SPRING-DAMPER SYSTEM

Abstract
A spring-damper system consisting of at Least a differential cylinder (4), a hydraulic accumulator (26) and a control valve device (1, 2), is characterized in that by means of at least one motor-pump unit (22) pressure fluid can be supplied to the annular end (6) or both the annular end (6) and the piston end (8) of the differential cylinder (4) in a dosed circuit using the control valve device (1, 2).
Description

The invention relates to a spring-damper system comprising at least a differential cylinder, a hydraulic accumulator and a control valve device.


Systems of this type are state of the art see EP 2 952 419 A2. Such systems having double-acting suspension cylinders are preferably used in the cabin suspension systems of vehicles that are suitable for operation on rough unpaved ground, as is the case for agricultural or forestry vehicles, construction machinery or other special vehicles. To protect the cabin crew against impact loads occurring during operation, cabins of such vehicles are usually supported against the chassis by double-acting suspension cylinders. in the known system mentioned above, a proportional 4/2 directional control valve is used to connect the respective suspension cylinder in the form of a differential cylinder to the hydraulic accumulator, wherein said proportional 4/2 directional control valve forms a variable throttle point as a function of its actuation. By linking the damping valve to the vehicle control system present in the vehicles concerned, wherein said vehicle control system contains signal-generating components, such as an acceleration sensor an and angle sensor, the damping force can be adjusted to the respective operating conditions to achieve reduced vibration stress on the cabin.


Based on this prior art, the invention addresses the problem of providing a spring-damper system which, while retaining the advantages achieved in the prior art, is characterized by further improved operating behavior in comparison to the former.


According to the invention, this problem is solved by a spring-damper system having the features of claim 1 in its entirety,


According to the characterizing part of claim 1, an essential feature of the invention is that at least one motor-pump unit can be used to supply pressure fluid to the annular end or both the annular end and the piston end of the differential cylinder in a closed circuit using the control valve device.


While the known system as a passive system is adaptive in that the damping strength can be adjusted, the differential cylinder cannot generate active forces, however; the system according to the invention can be implemented as an active suspension system because of the option of an energy supply initiated by the control valve device by means of the motor-pump unit. The controlled supply of energy to the annular and/or piston end of the differential cylinder can be used to influence the forces in both the compression and rebound directions, unlike in the known system. Adapting to the conditions of driving operation, optimum vibration behavior of the cabin can thus be achieved in accordance with the data supplied by the vehicle sensor system.


In preferred exemplary embodiments, the control valve device has two control valves, of which in fluid-conveying manner one control valve is connected at its inlet to the annular end and at its outlet is connected to both the piston end and to the inlet of the second control valve, the outlet of which is connected to the piston end and to the inlet of the pump of the motor-pump unit. In this arrangement, the control valve device forms a pressure regulator which can be used to supply the differential cylinder, whose piston end in conjunction with the accumulator bears the static load applied by the vehicle, with additional pressure at the annular end to generate the additional dynamic forces required for active suspension.


Advantageously, both control valves are proportional throttle valves, preferably electro-magnetically actuatable 2/2-way proportional throttle valves. They can be actuated directly by the vehicle electronics resulting in high switching dynamics.


Advantageously, the arrangement may further be such that the hydraulic accumulator is installed in the connection line between the outlet of the second control valve and the inlet of the pump.


Advantageously, the arrangement can further be made in such a way that a check valve, which opens in the direction of the annular end, is installed in the connection line between the outlet of the pump and a branching-off point, which is connected to the annular end and to the inlet of the first control valve in a fluid-conveying manner. In this way, the differential cylinder is protected against a pressure drop when the pump is at a standstill.


Advantageously, a pressure relief valve can be installed between the part of the connection line routed from the outlet of the pump to the check valve, and the connection line routed to the pressure accumulator, which check valve opens in the direction of the branching-off point. In this way, the maximum pressure that can be supplied by the motor-pump unit can be preset.


Not only are dynamic forces generated in the respective differential cylinder of the active suspension system according to the invention, but the static pressure in the differential cylinder also bears the static cabin load acting thereon. Thus, the pump arranged in the closed circuit is also pressurized. For a typical cabin weight in the range of, for instance, 300 kg and a piston rod diameter of about 18 mm, as is often the case with present cabin suspension cylinders, this results in a static pressure in the system of more than 100 bar. Conventional gear pumps, which are characterized by a high operational reliability and a construction that is inexpensive to manufacture, are therefore not suitable for use in this application, as they are only approved for much lower pressures at the suction end. in an advantageous embodiment, despite this difficulty, the advantages of a gear pump are made use of in the invention by using a gear pump in the motor-pump unit, wherein the Leakage oil port of said gear pump is connected to a return line. The connection via a leakage oil line to the tank relieves the pressure at the shaft seal of the gear pump so that it is pressure-resistant at both ports and it can be used reliably in the system according to the invention.


Advantageously, the outlet of a feed pump is connected to the inlet of the gear pump. This can be used to compensate for sinking of the cabin caused by the permanent leakage of oil from the closed circuit to the tank. To be able to maintain the desired level position and/or for a desired level setting, a proportional pressure relief valve inserted between the outlet of the feed pump and the tank can be used to adjust the pressure supplied by the feed pump. An additional advantage of this arrangement is the continuous flushing of the closed circuit of the system because of the leakage and the new oil permanently injected to compensate for the leakage.


Alternatively, the motor-pump unit can have a radial piston pump or instead an orbital motor can be used, i.e. pumps whose construction permits high pressures at the suction end.





The invention is explained in detail below with reference to exemplary embodiments shown in the drawing. In the Figures:



FIG. 1 shows a symbolic representation of the fluid circuit of an exemplary embodiment of the spring-damper system according to the invention;



FIGS. 2 to 5 show the fluid circuit of FIG. 1, with lines of different line widths indicating four different main states of the system of the exemplary embodiment; and



FIG. 6 shows a symbolic representation of the fluid circuit of a second exemplary embodiment of the system according to the invention.





in the figures, a differential cylinder provided as a suspension strut, in particular of a cabin suspension, is designated by the reference numeral 4, has a piston rod designated by 5 and has working chambers of differently effective piston surfaces at its annular end 6 and its piston end 8. The annular end 6 and piston end 8 are connected to a control valve device comprising two control valves, each formed by a proportional throttle valve. The present exemplary embodiments concern electromagnetically controlled 2/2-way proportional throttle valves designated by 1 and 2, respectively. Of these, the proportional throttle valve 1 at its inlet 10 is connected to the annular end 6 of the differential cylinder 4 and at its outlet 12 is connected to both the piston end 8 and to the inlet 14 of the second proportional throttle valve 2. The Latter is connected at its outlet 16 to the inlet 18 of the pump 20 of the motor-pump unit 22 via a connection line 24. The oil end 28 of a hydropneumatic pressure accumulator 26 is also connected to the connection line 24. The outlet 30 at the pressure end of the pump 18 is connected to the annular end 6 of the differential cylinder 4 via a second connection line 32, in which there is a check valve 34 that opens in the direction of the annular end 6. A pressure relief valve 36 interposed between a branch point 38 located at the second connection line 32 between the check valve 34 and the pump outlet 30, and a branch point 40 at the first connection line 24 complements the fluid circuit of the first exemplary embodiment shown in FIGS. 1 to 5.


In this arrangement, the piston end 8 of the differential cylinder 4, in conjunction with the hydraulic accumulator 26, bears the static load, which can result in a static pressure of more than 100 bar for a standard 3-point support of a cabin weighing 300 kg. In view of the high-pressure level, the pump 20 of the motor-pump unit 22 in this example is an axial piston pump, which permits high pressures at the suction-end inlet 18. Alternatively, an orbital motor could be used.


As long as the proportional throttle valves 1 and 2 are not actuated and are open in their non-throttling home position, the motor-pump unit 22 does not have to build up any pressure. Apart from the line resistances, the pump 20 pumps the oil without pressure difference in the closed circuit containing the differential cylinder 4, wherein the annular chamber 6 is connected to the pressure-end outlet 30 of the pump 20.


The piston end 8 is connected to the outlet 12 of the first proportional throttle valve 1 and to the inlet 14 of the second proportional throttle valve 2. As long as both valves 1 and 2 are in their home position, the static pressure at the annular end 6 and at the piston end 8 is identical, and because they are interconnected without throttling, the suspension is undamped. In FIGS. 2 to 5, four main states of the system that occur when the valves 1 and 2 are actuated, are indicated in that the line sections bearing the higher pressure, are drawn using a greater line thickness.


In the “active compression” state illustrated in FIG. 2, the first proportional throttle valve 1 is actuated from the open home position to move to a throttle position. The volume flow generated by the pump 20 causes a pressure acting in the annular chamber 6 of the differential cylinder 4 to be built up by the throttling effect of the actuated valve 1, wherein said built-up pressure gives rise to an active compression motion of the piston rod 5.



FIG. 3 refers to the “Active rebound” state. In this state, the second proportional throttle valve 2 is actuated. As a result of its throttling effect, a pressure is built up both in the annular chamber 6 and in the piston chamber 8. Because of the larger piston surface of piston chamber 8, the increased pressure in the cylinder 4 causes an active extending motion of the piston rod 5.



FIG. 4 refers to the “Damping during rebound” state. In this state, the piston rod 5 of the cylinder 4 performs an extending motion. Oil is thus displaced from the annular chamber 6 to the piston chamber 8 via the open proportional throttle valve 1, which is not actuated. If the proportional throttle valve 1 is now actuated, this volume flow builds up and creates a pressure difference between the annular end 6 and the piston end 8 of the cylinder 4. This pressure difference has a damping effect during the extending motion.



FIG. 5 refers to the “Damping during compression” state. The piston rod 5 of the cylinder 4 is now in a retracting motion. Some of the oil flows from the piston end 8 to the annular end 6 via the non-actuated, open proportional throttle valve 1, The other part flows into the accumulator 26 via the second proportional throttle valve 2.1f the second proportional throttle valve 2 is now actuated, a pressure difference is built up by the volume flow to the accumulator 26 and counteracts the spring compression in a damping manner.



FIG. 6 shows a second exemplary embodiment in which the closed circuit having differential cylinder 4, control valves 1 and 2, accumulator 26 and pump of motor-pump unit 22 corresponds to the first exemplary embodiment, The difference, in contrast thereto, is that instead of the axial piston pump 20, a gear pump 42 having a leakage oil port 44 is used and the leakage oil port 44 is connected to a tank 52 via a return line 46 and is thus non-pressurized. The resulting pressure release of the shaft seal of the gear pump 42 renders it pressure-resistant at its two ports and thus safe to operate despite the high pressure Level present in the closed circuit. However, the leakage oil flow, which can be up to 1% of the nominal volume flow, causes the piston rod 5 to continuously subside because of the permanent drain from the closed circuit to the tank 52. To still be able to maintain the desired level position, a feed pump 50 in the form of a small gear pump is provided, which takes in from the tank 52 and generates a feed pressure at its pressure-end outlet 48, which is connected to the connection line 24 via a check valve 54. A proportional pressure relief valve 56, which is installed between the outlet 48 of the feed pump 50 and the tank 52, can be used to adjust the feed pressure and thus the level position. An additional advantage of the embodiment of Fig, 6 is that because of the Leakage and the oil that is permanently re-injected to compensate for the leakage, continuously flushes the closed circuit of the system.

Claims
  • 1. A spring-damper system consisting of at least a differential cylinder (4),a hydraulic accumulator (26) anda control valve device (1, 2), characterized in that by means of at least one motor-pump unit (22) pressure fluid can be supplied to the annular end (6) or both the annular end (6) and the piston end (8) of the differential cylinder (4) in a closed circuit using the control valve device (1, 2).
  • 2. The system according to claim 1, characterized in that the control valve device has two control valves (1, 2), of which in a fluid-conveying manner one control valve (1) is connected at its inlet (10) to the annular end (6) and at its outlet (12) is connected to both the piston end (8) and the inlet (14) of the second control valve (2), the outlet (16) of which is connected to the inlet (18) of the pump (20) of the motor-pump unit (22).
  • 3. The system according to claim 1-er-2, characterized in that the two control valves (1, 2) are proportional throttle valves, preferably electromagnetically actuatable 2/2-way proportional throttle valves.
  • 4. The system according to claim 1, characterized in that the hydraulic accumulator (26) is installed in the connection line (24) between the outlet (16) of the second control valve (2) and the inlet (18) of the pump (20).
  • 5. The system according to claim 1, characterized in that a check valve (34), which opens in the direction of the annular end (6), is installed in the connection line (32) between the outlet (30) of the pump (20) and a branching-off point (38) which is connected to the annular end (6) and to the inlet (10) of the first control valve (1) in a fluid-conveying manner.
  • 6. The system according to claim 1, characterized in that a pressure relief valve (36) is installed between the part of the connection line (32) routed from the outlet (30) of the pump (20) to the check valve (34), and the connection line (24) routed to the pressure accumulator (26).
  • 7. The system according to claim 1, characterized in that the motor-pump unit (22) comprises a gear pump (42), whose leakage oil port (44) is connected to a return line (46).
  • 8. The system according to claim 1, characterized in that the outlet (48) of a feed pump (50) is connected to the inlet (18) of the gear pump (42).
  • 9. The system according to claim 1, characterized in that the motor-pump unit (22) has a radial piston pump (20) or an orbital motor is used instead.
Priority Claims (1)
Number Date Country Kind
10 2019 001 855.9 Mar 2019 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/054997 2/26/2020 WO 00