the valve member 306 forces the valve member 306 into the closed position and the plunger retracts, causing the volume of the chamber to increase and thereby the pressure of the chamber decreases such that the low-pressure supply valve opens and allows fluid into the main pressure pumping. When the valve member 306 moves to the open position, it moves axially away from a seat sealing surface 314 and is limited in how far it can open based upon the conical spring 310 on top of the valve member 306.
The pressures involved with this process may cause forces to act on the spring 310, where the compression of the spring 310 will drive a spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310), which may be referred to as the spring “walking out.” As the spring base 316 moves outward, a reduced closing force may be produced by the spring 310. For example, a spring height may 320 decrease, which may cause, at least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318, for example due to a blockage via one or more portions of the spring recess 308. In other words, the walking out of the spring base 316 may be blocked due to contact at the walls of the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that a recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. In other words, the spring recess 308 may be described as sitting below the top surface 334. The recess 308 includes a continuous wall 336 that has a rounded edge 338, but it should be appreciated that the edge 338 may not be rounded in other embodiments. In this example, a recess diameter 340 is less than a top portion diameter 342. It should be appreciated that the recess diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the recess diameter 340 may correspond to approximately a spring resting diameter. In this example, the spring base 316 is positioned within the recess 308 such that a space 344 is shown between the wall 336 and the spring base 316. As such, at least some radial expansion (e.g., movement outward from the axis 330) of the spring base 316 may be permitted. It should be appreciated that adjustments to the recess diameter 340 may control or otherwise limit a permitted expansion. For example, a larger diameter 340 may permit more outward expansion than a smaller diameter 340. Moreover, the space 344 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the space 344 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the space 344 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs. In various embodiments, the spring recess 308 may be described as retaining at least a portion of the spring 310, which as noted, may be a conical spring.
The illustrated configuration shows the recess 308, which in this example may be referred to as a pocket due to the lack of additional components or features within an area of the recess 308. That is, the illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and a recess depth 348. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308 such that an edge diameter is less than a recess diameter 340.
Further illustrated is a shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface 352, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
As noted above, as the fluid end 304 operates and the valve member 302 moves in and out of contact with the sealing surface 314, pressures may cause forces to act on the spring 310, where the compression of the spring 310 will drive the spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310). As the spring base 316 moves outward, or “walks out,” a reduced closing force may be produced by the spring 310. For example, the spring height may 320 decrease, which may cause, as least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318. In other words, the walking out of the spring base 316 may be blocked due to contact with one or more portions of the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
In this example, a boss 402 (e.g., extension, protrusion, platform, etc.) is shown within the spring recess 308 and extends in an axially upward direction along the axis 330. The boss 402 may form an inner barrier with respect to the spring base 316 such that the spring base 316 is blocked from both radially inward movement and radially outward movement beyond certain predetermined positions. Additionally, in various embodiments, the boss 402 may be used to center the spring 310 and/or as a handle during installation and removal.
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that the recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. The recess base 332 is also axially closer to the seal 326 than a boss surface 404, which in this configuration, is substantially flush with the top surface 334. The recess 308 includes the continuous wall 336 (e.g., continuous outer wall) that has the edge 338 (e.g., the rounded edge) and an inner continuous wall 406 formed by the boss 402. As a result, the recess 308 has both the outer diameter 340 (e.g., recess diameter) and an inner diameter 408 to effectively form a cylinder-shaped cutout or void into the top surface 334. As shown, the outer diameter 340 is greater than the inner diameter 408. In this example, the outer diameter 340 is less than the top portion diameter 342. It should be appreciated that the outer diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the outer diameter 340 may correspond to approximately a spring resting diameter. In this example, the spring base 316 is positioned within the recess 308 such that the space 344 is shown between the wall 336 and the spring base 316, and moreover, such that an inner space 410 is shown between the spring base 316 and the inner wall 406. As such, at least some radial expansion (e.g., movement outward) and/or radial compression (e.g., movement inward) of the spring base 316 may be permitted. It should be appreciated that adjustments to the outer diameter 340 may control or otherwise limit a permitted expansion. Moreover, the spaces 344, 410 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the spaces 344, 410 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the spaces 344, 410 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs.
In this configuration the boss 402 extends axially away from the recess base 332 and includes the boss surface 404, which is substantially planar and shown as being flush with the top surface 334. In various embodiments, the boss 402 may be used to center the spring 310. As shown, the boss 402 includes a boss diameter that corresponds to the inner diameter 408 of the recess 308, in that the boss 402 forms the inner diameter 408 via the wall 406. It should be appreciated that a boss height may be particularly selected and modified based on operating conditions and, in various embodiments, the boss height may extend axially above the top surface 334.
The illustrated configuration shows the recess 308, which in this example may be referred to as a groove due to the position of the boss 402 forming the inner diameter 408 of the recess 308. That is, the illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and the recess depth 348. Additionally, the inner wall 406 further defines the bounds of the recess such that an area in which the spring may be positioned is confined between the inner and outer diameters 408, 340. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322 and/or the boss surface 404 in configurations where the boss surface 404 is flush with the top surface 334. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308 such that an edge diameter is less than a recess diameter 340. Similarly, the inner wall 406 may also have the curved edge 412 that may be different shapes and/or overhang over the recess base 332.
In at least one embodiment, a boss height 414 is substantially equal to the recess depth 348. However, it should be appreciated that the boss height 414 may be greater than or less than the recess depth 348. The boss height 414 may correspond to a distance between the recess base 332 and the boss surface 404. However, it should be appreciated that reference to the boss height 414 may be made with respect to the top surface 334, such regarding a difference in axial distance between the boss surface 404 and the top surface 334.
Further illustrated is the shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. For example, a traditional valve configuration may include a boss that extends from the top surface of the valve member, rather than from a recessed location. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. Accordingly, the inclusion of the boss 402 may not affect the axial height of the top of the valve, and/or, may enable inclusion of a larger boss due to positioning of the boss 402 within the recess 308. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
As noted above, as the fluid end 304 operates and the valve member 302 moves in and out of contact with the sealing surface 314, pressures may cause forces to act on the spring 310, where the compression of the spring 310 will drive the spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310). As the spring base 316 moves outward, or “walks out,” a reduced closing force may be produced by the spring 310. For example, the spring height 320 may decrease, which may cause, as least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318. In other words, the walking out of the spring base 316 may be blocked due to contact at the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
In this example, a solid region 502, which may be a boss, is shown within the spring recess 308 and extending in an axially upward direction along the axis 330. The solid region 502 may form an inner barrier with respect to the spring base 316 such that the spring base 316 is blocked from both radially inward movement and radially outward movement beyond certain predetermined positions. Additionally, in various embodiments, the solid region 502 may be used to center the spring 310 and/or as a handle during installation and removal. As noted above, in various embodiments, the solid region 502 may be considered a boss, such as the boss 402 in
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that the recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. The recess base 332 is also axially closer to the seal 326 than a region surface 504, which in this configuration, is substantially flush with the top surface 334. As noted above, because the recess 308 may be machined into the top surface 334, the surfaces 334, 504 may be substantially level. The recess 308 includes the continuous wall 336 (e.g., continuous outer wall) that has the round edge 338 and the inner continuous wall 406 formed by the solid region 502. As a result, the recess 308 has both the outer diameter 340 (e.g., recess diameter) and the inner diameter 408 to effectively form a cylinder-shaped cutout or void into the top surface 334. As shown, the outer diameter 340 is greater than the inner diameter 408. In this example, the outer diameter 340 is less than the top portion diameter 342. It should be appreciated that the outer diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the outer diameter 340 may correspond to approximately a spring resting diameter. In this example, the spring base 316 is positioned within the recess 308 such that the space 344 is shown between the wall 336 and the spring base 316, and moreover, such that the inner space 410 is shown between the spring base 316 and the inner wall 406. As such, at least some radial expansion (e.g., movement outward) and/or radial compression (e.g., movement inward) of the spring base 316 may be permitted. It should be appreciated that adjustments to the outer diameter 340 may control or otherwise limit a permitted expansion. Moreover, the spaces 344, 410 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the spaces 344, 410 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the spaces 344, 410 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs.
In this configuration the region 502 extends axially away from the recess base 332 and includes the surface 504, which is substantially planar and shown as being flush with the top surface 334. In various embodiments, the region 502 may be used to center the spring 310. As shown, the region 502 includes a region diameter that corresponds to the inner diameter 408 of the recess 308, in that the region 502 forms the inner diameter 408 via the wall 406.
The illustrated configuration shows the recess 308, which in this example may be referred to as a dovetail groove to its cross-sectional appearance. The illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and the recess depth 348. Additionally, the inner wall 406 further defines the bounds of the recess 308 such that an area in which the spring may be positioned is confined between the inner and outer diameters 406, 340. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322 and/or the region surface 504 in configurations where the region surface 504 is flush with the top surface 334. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308, as shown by the dovetail cross-section, such that an edge diameter 506 is less than the recess diameter 340. Similarly, the inner wall 406 may also have the edge 412 that may be different shapes and/or overhang over the recess base 332, as shown by the dovetail cross-section, such that an inner edge diameter 508 is greater than the inner diameter 408.
Further illustrated is the shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. For example, a traditional valve configuration may include a boss that extends from the top surface of the valve member, rather than from a recessed location. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
As noted above, as the fluid end 304 operates and the valve member 302 moves in and out of contact with the sealing surface 314, pressures may cause forces to act on the spring 310, where the compression of the spring 310 will drive the spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310). As the spring base 316 moves outward, or “walks out,” a reduced closing force may be produced by the spring 310. For example, the spring height 320 may decrease, which may cause, as least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318. In other words, the walking out of the spring base 316 may be blocked due to contact at the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
In this example, a solid region 502, which may be a boss, is shown within the spring recess 308 and extending in an axially upward direction along the axis 330. The solid region 502 may form an inner barrier with respect to the spring base 316 such that the spring base 316 is blocked from both radially inward movement and radially outward movement beyond certain predetermined positions. Additionally, in various embodiments, the solid region 502 may be used to center the spring 310 and/or as a handle during installation and removal. As noted above, in various embodiments, the solid region 502 may be considered a boss, such as the boss 400 in
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that the recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. The recess base 332 is also axially closer to the seal 326 than the region surface 504, which in this configuration, is substantially flush with the top surface 334. As noted above, because the recess 308 may be machined into the top surface 334, the surfaces 334, 504 may be substantially level. The recess 308 includes the continuous wall 336 (e.g., continuous outer wall) that has the round edge 338 and the inner continuous wall 406 formed by the solid region 502. As a result, the recess 308 has both the outer diameter 340 (e.g., recess diameter) and the inner diameter 408 to effectively form a cylinder-shaped cutout or void into the top surface 334. As shown, the outer diameter 340 is greater than the inner diameter 408. In this example, the outer diameter 340 is less than the top portion diameter 342. It should be appreciated that the outer diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the outer diameter 340 may correspond to approximately a spring resting diameter. In this example, the spring base 316 is positioned within the recess 308 such that the space 344 is shown between the wall 336 and the spring base 316, and moreover, such that the inner space 410 is shown between the spring base 316 and the inner wall 406. As such, at least some radial expansion (e.g., movement outward) and/or radial compression (e.g., movement inward) of the spring base 316 may be permitted. It should be appreciated that adjustments to the outer diameter 340 may control or otherwise limit a permitted expansion. Moreover, the spaces 344, 410 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the spaces 344, 410 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the spaces 344, 410 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs.
In this configuration the region 502 extends axially away from the recess base 332 and includes the surface 504, which is substantially planar and shown as being flush with the top surface 334. In various embodiments, the region 502 may be used to center the spring 310. As shown, the region 502 includes a region diameter that corresponds to the inner diameter 408 of the recess 308, in that the region 502 forms the inner diameter 408 via the wall 406.
The illustrated configuration shows the recess 308, which in this example may be referred to as a half dovetail groove due to its cross-sectional appearance. The dovetailed half is shown along the outer diameter of the recess 308, but it should be appreciated that the inner diameter may include the dovetailed portion. The illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and the recess depth 348. Additionally, the inner wall 406 further defines the bounds of the recess such that an area in which the spring may be positioned is confined between the inner and outer diameters 408, 340. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322 and/or the region surface 504 in configurations where the region surface 504 is flush with the top surface 334. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308, as shown by the half dovetail appearance, such that the edge diameter 506 is less than the recess diameter 340. In this configuration, the inner wall 406 is substantially planar/vertical, and as a result, the inner diameter 408 is shown as being consistent along the inner wall 406.
Further illustrated is the shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. For example, a traditional valve configuration may include a boss that extends from the top surface of the valve member, rather than from a recessed location. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
As noted above, as the fluid end 304 operates and the valve member 302 moves in and out of contact with the sealing surface 314, pressures may cause forces to act on the spring 310, where the compression of the spring 310 will drive the spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310). As the spring base 316 moves outward, or “walks out,” a reduced closing force may be produced by the spring 310. For example, the spring height 320 may decrease, which may cause, as least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318. In other words, the walking out of the spring base 316 may be blocked due to contact at the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that the recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. The recess base 332 is also axially closer to the seal 326 than the top surface 334. As noted above, the recess 308 may be machined into the top surface 334. The recess 308 includes the continuous wall 336 (e.g., continuous outer wall) that has the round edge 338 representative of the outer diameter 340 (e.g., recess diameter). In this example, the outer diameter 340 is less than the top portion diameter 342. It should be appreciated that the outer diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the outer diameter 340 may correspond to approximately a spring resting diameter. In this example, the spring base 316 is positioned within the recess 308 such that the space 344 is shown between the wall 336 and the spring base 316. As such, at least some radial expansion (e.g., movement outward) of the spring base 316 may be permitted. It should be appreciated that adjustments to the outer diameter 340 may control or otherwise limit a permitted expansion. Moreover, the space 344 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the space 344 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the space 344 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs.
The illustrated configuration shows the recess 308, which in this example may be referred to as a half dovetail pocket due to its cross-sectional appearance. The dovetailed half is shown along the outer diameter of the recess 308. The illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and the recess depth 348. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308, as shown by the half dovetail cross-section, such that the edge diameter 506 is less than the recess diameter 340.
Further illustrated is the shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. For example, a traditional valve configuration may include a boss that extends from the top surface of the valve member, rather than from a recessed location. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
As noted above, as the fluid end 304 operates and the valve member 302 moves in and out of contact with the sealing surface 314, pressures may cause forces to act on the spring 310, where the compression of the spring 310 will drive the spring base 316 radially outward (e.g., toward walls 318 of the bore 302 to increase a base diameter of the spring 310). As the spring base 316 moves outward, or “walks out,” a reduced closing force may be produced by the spring 310. For example, the spring height 320 may decrease, which may cause, as least in part, the reduced closing force. This is undesirable in that it may cause the valve member 306 to not fully close or to close at the wrong time. Embodiments of the present disclosure overcome this problem by utilizing the spring recess 308 to restrict radial movement of the spring 310 such that the base 316 cannot move radially outward toward the walls 318. In other words, the walking out of the spring base 316 may be blocked due to contact at the recess 308, which prevents further radial or outward movement of the spring base 316. In at least one embodiment, a base diameter may be known and, based on the springs 310 intended for different operations, a recess diameter may be particularly selected to permit at least some expansion and/or to block expansion entirely, based on the desired or expected operating conditions. Accordingly, spring life may be improved due to the reduced likelihood of a reduction in spring height due to radial movement of the spring base.
In this example, the recess 308 includes a platform 802, which may be similar to a boss, and a knob 804 extending from the platform 802. The knob 804 is shown extending along the axis 330 and beyond the top surface of the top portion, as will be described below.
The spring recess 308 is shown extending into the top portion 322 along the axis 330 such that the recess base 332 is axially lower than the top surface 334 of the top portion 322. That is, the recess base 332 is axially closer to the seal 326 than the top surface 334. In other words, the recess base 332 is positioned, at least in part, between the top surface 334 and the seal 326. As noted above, the recess 308 may be machined into the top surface 334. The recess 308 includes the continuous wall 336 (e.g., continuous outer wall) that has the round edge 338 representative of the outer diameter 340 (e.g., recess diameter). In this example, the outer diameter 340 is less than the top portion diameter 342. It should be appreciated that the outer diameter 340 may be particularly selected based, at least in part, on one or more spring characteristics. For example, the outer diameter 340 may correspond to approximately a spring resting diameter. Further illustrated is the platform 802 having a platform diameter, which is smaller than the outer diameter 340. In at least one embodiment, the platform diameter may correspond to the inner diameter 408 of the recess 308 and may, in various embodiments, include the inner wall 406 that may radially constrain the spring base 316.
In this example, the spring base 316 is positioned within the recess 308 such that the space 344 is shown between the wall 336 and the spring base 316 and the inner space 410 is shown between the wall 806 and the spring base 316. As such, at least some radial expansion (e.g., movement outward) of the spring base 316 may be permitted. It should be appreciated that adjustments to the outer diameter 340 may control or otherwise limit a permitted expansion. Moreover, the spaces 344, 410 may allow for easier installation by providing some give or degrees of freedom during installation while still restricting movement of the spring base 316 in operation. Furthermore, as noted above, it should be appreciated that the illustrated example is in a non-compressed position and that, at installation, the spring 310 is compressed by the retainer 312. Accordingly, the space 344 may be sized such that the spring base 316 expands upon installation and may reduce a size of or eliminate the space 344 upon installation. Compression of the spring 310 may drive one or more coils into the recess 308, but it should be appreciated that the recess 308 may be sized to receive a reasonable number of coils. In at least one embodiment, the spring recess 308 is centered along the axis 330, but in one or more embodiments, the spring recess 308 may be positioned at a different location or there may be multiple recesses 308 in embodiments where there are multiple springs.
The platform 802 is shown elevated above the recess base 332 and further includes the knob 804 extending axially upward from the platform 802. In various embodiments this forms a two-tier structure within the recess 332 such that the platform 802 may be associated with spring movement while the knob 804 is associated with installation/removal and/or providing a hard stop during operation of the valve member 306.
The illustrated configuration shows the recess 308, which in this example may be referred to as a pocket due to its cross-sectional appearance. The illustrated recess 308 may correspond to a void or a removed portion that extends axially into the top portion 322. This example includes the wall 336 that extends circumferentially to form the recess 308 having the recess diameter 340 and the recess depth 348. The recess depth 348 may correspond to a distance between the recess base 332 and the top surface 334 of the top portion 322. The depth 348 may be approximately equal to a thickness of one coil of the spring, but it should be appreciated that other depths 348 may be used in various embodiments and the coil thickness may be one factor utilized to determine the depth 348. The wall 336 includes the curved edge 338, which as noted above may be a variety of different shapes, such as planar, slanted, or the like. Furthermore, the edge 338 may overhang over the recess 308, as shown by the half dovetail cross-section, such that an edge diameter 506 is less than a recess diameter 340.
In at least one embodiment, the platform 802 is shown having a platform surface 806 that is axially higher than the recess base 332. Additionally, extending in an axially upward direction from the platform 802 is the knob 804. In this configuration, a knob surface 808 is axially higher than the top surface 334. In at least one embodiment, the knob 804 may be utilized for installation and removal to provide an area for operations to grip and manipulate the valve member 306. In various embodiments, the knob 804 may also serve as a hard stop during operations.
Further illustrated is the shoulder thickness 350, which may correspond to a distance between an interface 352 between the seal 326 and the top surface 334. It should be appreciated that various features may be included at the interface, such as teeth or the like to facilitate gripping the seal 326, and that the distance described above corresponds to a lowest point of the interface 352. In this example, the thickness 350 may be larger than a thickness of a corresponding valve member that does not include the recess 308. For example, in various embodiments, a top surface of a valve member, or features along the top surface, may act as a hard stop for valve member movement. For example, a traditional valve configuration may include a boss that extends from the top surface of the valve member, rather than from a recessed location. As a result, an axial height of the top portion may be limited or restricted. This axial height may be measured from a location where the spring contacts the valve member. By adding the depth 348 of the recess, which lowers the contact point of the spring, the thickness 350 may be increased, thereby providing additional support at the seal 326, which is the region that contacts the seat sealing surface 314 (
The foregoing disclosure and description of the disclosed embodiments is illustrative and explanatory of the embodiments of the disclosure. Various changes in the details of the illustrated embodiments can be made within the scope of the appended claims without departing from the true spirit of the disclosure. The embodiments of the present disclosure should only be limited by the following claims and their legal equivalents. As will be described above, in one or more embodiments the packing sleeve 220 is secured to the block 104 using one or more fasteners that may extend through one or more intermediate components. In at least one embodiment, a retaining system may not include a preload element.
This application is a continuation of U.S. patent application Ser. No. 17/728,568, titled “SPRING CONTROLLING VALVE,” filed Apr. 25, 2022, now U.S. Pat. No. 11,434,900, issued Sep. 6, 2022, the full disclosure of which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1316539 | Ford | Sep 1919 | A |
1364848 | Walsh | Jan 1921 | A |
1576269 | Durant | Mar 1926 | A |
1595459 | Durant | Aug 1926 | A |
1671139 | Wilson | May 1928 | A |
1873318 | Eason, Jr. | Aug 1932 | A |
1914737 | Elms | Jun 1933 | A |
1948628 | Penick | Feb 1934 | A |
1963684 | Shimer | Jun 1934 | A |
1963685 | Shimer | Jun 1934 | A |
2011547 | Campbell | Aug 1935 | A |
2069443 | Hill | Feb 1937 | A |
2103504 | Whiteley | Dec 1937 | A |
2143399 | Abercrombie | Jan 1939 | A |
2151442 | Hardy | Mar 1939 | A |
2163472 | Shimer | Jun 1939 | A |
2252488 | Bierend | Aug 1941 | A |
2304991 | Foster | Dec 1942 | A |
2506128 | Ashton | May 1950 | A |
2547831 | Mueller | Apr 1951 | A |
2713522 | Petch | Jul 1955 | A |
2719737 | Fletcher | Oct 1955 | A |
2745631 | Shellman | May 1956 | A |
2756960 | Carrolle | Jul 1956 | A |
2898082 | Von Almen | Aug 1959 | A |
2969951 | Walton | Jan 1961 | A |
2977874 | Ritzerfeld et al. | Apr 1961 | A |
2982515 | Rule | May 1961 | A |
2983281 | Bynum | May 1961 | A |
3049082 | Barry | Aug 1962 | A |
3053500 | Atkinson | Sep 1962 | A |
3063467 | Roberts, Jr. | Nov 1962 | A |
3224817 | Carter | Dec 1965 | A |
3276390 | Bloudoff | Oct 1966 | A |
3277837 | Pangburn | Oct 1966 | A |
3288475 | Benoit | Nov 1966 | A |
3459363 | Miller | Aug 1969 | A |
3474808 | Elliott | Oct 1969 | A |
3483885 | Leathers | Dec 1969 | A |
3489098 | Morris | Jan 1970 | A |
3489170 | Leman | Jan 1970 | A |
3512787 | Kennedy | May 1970 | A |
3590387 | Landis | Jun 1971 | A |
3640501 | Walton | Feb 1972 | A |
3809508 | Uchiyama | May 1974 | A |
3907307 | Maurer | Sep 1975 | A |
3931755 | Hatridge | Jan 1976 | A |
4044834 | Perkins | Aug 1977 | A |
4076212 | Leman | Feb 1978 | A |
4184814 | Parker | Jan 1980 | A |
4219204 | Pippert | Aug 1980 | A |
4277229 | Pacht | Jul 1981 | A |
4331741 | Wilson | May 1982 | A |
4395050 | Wirz | Jul 1983 | A |
4398731 | Gorman | Aug 1983 | A |
4440404 | Roach | Apr 1984 | A |
4508133 | Hamid | Apr 1985 | A |
4518359 | Yao-Psong | May 1985 | A |
4527806 | Ungchusri | Jul 1985 | A |
4565297 | Korner | Jan 1986 | A |
4662392 | Vadasz | May 1987 | A |
4754950 | Tada | Jul 1988 | A |
4763876 | Oda | Aug 1988 | A |
4770206 | Sjoberg | Sep 1988 | A |
4807890 | Gorman | Feb 1989 | A |
4811758 | Piper | Mar 1989 | A |
4861241 | Gamboa | Aug 1989 | A |
4872395 | Bennitt et al. | Oct 1989 | A |
4919719 | Abe | Apr 1990 | A |
4951707 | Johnson | Aug 1990 | A |
5020490 | Seko | Jun 1991 | A |
5052435 | Crudup | Oct 1991 | A |
5061159 | Pryor | Oct 1991 | A |
5062450 | Bailey | Nov 1991 | A |
5080713 | Ishibashi | Jan 1992 | A |
5088521 | Johnson | Feb 1992 | A |
5127807 | Eslinger | Jul 1992 | A |
5131666 | Hutchens | Jul 1992 | A |
5135238 | Wells | Aug 1992 | A |
5149107 | Maringer | Sep 1992 | A |
5201491 | Domangue | Apr 1993 | A |
5209495 | Palmour | May 1993 | A |
5249600 | Blume | Oct 1993 | A |
5267736 | Pietsch | Dec 1993 | A |
5273570 | Sato | Dec 1993 | A |
5314659 | Hidaka | May 1994 | A |
5478048 | Salesky | Dec 1995 | A |
5533245 | Stanton | Jul 1996 | A |
5540570 | Schuller | Jul 1996 | A |
5572920 | Kennedy | Nov 1996 | A |
5626345 | Wallace | May 1997 | A |
5636688 | Bassinger | Jun 1997 | A |
5674449 | Liang | Oct 1997 | A |
5834664 | Aonuma | Nov 1998 | A |
5859376 | Ishibashi | Jan 1999 | A |
5895517 | Kawamura | Apr 1999 | A |
5949003 | Aoki | Sep 1999 | A |
6139599 | Takahashi | Oct 2000 | A |
6200688 | Liang | Mar 2001 | B1 |
6209445 | Roberts, Jr. | Apr 2001 | B1 |
6328312 | Schmitz | Dec 2001 | B1 |
6340377 | Kawata | Jan 2002 | B1 |
6382940 | Blume | May 2002 | B1 |
6436338 | Qiao | Aug 2002 | B1 |
6446939 | Hoppe | Sep 2002 | B1 |
6460620 | LaFleur | Oct 2002 | B1 |
6464749 | Kawase | Oct 2002 | B1 |
6482275 | Qiao | Nov 2002 | B1 |
6485678 | Liang | Nov 2002 | B1 |
6544012 | Blume | Apr 2003 | B1 |
6571684 | Nov et al. | Jun 2003 | B1 |
6623259 | Blume | Sep 2003 | B1 |
6634236 | Mars | Oct 2003 | B2 |
6641112 | Antoff | Nov 2003 | B2 |
6695007 | Vicars | Feb 2004 | B2 |
6702905 | Qiao | Mar 2004 | B1 |
6880802 | Hara | Apr 2005 | B2 |
6910871 | Blume | Jun 2005 | B1 |
6916444 | Liang | Jul 2005 | B1 |
6951165 | Kuhn | Oct 2005 | B2 |
6951579 | Koyama | Oct 2005 | B2 |
6955181 | Blume | Oct 2005 | B1 |
6959916 | Chigasaki | Nov 2005 | B2 |
7000632 | McIntire | Feb 2006 | B2 |
7036824 | Kunz | May 2006 | B2 |
7144440 | Ando | Dec 2006 | B2 |
7168440 | Blume | Jan 2007 | B1 |
7186097 | Blume | Mar 2007 | B1 |
7222837 | Blume | May 2007 | B1 |
7290560 | Orr | Nov 2007 | B2 |
7296591 | Moe | Nov 2007 | B2 |
7335002 | Vicars | Feb 2008 | B2 |
7341435 | Vicars | Mar 2008 | B2 |
7398955 | Weingarten | Jul 2008 | B2 |
7506574 | Jensen | Mar 2009 | B2 |
7513483 | Blume | Apr 2009 | B1 |
7513759 | Blume | Apr 2009 | B1 |
7611590 | Liang | Nov 2009 | B2 |
7681589 | Schwegman | Mar 2010 | B2 |
7682471 | Levin | Mar 2010 | B2 |
7726026 | Blume | Jun 2010 | B1 |
7748310 | Kennedy | Jul 2010 | B2 |
7754142 | Liang | Jul 2010 | B2 |
7754143 | Qiao | Jul 2010 | B2 |
7757396 | Sawada | Jul 2010 | B2 |
7789133 | McGuire | Sep 2010 | B2 |
7793913 | Hara | Sep 2010 | B2 |
7828053 | McGuire | Nov 2010 | B2 |
7845413 | Shampine | Dec 2010 | B2 |
7861738 | Erbes | Jan 2011 | B2 |
7866346 | Walters | Jan 2011 | B1 |
7891374 | Vicars | Feb 2011 | B2 |
7954510 | Schwegman | Jun 2011 | B2 |
7992635 | Cherewyk | Aug 2011 | B2 |
8069923 | Blanco | Dec 2011 | B2 |
8075661 | Chen | Dec 2011 | B2 |
8083506 | Maki | Dec 2011 | B2 |
8100407 | Stanton | Jan 2012 | B2 |
8141849 | Blume | Mar 2012 | B1 |
8147227 | Blume | Apr 2012 | B1 |
8181970 | Smith | May 2012 | B2 |
8261771 | Witkowski | Sep 2012 | B2 |
8287256 | Shafer | Oct 2012 | B2 |
8291927 | Johnson | Oct 2012 | B2 |
8317498 | Gambier | Nov 2012 | B2 |
8375980 | Higashiyama | Feb 2013 | B2 |
8376723 | Kugelev | Feb 2013 | B2 |
8402880 | Patel | Mar 2013 | B2 |
8430075 | Qiao | Apr 2013 | B2 |
D687125 | Hawes | Jul 2013 | S |
8479700 | Qiao | Jul 2013 | B2 |
8511218 | Cordes | Aug 2013 | B2 |
8522667 | Clemens | Sep 2013 | B2 |
8528585 | McGuire | Sep 2013 | B2 |
8534691 | Schaffer | Sep 2013 | B2 |
8613886 | Qiao | Dec 2013 | B2 |
8662864 | Bayyouk | Mar 2014 | B2 |
8662865 | Bayyouk | Mar 2014 | B2 |
8668470 | Bayyouk | Mar 2014 | B2 |
8707853 | Dille | Apr 2014 | B1 |
8733313 | Sato | May 2014 | B2 |
8784081 | Blume | Jul 2014 | B1 |
8828312 | Yao | Sep 2014 | B2 |
8870554 | Kent | Oct 2014 | B2 |
8893806 | Williamson | Nov 2014 | B2 |
8894392 | Blume | Nov 2014 | B1 |
8915722 | Blume | Dec 2014 | B1 |
8940110 | Qiao | Jan 2015 | B2 |
8978695 | Witkowkski | Mar 2015 | B2 |
8998593 | Vicars | Apr 2015 | B2 |
9010412 | McGuire | Apr 2015 | B2 |
9103448 | Witkowski | Aug 2015 | B2 |
9150945 | Bei | Oct 2015 | B2 |
9157136 | Chou | Oct 2015 | B2 |
9157468 | Dille | Oct 2015 | B2 |
9206910 | Kahn | Dec 2015 | B2 |
D748228 | Bayyouk | Jan 2016 | S |
9260933 | Artherholt | Feb 2016 | B2 |
9261195 | Toynbee | Feb 2016 | B2 |
9273543 | Baca | Mar 2016 | B2 |
9284631 | Radon | Mar 2016 | B2 |
9284953 | Blume | Mar 2016 | B2 |
9285040 | Forrest | Mar 2016 | B2 |
9291274 | Blume | Mar 2016 | B1 |
9322243 | Baca | Apr 2016 | B2 |
9334547 | Qiao | May 2016 | B2 |
9340856 | Otobe | May 2016 | B2 |
9359921 | Hashimoto | Jun 2016 | B2 |
9365913 | Imaizumi | Jun 2016 | B2 |
9371919 | Forrest | Jun 2016 | B2 |
9376930 | Kim | Jun 2016 | B2 |
9377019 | Blume | Jun 2016 | B1 |
9382940 | Lee | Jul 2016 | B2 |
9416887 | Blume | Aug 2016 | B2 |
9435454 | Blume | Sep 2016 | B2 |
9441776 | Byrne | Sep 2016 | B2 |
9458743 | Qiao | Oct 2016 | B2 |
9464730 | Bihlet | Oct 2016 | B2 |
9500195 | Blume | Nov 2016 | B2 |
9506382 | Yeager | Nov 2016 | B2 |
9528508 | Thomeer | Dec 2016 | B2 |
9528631 | McCarty | Dec 2016 | B2 |
9534473 | Morris | Jan 2017 | B2 |
9534691 | Miller | Jan 2017 | B2 |
9556761 | Koyama | Jan 2017 | B2 |
9568138 | Arizpe | Feb 2017 | B2 |
9605767 | Chhabra | Mar 2017 | B2 |
9631739 | Belshan | Apr 2017 | B2 |
D787029 | Bayyouk | May 2017 | S |
9638075 | Qiao | May 2017 | B2 |
9638337 | Witkowski | May 2017 | B2 |
9650882 | Zhang | May 2017 | B2 |
9651067 | Beschorner | May 2017 | B2 |
9689364 | Mack | Jun 2017 | B2 |
9695812 | Dille | Jul 2017 | B2 |
9732746 | Chandrasekaran | Aug 2017 | B2 |
9732880 | Haines | Aug 2017 | B2 |
9745968 | Kotapish | Aug 2017 | B2 |
9784262 | Bayyouk | Oct 2017 | B2 |
9822894 | Bayyouk | Nov 2017 | B2 |
9845801 | Shek | Dec 2017 | B1 |
9857807 | Baca | Jan 2018 | B2 |
9915250 | Brasche | Mar 2018 | B2 |
9920615 | Zhang | Mar 2018 | B2 |
9927036 | Dille | Mar 2018 | B2 |
9945362 | Skurdalsvold | Apr 2018 | B2 |
9945375 | Zhang | Apr 2018 | B2 |
9989044 | Bayyouk | Jun 2018 | B2 |
10029540 | Seeger | Jul 2018 | B2 |
10041490 | Jahnke | Aug 2018 | B1 |
10082137 | Graham | Sep 2018 | B2 |
10094478 | Iijima | Oct 2018 | B2 |
10113679 | Shuck | Oct 2018 | B2 |
10184470 | Barnett, Jr. | Jan 2019 | B2 |
10190197 | Baker | Jan 2019 | B2 |
10197172 | Fuller | Feb 2019 | B2 |
10215172 | Wood | Feb 2019 | B2 |
10221848 | Bayyouk | Mar 2019 | B2 |
10240594 | Barnhouse, Jr. | Mar 2019 | B2 |
10240597 | Bayyouk | Mar 2019 | B2 |
10247182 | Zhang | Apr 2019 | B2 |
10247184 | Chunn | Apr 2019 | B2 |
10273954 | Brown | Apr 2019 | B2 |
10288178 | Nowell | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10330097 | Skurdalsvold | Jun 2019 | B2 |
10344757 | Stark | Jul 2019 | B1 |
10364487 | Park | Jul 2019 | B2 |
D856498 | Bayyouk | Aug 2019 | S |
10378535 | Mahmood | Aug 2019 | B2 |
10378538 | Blume | Aug 2019 | B2 |
10393113 | Wagner | Aug 2019 | B2 |
10400764 | Wagner | Sep 2019 | B2 |
10415348 | Zhang | Sep 2019 | B2 |
10428406 | Yao | Oct 2019 | B2 |
10428949 | Miller | Oct 2019 | B2 |
10436193 | Jahnke | Oct 2019 | B1 |
10443456 | Hoeg | Oct 2019 | B2 |
10465680 | Guerra | Nov 2019 | B1 |
10472702 | Yeh | Nov 2019 | B2 |
10487528 | Pozybill | Nov 2019 | B2 |
10519070 | Sanders | Dec 2019 | B2 |
10519950 | Foster | Dec 2019 | B2 |
10526862 | Witkowski | Jan 2020 | B2 |
10527036 | Blume | Jan 2020 | B2 |
10557446 | Stecklein | Feb 2020 | B2 |
10557576 | Witkowski | Feb 2020 | B2 |
10557580 | Mendyk | Feb 2020 | B2 |
10563494 | Graham | Feb 2020 | B2 |
10563649 | Zhang | Feb 2020 | B2 |
10570491 | Hong | Feb 2020 | B2 |
10576538 | Kato | Mar 2020 | B2 |
10577580 | Abbas | Mar 2020 | B2 |
10577850 | Ozkan | Mar 2020 | B2 |
10591070 | Nowell | Mar 2020 | B2 |
10605374 | Takaki | Mar 2020 | B2 |
10626856 | Coldren | Apr 2020 | B2 |
10633925 | Panda | Apr 2020 | B2 |
10634260 | Said | Apr 2020 | B2 |
10640854 | Hu | May 2020 | B2 |
10655623 | Blume | May 2020 | B2 |
10663071 | Bayyouk | May 2020 | B2 |
10670013 | Foster | Jun 2020 | B2 |
10670153 | Filipow | Jun 2020 | B2 |
10670176 | Byrne | Jun 2020 | B2 |
10677109 | Qiao | Jun 2020 | B2 |
10677240 | Graham | Jun 2020 | B2 |
10677365 | Said | Jun 2020 | B2 |
10711754 | Nelson | Jul 2020 | B2 |
10711778 | Buckley | Jul 2020 | B2 |
10718441 | Myers | Jul 2020 | B2 |
10731523 | Qu | Aug 2020 | B2 |
10731643 | DeLeon, II | Aug 2020 | B2 |
10738928 | Arizpe | Aug 2020 | B2 |
10753490 | Fuller | Aug 2020 | B2 |
10753495 | Bayyouk | Aug 2020 | B2 |
10767520 | Hattiangadi | Sep 2020 | B1 |
10771567 | Sundaresan | Sep 2020 | B2 |
10774828 | Smith | Sep 2020 | B1 |
10781803 | Kumar | Sep 2020 | B2 |
10787725 | Fujieda | Sep 2020 | B2 |
10801627 | Warbey | Oct 2020 | B2 |
10808488 | Witkowski | Oct 2020 | B2 |
10815988 | Buckley | Oct 2020 | B2 |
10830360 | Frank | Nov 2020 | B2 |
10851775 | Stark | Dec 2020 | B2 |
10865325 | Nakao | Dec 2020 | B2 |
10907738 | Nowell | Feb 2021 | B2 |
10914171 | Foster | Feb 2021 | B2 |
10934899 | Hattiangadi | Mar 2021 | B2 |
10941765 | Nowell | Mar 2021 | B2 |
10941866 | Nowell | Mar 2021 | B2 |
10954938 | Stark | Mar 2021 | B2 |
10961607 | Oshima | Mar 2021 | B2 |
10962001 | Nowell | Mar 2021 | B2 |
D916240 | Nowell | Apr 2021 | S |
10968717 | Tran | Apr 2021 | B2 |
10988834 | Lee | Apr 2021 | B2 |
10989321 | Hattiangadi | Apr 2021 | B2 |
10995738 | Blume | May 2021 | B2 |
11028662 | Rhodes | Jun 2021 | B2 |
11041570 | Buckley | Jun 2021 | B1 |
11078903 | Nowell | Aug 2021 | B2 |
11104981 | Chen | Aug 2021 | B2 |
11105185 | Spencer | Aug 2021 | B2 |
11105327 | Hurst | Aug 2021 | B2 |
11105328 | Bryne | Aug 2021 | B2 |
11105428 | Warbey | Aug 2021 | B2 |
11111915 | Bayyouk | Sep 2021 | B2 |
11131397 | Yan | Sep 2021 | B2 |
D933104 | Ellisor | Oct 2021 | S |
D933105 | Ellisor | Oct 2021 | S |
D933106 | Mullins | Oct 2021 | S |
D933107 | Mullins | Oct 2021 | S |
11149514 | Witkowski | Oct 2021 | B2 |
11162859 | Lei | Nov 2021 | B2 |
11181101 | Byrne | Nov 2021 | B2 |
11181108 | Brooks | Nov 2021 | B2 |
11231111 | Hurst | Jan 2022 | B2 |
11242849 | Smith | Feb 2022 | B1 |
11353117 | Smith | Jun 2022 | B1 |
11384756 | Smith | Jul 2022 | B1 |
11391374 | Ellisor | Jul 2022 | B1 |
11421679 | Mullins | Aug 2022 | B1 |
11421680 | Smith | Aug 2022 | B1 |
11434900 | Alex | Sep 2022 | B1 |
11473686 | Bayyouk | Oct 2022 | B2 |
11566713 | Poremski | Jan 2023 | B2 |
D980876 | Smith | Mar 2023 | S |
D986928 | Smith et al. | May 2023 | S |
20020084004 | Takahashi | Jul 2002 | A1 |
20020124961 | Porter | Sep 2002 | A1 |
20020159914 | Yeh | Oct 2002 | A1 |
20030205864 | Dietle | Nov 2003 | A1 |
20030233910 | Jeong | Dec 2003 | A1 |
20040170507 | Vicars | Sep 2004 | A1 |
20040194576 | Ando | Oct 2004 | A1 |
20040234404 | Vicars | Nov 2004 | A1 |
20040255410 | Schonewille | Dec 2004 | A1 |
20040258557 | Shun | Dec 2004 | A1 |
20050095156 | Wolters | May 2005 | A1 |
20050200081 | Stanton | Sep 2005 | A1 |
20050226754 | Orr | Oct 2005 | A1 |
20060002806 | Baxter | Jan 2006 | A1 |
20060027779 | McGuire | Feb 2006 | A1 |
20060045782 | Kretzinger | Mar 2006 | A1 |
20070086910 | Liang | Apr 2007 | A1 |
20070154342 | Tu | Jul 2007 | A1 |
20070273105 | Stanton | Nov 2007 | A1 |
20070295411 | Schwegman | Dec 2007 | A1 |
20080031769 | Yeh | Feb 2008 | A1 |
20080092384 | Schaake | Apr 2008 | A1 |
20080279706 | Gambier | Nov 2008 | A1 |
20090041611 | Sathian | Feb 2009 | A1 |
20090261575 | Bull | Oct 2009 | A1 |
20090278069 | Blanco | Nov 2009 | A1 |
20100230628 | Stefina | Sep 2010 | A1 |
20100272597 | Qiao | Oct 2010 | A1 |
20110000547 | Joseph | Jan 2011 | A1 |
20110079302 | Hawes | Apr 2011 | A1 |
20110142701 | Small | Jun 2011 | A1 |
20110189040 | Vicars | Aug 2011 | A1 |
20110255993 | Ochoa | Oct 2011 | A1 |
20120141308 | Saini | Jun 2012 | A1 |
20120163969 | Ongole | Jun 2012 | A1 |
20120259593 | El-Zein | Oct 2012 | A1 |
20120304821 | Ando | Dec 2012 | A1 |
20130020521 | Byrne | Jan 2013 | A1 |
20130202457 | Bayyouk | Aug 2013 | A1 |
20130202458 | Byrne | Aug 2013 | A1 |
20130319220 | Luharuka | Dec 2013 | A1 |
20140083541 | Chandrasekaran | Mar 2014 | A1 |
20140083547 | Hwang | Mar 2014 | A1 |
20140196883 | Artherholt | Jul 2014 | A1 |
20140260954 | Young | Sep 2014 | A1 |
20140286805 | Dyer | Sep 2014 | A1 |
20140322034 | Bayyouk | Oct 2014 | A1 |
20140348677 | Moeller | Nov 2014 | A1 |
20150132157 | Whaley | May 2015 | A1 |
20150144826 | Bayyouk | May 2015 | A1 |
20150147194 | Foote | May 2015 | A1 |
20150219096 | Jain | Aug 2015 | A1 |
20150300332 | Kotapish | Oct 2015 | A1 |
20150368775 | Baker | Dec 2015 | A1 |
20160201169 | Vecchio | Jul 2016 | A1 |
20160215588 | Bels | Jul 2016 | A1 |
20160238156 | Hubenschmidt | Aug 2016 | A1 |
20160245280 | Todorov | Aug 2016 | A1 |
20160319626 | Dille | Nov 2016 | A1 |
20160319805 | Dille | Nov 2016 | A1 |
20170067459 | Bayyouk | Mar 2017 | A1 |
20170089334 | Jahnke | Mar 2017 | A1 |
20170089473 | Nowell | Mar 2017 | A1 |
20170097107 | Hotz | Apr 2017 | A1 |
20170159655 | Morreale | Jun 2017 | A1 |
20170218951 | Graham | Aug 2017 | A1 |
20170218993 | Freed | Aug 2017 | A1 |
20170297149 | Shinohara | Oct 2017 | A1 |
20170298932 | Wagner | Oct 2017 | A1 |
20170314097 | Hong | Nov 2017 | A1 |
20170342776 | Bullock | Nov 2017 | A1 |
20170342976 | Nagaraja Reddy | Nov 2017 | A1 |
20180017173 | Nowell | Jan 2018 | A1 |
20180058431 | Blume | Mar 2018 | A1 |
20180073653 | Bayyouk | Mar 2018 | A1 |
20180202434 | Barnhouse, Jr. | Jul 2018 | A1 |
20180298894 | Wagner | Oct 2018 | A1 |
20180312946 | Gigliotti, Jr. | Nov 2018 | A1 |
20180320258 | Stewart | Nov 2018 | A1 |
20180340245 | Kernion | Nov 2018 | A1 |
20180354081 | Kalyani | Dec 2018 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190017503 | Foster | Jan 2019 | A1 |
20190024198 | Hong | Jan 2019 | A1 |
20190024225 | Tang | Jan 2019 | A1 |
20190032685 | Foster | Jan 2019 | A1 |
20190032720 | Bayyouk | Jan 2019 | A1 |
20190047049 | Fujieda | Feb 2019 | A1 |
20190049052 | Shuck | Feb 2019 | A1 |
20190063427 | Nowell | Feb 2019 | A1 |
20190063430 | Byrne | Feb 2019 | A1 |
20190071755 | Lee | Mar 2019 | A1 |
20190072088 | DeLeon, II | Mar 2019 | A1 |
20190072089 | Buckley | Mar 2019 | A1 |
20190085806 | Meißgeier | Mar 2019 | A1 |
20190085978 | Chase | Mar 2019 | A1 |
20190101109 | Cortes | Apr 2019 | A1 |
20190107226 | Bayyouk | Apr 2019 | A1 |
20190120389 | Foster | Apr 2019 | A1 |
20190136842 | Nowell | May 2019 | A1 |
20190145400 | Graham | May 2019 | A1 |
20190145568 | Nick | May 2019 | A1 |
20190154033 | Brooks | May 2019 | A1 |
20190170137 | Chase | Jun 2019 | A1 |
20190170138 | Bayyouk | Jun 2019 | A1 |
20190194786 | Chuang | Jun 2019 | A1 |
20190226058 | Fujieda | Jul 2019 | A1 |
20190242373 | Wernig | Aug 2019 | A1 |
20190247957 | Stribling | Aug 2019 | A1 |
20190264683 | Smith | Aug 2019 | A1 |
20190292633 | Porret | Sep 2019 | A1 |
20190301314 | Kamo | Oct 2019 | A1 |
20190301447 | Skurdalsvold | Oct 2019 | A1 |
20190316685 | Wang | Oct 2019 | A1 |
20190360483 | Nowell | Nov 2019 | A1 |
20190376508 | Wagner | Dec 2019 | A1 |
20200023245 | Story | Jan 2020 | A1 |
20200056272 | Hong | Feb 2020 | A1 |
20200063899 | Witkowkski | Feb 2020 | A1 |
20200080660 | Dyer | Mar 2020 | A1 |
20200080661 | Mullins | Mar 2020 | A1 |
20200157663 | Yang | May 2020 | A1 |
20200158123 | Chen | May 2020 | A1 |
20200173317 | Keating | Jun 2020 | A1 |
20200208776 | Bayyouk | Jul 2020 | A1 |
20200217424 | Rasmussen | Jul 2020 | A1 |
20200240531 | Nowell | Jul 2020 | A1 |
20200256149 | Witkowski | Aug 2020 | A1 |
20200284253 | Foster | Sep 2020 | A1 |
20200284365 | Bayyouk | Sep 2020 | A1 |
20200290118 | Chen | Sep 2020 | A1 |
20200291731 | Haiderer | Sep 2020 | A1 |
20200300240 | Nowell | Sep 2020 | A1 |
20200308683 | Xue | Oct 2020 | A1 |
20200347843 | Mullins | Nov 2020 | A1 |
20200355182 | DeLeon | Nov 2020 | A1 |
20200362970 | Hurst | Nov 2020 | A1 |
20200392613 | Won | Dec 2020 | A1 |
20200393054 | Fuller | Dec 2020 | A1 |
20200399979 | Webster | Dec 2020 | A1 |
20200400003 | Webster | Dec 2020 | A1 |
20200400130 | Poehls | Dec 2020 | A1 |
20200400132 | Kumar | Dec 2020 | A1 |
20200400140 | Bayyouk | Dec 2020 | A1 |
20200400242 | Spencer | Dec 2020 | A1 |
20210010113 | Qiao | Jan 2021 | A1 |
20210010470 | Blume | Jan 2021 | A1 |
20210017830 | Witkowski | Jan 2021 | A1 |
20210017982 | Bayyouk | Jan 2021 | A1 |
20210017983 | Myers | Jan 2021 | A1 |
20210040836 | Baskin | Feb 2021 | A1 |
20210054486 | Kim | Feb 2021 | A1 |
20210102630 | Nowell | Apr 2021 | A1 |
20210108734 | Nowell | Apr 2021 | A1 |
20210130936 | Wu | May 2021 | A1 |
20210148471 | Murugesan | May 2021 | A1 |
20210180156 | Kim | Jun 2021 | A1 |
20210190053 | Wagner | Jun 2021 | A1 |
20210190223 | Bayyouk | Jun 2021 | A1 |
20210197524 | Maroli | Jul 2021 | A1 |
20210215071 | Oikawa | Jul 2021 | A1 |
20210215154 | Nowell | Jul 2021 | A1 |
20210230987 | Tanner | Jul 2021 | A1 |
20210239111 | Zitting | Aug 2021 | A1 |
20210246537 | Maroli | Aug 2021 | A1 |
20210260704 | Hu | Aug 2021 | A1 |
20210270261 | Zhang | Sep 2021 | A1 |
20210285551 | Renollett | Sep 2021 | A1 |
20210310484 | Myers | Oct 2021 | A1 |
20210381504 | Wagner | Dec 2021 | A1 |
20210381615 | Riedel, Jr. | Dec 2021 | A1 |
20210388832 | Byrne | Dec 2021 | A1 |
20220026326 | Wang | Jan 2022 | A1 |
20220034402 | Kiani | Feb 2022 | A1 |
20220349472 | Ellisor | Nov 2022 | A1 |
20220390055 | Ellisor | Dec 2022 | A1 |
20220403839 | Mullins | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
201149099 | Nov 2008 | CN |
102748483 | Oct 2012 | CN |
102410194 | Apr 2021 | CN |
0 414 955 | Mar 1991 | EP |
Entry |
---|
Karolczuk et al., “Application of the Gaussian Process for Fatigue Life Prediction Under Multiaxial Loading”, Mechanical Systems and Signal Processing 167 (2022), Nov. 14, 2021. |
Carraro et al. “A Damage Based Model for Crack Initiation in Unidirectional Composites Under Multiaxial Cyclic Loading”, Composite Science and Technology 99 (2014), 154-163, May 16, 2014. |
Albinmousa et al., “Cyclic Axial and Cyclic Torsional Behaviour of Extruded AZ31B Magnesium Alloy”, International Journal of Fatigue 33 (2011), 1403-1416, 2011. |
Horstemeyer et al., “Universal Material Constants for Multistage Fatigue (MSF) Modeling of the Process-Structure-Property (PSP) Relations of A000, 2000, 5000, and 7000 Series Aluminum Alloys”, Integrating Materials and Manufacturing Innovation, vol. 9 (2020), 157-180, Jun. 22, 2020. |
Guan et al., “Model Selection, Updating, and Averaging for Probabilistic Fatigue Damage Prognosis”, Journal of Structural Safety, Mar. 11, 2011. |
Frick et al., “Orientation-Independent Pseudoelasticity in Small-Scale NITI Compression Pillars”, Scripta Materialia 59(12), 7-10, 2008. |
Naghipour et al., “Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach”, Ohio Aerospace Institute, Cleveland, 2016. |
Flowserve, “Dynamic Balance Plug Valve and Double DB Plug Valve: Installation, Operation and Maintenance,” 2011, https://www.flowserve.com/sites/default/files/2016-07/NVENIM2005-00_0.pdf, 36 pages. |
Weir Oil & Gas, “SPM Well Service Pumps & Flow Control Products TWS600S Fluid End Operation Instruction and Service Manual,” Feb. 27, 2017, https://www.global.weir/assets/files/oil%20and%20gas%20ebrochures/manuals/tws600s-fluid-end-2p121260.pdf, 41 pages. |
White Star Pump Co., “Maintenance Manual: Triplex Pump WS-1300/1600,” 2005, http://www.whitestarpump.com/ES/docs/user_t.pdf, 45 pages. |
KerrPumps, “Super Stainless Steel Better Than the Best,” http://kerrpumps.com/superstainless?gclid=EAlalQobChMIg47o482q6wIVilTICh2XPA-qEAAYASAAEgKrxPD_BwE, 2013, last accessed: Aug. 21, 2020, 6 pages. |
KerrPumps, “Frac One Pumps—Fluid End—Fracing,” http://kerrpumps.com/fracone, 2013, last accessed: Aug. 21, 2020, 3 pages. |
KerrPumps, “KerrPumps—Frac Pump & Mud Pump Fluid End—Fluid End Pump,” http://kerrpumps.com/fluidends, 2013, last accessed: Aug. 21, 2020, 6 pages. |
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/, 2019, last accessed: Aug. 21, 2020, 3 pages. |
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/fluid-ends/, 2019, last accessed: Aug. 21, 2020, 3 pages. |
Covert Manufacturing, Inc., “Fluid End Block: Covert Manufacturing”, (site visited Jul. 30, 2021), covertmfg.com, URL: <http://www.covertmfg.com/our-capabilities/fluid-end-block/> (Year: 2021). |
Kerr Pumps, “the most advanced fluid ends”, (site visited Aug. 5, 2021), Kerrpumps.com, URL: <http://kerrpumps.com/fluidends> (Year: 2021). |
Shandong Baorun, 2250 Triplex Plunger Pump Fluid End Exchangeable with Spm, (site visited Aug. 5, 2021), made-in-china.com, URL: <https://sdbaorun.en.made-in-china.com/product/wNixIDXYrshL/China-2250-Triplex-Plunger-Pump-Fluid-End-Exchangeable-with-Spm.html> (Year: 2021). |
John Miller, “The Reciprocating Pump, Theory, Design and Use,” 1995, 2nd Edition, Krieger Publishing Company, Malabar, Florida, 1 page. |
Technical Manual MSI Hybrid Well Service Pump Triplex and Quintuplex Models, Dixie Iron Works, Mar. 12, 2019, 88 pages. |
https://www.diwmsi.com/pumping/qi-1000/. |
Carpenter, “CarTech Ferrium C61 Data Sheet,” 2015, 2 pages. |
The American Heritage Dictionary, Second College Edition, 1982, 6 pages. |
Matthew Bultman, “Judge in West Texas Patent Hot Spot Issues Revised Guidelines,” Sep. 23, 2020, Bloomberg Law News, 3 pages. |
David L. Taylor, “Machine Trades Blueprint Reading: Second Edition,” 2005, 3 pages. |
Blume, U.S. Pat. No. 6,544,012, issued Apr. 8, 2003, Fig. 12A. |
Caterpillar, “Cat Fluid Ends for Well Stimulation Pumps,” 2015, 2 pages. |
Claim Chart for U.S. Pat. No. 6,544,012, 23 pages. |
Claim Chart for U.S. Pat. No. 7,186,097, 22 pages. |
Claim Chart for U.S. Pat. No. 7,845,413, 8 pages. |
Claim Chart for U.S. Pat. No. 9,534,472, 8 pages. |
Claim Chart for U.S. Pat. Pub. No. 2013/0319220, 17 pages. |
Claim Chart for U.S. Pat. Pub. No. 2014/0348677, 10 pages. |
Claim Chart for U.S. Pat. Pub. No. 2015/0132157, 23 pages. |
Claim Chart for “GD-3000,” 9 pages. |
Claim Chart for “NOV-267Q,” 14 pages. |
Collins English Dictionary, “annular,” https://www.collinsdictionary.com/us/dictionary/english/annular, 2021, 4 pages. |
Collins English Dictionary, “circumference,” https://www.collinsdictionary.com/us/dictionary/english/circumference, 2021, 7 pages. |
Collins English Dictionary, “plug,” https://www.collinsdictionary.com/us/dictionary/english/plug, 2021, 17 pages. |
Collins English Dictionary, “profile,” https://www.collinsdictionary.com/us/dictionary/english/profile, 2021, 10 pages. |
Collins English Dictionary, “sleeve,” “therethrough,” “through,” “tube,” and “tubular,” 8 pages. |
Collins English Dictionary, “space,” https://www.collinsdictionary.com/us/dictionary/english/space, 2021, 13 pages. |
Collins English Dictionary, “stairstep,” https://www.collinsdictionary.com/us/dictionary/english/stairstep, 2021, 3 pages. |
Congressional Record—Extensions of Remarks, Apr. 18, 2007, pp. E773-E775. |
Congressional Record, Mar. 7, 2011, 31 pages. |
“Declaration of Steven M. Tipton, Ph.D., P.E., Submitted with Patent Owner's Preliminary Response,” Sep. 11, 2020, 155 pages. |
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,914,171,” Feb. 11, 2021, 308 pages. |
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,591,070,” May 25, 2020, 209 pages. |
Email dated Sep. 22, 2020 in PGR2020-00065, 3 pages. |
Email dated Sep. 25, 2020 in Kerr Machine v Vulcan Industrial Holdings, 1 page. |
U.S. Pat. No. 10,288,178, 353 pages. |
U.S. Pat. No. 10,519,950, 142 pages. |
U.S. Pat. No. 10,591,070, 168 pages. |
U.S. Appl. No. 16/722,139, 104 pages. |
U.S. Appl. No. 13/773,271, 250 pages. |
U.S. Appl. No. 15/719,124, 183 pages. |
U.S. Appl. No. 16/814,267, 194 pages. |
U.S. Appl. No. 17/120,121, 110 pages. |
U.S. Appl. No. 62/234,483, 45 pages. |
U.S. Appl. No. 62/315,343, 41 pages. |
U.S. Appl. No. 62/318,542, 44 pages. |
U.S. Appl. No. 62/346,915, 41 pages. |
U.S. Appl. No. 62/379,462, 24 pages. |
“Flush Free Sealing Benefits,” Oct. 3, 2011, http://empoweringpumps.com/flush-free-sealing-benefits/, accessed May 9, 2020, 5 pages. |
Gardner Denver, Well Servicing Pump Model GD-3000—Operating and Service Manual, Apr. 2011, 44 pages. |
Gardner Denver, Well Servicing Pump Model GD-1000Q—Fluid End Parts List, Sep. 2011, 24 pages. |
Gardner Denver, Well Servicing Pump Model HD-2250—Operating and Service Manual, Jan. 2005, 44 pages. |
Gardner Denver, GD 2500Q HDF Frac & Well Service Pump, 3 pages. |
Cutting Tool Engineering, “Groove milling,” Aug. 1, 2012, https://www.ctemag.cojm/news/articles/groove-milling, accessed May 13, 2020, 11 pages. |
VargusUSA, “Groovex Innovative Grooving Solutions—Groove Milling,” Dec. 12, 2011, http://www.youtube.com/watch?v=vrFxHJUXjvk, 68 pages. |
Kerr Pumps, Kerr KA-3500B/KA-3500BCB Plunger Pump Parts and Service Manual, 41 pages. |
Kerr Pumps, Kerr KD-1250B/KD-1250BCB Plunger Pump Service Manual, 38 pages. |
Kerr Pumps, Kerr KJ-2250B and KJ-2250BCB Plunger Pump Service Manual, 38 pages. |
Kerr Pumps, Kerr KM-3250B / KM-3250BCB Plunger Pump Service Manual, 35 pages. |
Kerr Pumps, Kerr KP-3300B / KP-3300BCB Plunger Pump Service Manual, 41 pages. |
Kerr Pumps, Kerr KT-3350B/BCB KT-3400BCB Plunger Pump Service Manual, 46 pages. |
Kerr Pumps, Kerr triplex pump km3250bcb 10,000 psi @ 5.1 gmp, Feb. 2, 2021, http://imged.com/kerr-triplex-pump-km3250bcb-10-000-psi-5-1-gmp-8234739.html, 2 pages. |
Lex Machina, 77 Federal district court cases for Alan D Albright of W.D. Tex., http://law.lexmachina.com/court/txwd/judge/5198506/cases?status=open&filed_on-from=2020-02-19&filed_on-to=2020-04-19&pending-, 7 pages. |
Lex Machina, Motion Metrics Report for 834 orders issued by District Judge Alan D Albright (ADA) in 1,603 cases from the Search for federal district court cases before Judge Alan D Albright, https://law.lexmachina.com/motions/motion_metrics?cases_key=yyix9Y8-k2k, generated on Sep. 23, 2020, 1 page. |
Lex Machina, 6:20-cv-00200-ADA, Kerr Machine Co. v. Vulcan Industrial Holdings, LLC Docket Entries, https://law.lexmachina.com/cases/2004206451#docket-entries, 6 pages. |
Jonathan Maes, “Machining Square Inside Corners: Conquer the Nightmare,” accessed Sep. 8, 2020, https://makeitfrommetal.com/machining-square-inside-corners-the-night . . . , 22 pages. |
Ross Mackay, “Process Engineering: Properly seal that pump,” May 17, 2005, https://www.chemicalprocessing.com/articles/2005/465, 11 pages. |
MSI Fluid End Components, https://www.scribd.com/document/421304589/Fluid-End, 1 page. |
MSI Dixie Iron Works, Ltd., MSI QI-1000 Technical Manual for 1000 HP Quintuplex MSI QI-1000 Pump, Feb. 21, 2004, 90 pages. |
MSI, Product Listing and Pricing, accessed Mar. 8, 2016, 19 pages. |
National Oilwell Varco, 267Q-6M Quinuplex Plunger Pump: Parts List, Jul. 21, 2008, 13 pages. |
Oil and Gas Well Servicing, Audit Procedures for Oil and Gas Well Servicing, May 2010, Texas Comptroller of Public Accounts, Audit Division, 68 pages. |
Tony Atkins and Marcel Escudier, Oxford Dictionary of Mechanical Engineering, Oxford University Press, 2013, 10 pages. |
Parker Hannifin Corporation and Autoclave Engineers, Technical Information, 2016, 16 pages. |
Girdhar, Moniz and Mackay, “Chapter 5.4 Centrifugal pump design,” Plant and Process Engineering 360, 2010, pp. 519-536. |
Parker Hannifin Corporation, PolyPak Seals for Hydraulic Applications Catalog EPS 5370_PolyPak, 2015, 38 pages. |
Paresh Girdhar and Octo Moniz, “Practical Centrifugal Pumps—Design. Operation and Maintenance,” Newnes, 2005, 33 pages. |
Reinhard Preiss, “Stress concentration factors of flat end to cylindrical shell connection with a fillet or stress relief groove subjected to internal pressure,” 1997, Int. J. Pres. Ves. & Piping, vol. 73, pp. 183-190. |
Caterpillar, WS255 Quintuplex Well Stimulation Pump, 2 pages. |
Gardner Denver Pumps, Redline Series Brochure, 3 pages. |
Eaton Aerospace Group, Resilient Metallic Seals, TF100-35D, Oct. 2013, 60 pages. |
Scott McKeown, “District Court Trial Dates Tend to Slip After PTAB Discretionary Denials—Patents Post-Grant,” Jul. 24, 2020, Ropes & Gray, accessed Sep. 23, 2020, 3 pages. |
Ricky Smith and R. Keith Mobley, “Rules of Thumb for Maintenance and Reliability Engineers—Chapter 14: Packing and Seals,” Elsevier, 2008, pp. 239-250. |
Schlumberger, Jet Manual 02—Reciprocating Pumps, Aug. 7, 2015, 63 pages. |
Schlumberger, Treating Equipment Manual: Fluid Ends, Section 10, Apr. 2000, 87 pages. |
SPM Oil & Gas, SPM QEM 3000 Frac Pump, 2021, 4 pages. |
Supplemental Declaration of Steven M. Tipton, Ph.D., P.E.—Case PGR2020-00065, U.S. Pat. No. 10,591,070, Mar. 2, 2021, 35 pages. |
Servagroup, TPD 600 Triplex Pump Brochure, Mar. 24, 2011, 2 pages. |
Utex Industries, Inc., Well Service Products Catalog, Jun. 2017, 51 pages. |
Utex Industries, Inc., Well Service Packing—Packing Assemblies Complete & Replacement, May 2013, 40 pages. |
Vargus Ltd., Groove Milling High Precision Tools for Groove Milling, Dec. 2012, pp. 2-22. |
Declaration of Duncan Hall from Internet Archive/Wayback Machine, Feb. 3, 2021, Kerr Plunger Pump Manuals, 20 pages. |
Michael Agnes, Editor, Webster's New World College Dictionary, Fourth Edition, 1999, 5 pages. |
Weir SPM Oil & Gas, Grooveless Fluid End, 2008, 1 page. |
Weir SPM Oil & Gas, Weir SPM General Catalog, 2009, 40 pages. |
Weir SPM Oil & Gas, Well Service Pump Reference Guide, 2008, 55 pages. |
Intellectual Ventures I LLC v VMWare, Inc., Case No. 1:19-CV-01075-ADA, Document 91 (W.D. Tex Jun. 3, 2020), Defendant VMWare, Inc.'s Stipulation of Invalidity Contentions for U.S. Pat. No. 7,949,752, Jun. 3, 2020, 5 pages. |
Vulcan Industrial Holding, LLC et al. v. Kerr Machine Co. Case No. 4:21-cv-433, Document 1, Complaint for Declaratory Judgment of Patent Non-Infringement, Feb. 9, 2021, 17 pages. |
Trilogy Enterprises, Inc., v. Trilogy Education Services, LLC, Case. No. 6:19-cv-199-ADA-JCM, Document 35, Fifth Amended Scheduling Order, Sep. 8, 2020, 4 pages. |
Dr. Corneliu Bolbocean v Baylor University, Case No. 6:19-CV-00465-ADA-JCM, Document 34, Scheduling Order, Apr. 6, 2020, 4 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 4, Plaintiff's Amended Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 30 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 47 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 10, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Feb. 1, 2021, 88 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20-CV-00200-ADA-24, Order Setting Trial Date, Jun. 14, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20-CV-00200-ADA-29, Order Setting Trial Date, Aug. 2, 2020, 1 page. |
Kerr Machine Co., v. Vulcan Industrial Holdings, LLC, Case. No. 6:20-CV-00200-ADA, Affidavit of Service, Apr. 7, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Plaintiff's First Amended Complaint for Patent Infringement and Jury Demand, Jun. 4, 2020, 11 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 26, Defendant Cizion, LLC d/b/a Vulcan Industrial Manufacturing, LLC's Motion to Dismiss or Transfer, Jul. 22, 2020, 10 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Opposed Motion to Stay Litigation Pending the Outcome of the Pending Post-Grant Review Proceeding Before the Patent Trial and Appeal Board, Jul. 31, 2020, 14 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200-ADA, Plaintiff's Preliminary Infringement Contentions, May 22, 2020, 50 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Preliminary Invalidity Contentions, Aug. 13, 2020, 29 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 34, Scheduling Order, Aug. 11, 2020, 3 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 38, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Sep. 25, 2020, 11 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 5, Standing Order regarding Scheduled Hearings in Civil Cases in Light of Chief Judge Garcia's 24 Amended Order, Mar. 24, 2020, 4 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Civil Docket for Case No. 6:20-cv-00200-ADA, accessed Sep. 11, 2020, 7 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 54, Claim Construction Order, Dec. 3, 2020, 3 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Docket Entry, Aug. 2, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Mar. 19, 2020, 39 pages. |
Adriana del Rocio Barberena-Rovira, et al., v Kuiper Dairy, LLC, et al., Case No. 6:20-CV-00250-ADA-JCM, Document 20, Scheduling Order, Jul. 22, 2020, 4 pages. |
Acquanlan Deonshay Harris v. Cenlar, FSB, Case No. 6:20-CV-00271-ADA-JCM, Document 13, Scheduling Order, Aug. 20, 2020, 4 pages. |
Senior Living Properties, LLC c. Ironshore Speciality, Insurance Company, Case No. 6:20-CV-00282-ADA-JCM, Document 12, Scheduling Order, Jul. 7, 2020, 4 pages. |
Dionne Bracken, Individually and as Next Friend of A.M.B., v Michael D. Ashcraft and Envirovac Waste Transport Systems, Inc., Case No. 6:20-CV-00308-ADA-JCM, Document 17, Scheduling Order, Jul. 28, 2020, 4 pages. |
Kendra Coufal v. Roger Lee Thomas and Apple Logistics, Inc., Case No. 6:20-CV-00356-ADA-JCM, Document 12, Scheduling Order, Jul. 28, 2020, 4 pages. |
Tipton International, Inc., v. Vetbizcorp, LLC and Samuel Cody, Case No. 6:20-CV-00554-ADA-JCM, Document 8, Scheduling Order, Aug. 20, 2020, 4 pages. |
Dynaenergetics GmbH & Co. KG and Dynaenergetics US, Inc., v. Hunting Titan, Ltd.; Hunting Titan, Inc.; and Hunting Energy Services, Inc., Case No. H-17-3784, Order, Sep. 4, 2020, 2 pages. |
Slip Opinion, In re Sand Revolution LLC, Case No. 2020-00145 (Fed. Cir. Sep. 28, 2020), 3 pages. |
In re Vulcan Industrial Holdings, LLC, Case No. 2020-00151 (Fed. Cir. Sep. 29, 2020), Petition for Writ of Mandamus, 43 pages. |
Densys Ltd., v. 3Shape Trios A/S and 3Shape A/S, Case No. WA:19-CV-00680-ADA, Document 27, Scheduling Order, Apr. 8, 2020, 4 pages. |
Kerr Machine Co. vs. Vulcan Industrial Holdings, LLC, Case No. WA:20-CV-00200-ADA, Order Setting Markman Hearing, May 29, 2020, 1 page. |
Sur-Lock Liner Retention System—Product Brochure (p. 16) (Year: 2017). |
Sur-Lock Liner Retention System—Video (https://premiumoilfield.com/performance-enhancements/sur-lock/sur-lock-liner-retention-system.html) (https://www.youtube.com/watch?v=6NZGeD5NkF8) (Year: 2017). |
U.S. Appl. No. 17/241,680 titled “Fluid End and Center Feed Suction Manifold” filed Apr. 27, 2021. |
Number | Date | Country | |
---|---|---|---|
Parent | 17728568 | Apr 2022 | US |
Child | 17891731 | US |