The invention relates to a spring and/or damping device, particularly for two-wheelers, having at least one piston-cylinder arrangement with working spaces being formed, separated from each other by the piston, as the piston space and piston rod space, which are filled with a compressible spring or damping medium, with the piston being connected to a piston rod, penetrating the end wall of the piston rod space in a sealing fashion.
As a response for a vehicle and/or its wheels to bumps or impacts caused by uneven ground conditions, springs and damping devices have been used for ages in the area of the wheel suspensions. In the meantime, this technology has also been implemented in vehicle driven by muscular strength, such as bicycles, because it considerably improves the general riding comfort, on the one hand, and particularly when the vehicle is used as a sporting device, spring and damping devices are mandatory for mastering difficult landscapes.
In addition to the use of conventional helical springs as spring devices more and more frequently pneumatic springs are used, as known for example from DE 197 37 293 A1. They offer good riding comfort and reduce the overall weight of the vehicle in reference to conventional springs, sometimes quite considerably. The spring devices mentioned are here frequently provided with piston-cylinder arrangements, in which the two working spaces of the device are separated from each other by the piston, as known from example from DE 199 56 321 A1.
The above-mentioned spring devices provide for a certain spring travel, predetermined by the pressure of the system, for the compression and rebounding processes, which amounts to approximately 100 mm, however, they may be considerably higher for special applications. For the user of a vehicle equipped with such a spring device, it may be perhaps necessary under certain conditions or desirable to quickly change its position on the vehicle predetermined by the spring device in order to better cope with an inclined landscape, for example.
Therefore, the object is to improve the spring and/or damping device of the type mentioned at the outset such that it allows the user to change its relative position in reference to the vehicle in a simple manner and without applying additional devices and perhaps without having to leave his/her general riding position.
This object is attained through a connection of the working spaces controlled by an external actuating element and a connection device for an automatic separation of the working spaces is provided after the displacement of the piston by a predetermined spring travel.
In a spring device with a compressible medium, beginning with the default rebound position given by the normal spring travel, the working spaces of the spring device can be connected via an actuating element arranged at the outside, causing the spring device to become compressed by at least a part of the body weight of the user putting a strain on said spring device.
After the displacement of the piston by at least a predetermined spring travel the working spaces are then automatically separated so that the spring travel is now shortened and remains in its compressed position by the renewed operation of the actuating element, also resulting in the active separation of the working spaces. The spring travel of the spring device is shortened this way, while the vehicle part located above the wheel and the spring device including the body parts of the user, for example the handlebar, including the arms and upper body of the user, change their relative position and are located in a position closer to the ground. A subsequent renewed operation of the actuating element relaxing the spring device allows it to return to the original rebound position.
Advantageously, to produce an enlarged operating volume at the side of the piston rod, in a further embodiment of the device this piston rod is provided with an internal cavity which is connected to the piston rod space via a penetrating opening arranged in the lateral wall of the piston rod such that the medium can pass through this penetrating opening between the internal cavity of the piston rod and the piston rod space and both spaces can form a respective working space.
In another advantageous embodiment according to the invention, to ensure a secure connection of the two working spaces, the connection device is provided with a fixed end, connected to the end section of the cylinder in the piston space, and a free end, engaging the piston rod space. In order to securely guide the free end of the connection device during the occurring spring processes, it may be beneficial to provide in another embodiment to arrange a limiting tube in the internal cavity of the piston rod, with its opening at the end engaging the free end of the connection device in a sealing fashion.
A connection device, produced particularly easily and reliably, is realized in a preferred embodiment of the invention such that the connection device is embodied as a connection tube, guided in a sealing fashion parallel in reference to the longitudinal axis of the cylinder, particularly coaxially, inside the piston. In order to allow for the volumes of the working spaces to communicate with each other, in a particularly preferred embodiment of the device, the connection device is provided with at least one penetrating opening for the medium in its section located inside the piston rod space, at its walls, so that when respective locking members are opened a pressure equalization can occur via the connection devices between the working space filled with the medium. Several, individually sealed penetrating openings may be provided at the connection device to realize different settings of the spring travel.
When the connection between the working spaces has been established and after the spring device has been filled with the medium, this connection is separated and the spring device is ready to use. In a spring process triggered by an impact, the spring device is compressed, i.e. the pressure inside the working space allocated to the piston space is increased while the working space allocated to the piston rod space is reduced. The resulting forces counteract the triggering impact and reestablish the equilibrium between the working spaces. If the spring travel is shortened for the above-mentioned reasons, a connection of the volumes of the working spaces is made via the external actuating element; by the subsequent load being applied on the spring device, for example by the body weight of the user, a volume exchange between the two volumes occurs via the connection tube of the connection element until the penetrating openings of the connection device, with its free end being guided in the limiting tube, passes over the seal of said limiting tube and thus automatically separates the two volumes. Any further compression of the spring device leads to no additional pressure compensation and the relatively small volume of the connection tube, allocated to the volume of the piston space when the connection between the working spaces are opened, has practically no influence on the pressure ratios. The active separation of the volumes at the actuating element leads to the different surfaces at the piston side and the piston rod side adjusting to a different equilibrium of forces, in which the fork rebounds. Now, as intended, the spring travel is reduced in reference to the original spring travel.
In order to return to the full spring travel at a later time, the actuating element is activated once more, simultaneously releasing the spring device, and thus once more connecting the working spaces. Due to the different surfaces at the piston and the piston rod side as well as the weight of the wheel engaging the spring device the spring device once more rebounds to its full extent, providing the entire spring travel of the spring device after another operation of the external actuating element and the separation of the working spaces connected thereto.
In order to allow design of the compression and/or rebounding process to be even more comfortable for the user of the spring device, it may be provided in another embodiment that between the piston and the end walls of the cylinder at least one additional spring element is arranged, supporting the compression and/or rebounding motion of the spring device, so that the spring device is allowed either to react faster to a desired shortening or an extension of the spring travel when the volumes are connected or to achieve an overall more sensitive reaction of the spring device for compensating impacts.
In a further embodiment of the invention, the cylinder is beneficially provided with an accepting device at its end section allocated to the piston space, which accepts the actuating element as well as the fixed end of the connection device and connects them to each other in order to ensure a reliable connection and separation of the working spaces and a secure arrangement of the connection devices within the spring device.
In order to reliably connect the volumes of the two working spaces to each other and to allow their respective separation in another embodiment of the invention the spring device is provided such that the actuating element is provided with a blocking member, which connects or separates the working spaces. It may be formed by a valve, for example, which opens or closes an opening connecting the volumes via a rotary pin provided with a seal. Additionally, in another embodiment it is suggested for the actuating element simultaneously to be used as the access to fill the volumes with the medium, and for this purpose the actuating element may be provided with a valve accessible from the outside to fill the working spaces with the medium.
In order to reliably trigger the respectively desired control process by the user, in another embodiment the actuating element is provided with at least one actuator arranged at the exterior face of the cylinder. In this arrangement, the actuating element is easily and securely accessible by the user without having to leave his/her position on the two-wheeler, so that a change of the spring travel is possible during the ride as well.
A useful embodiment may provide for the actuator to be embodied as a crown-shaped rotary knob or push button, preferably provided with contact supports. Such a crown-shaped knob arranged at the exterior end wall of the cylinder is easily accessible and operable by the user, because it only need to be rotated or pushed to trigger a desired operation. Contact supports in the form of depressions or recesses on a button enhancing the motion of the actuator additionally facilitate the operation. An additional operating support, providing even better comfort because the user no longer has to bend down to the position at the end wall of the cylinder, is represented by an actuating element of a useful further development of the spring device, which is provided with at least one additional actuator arranged at a distance from said cylinder. This actuator may be a button or a rotational ring arranged at the handlebar of the two-wheeler or its stem, which triggers the function of the actuating element equally reliably as the actuator arranged at the cylinder. The actuator arranged at the handlebar or the stem represents a so-called remote control.
With regard to a simple operation of the spring device and to allow a simple adjustment to the desires and needs of the user, it is advantageous for the medium of an embodiment of the spring device to preferably comprise nitrogen or air, because one of them represents a now relatively easily available inert gas and the other medium, namely air, allows the user independently and at any time, using an air pump frequently carried along, to adjust the pressure conditions of the working spaces and thus the spring characteristics to his/her liking.
In order to compensate the impacts to be compensated by the spring device it has proven beneficial, in the sense of a simple and industrial-scale production, to develop an embodiment of the spring device with a cylinder having an essentially circular cross-section, however, other embodiments of the spring device are also possible, for example when unusual lateral forces have to be compensated or for esthetic reasons, showing a cross-section deviating therefrom, for example an elliptic or multi-faceted one.
Based on the obvious combination of spring devices with damping devices in a unit arranged at the vehicle wheel an embodiment of the spring device is particularly preferred in which it represents a part of a fork leg of a fork to hold the wheel particularly provided for a two-wheeler, and in which at the other fork leg of said fork a damper is arranged, preferably embodied as a gas damper, to dampen vibrations. This way, the user of the spring device can be ensured of an optimal riding comfort with his/her vehicle, because by the use of simple means he/she is able to independently influence the characteristics of the spring and damping devices, which can be adjusted to the respective environmental conditions practically at any time.
In the following, the invention is explained in greater detail based on exemplary embodiment, using the figures in the drawing.
Shown, partially in a schematic illustration:
Furthermore, it is discernible from
The connection device 10 is embodied as a connecting tube 10, parallel and coaxial in reference to the longitudinal axis of the cylinder 4, sealing the piston 3. The connection tube 10 is provided with a fixed end 12, connected to the end section of the cylinder 4 in the piston space 8, and a free end 13 engaging the piston rod space 8′. At its section located in the piston rod space the connection device 10 is provided at its wall with a penetrating opening 14 for the medium. In order to fix the connection device 10 in the cylinder 4 and to connect it to the actuating device 20 the spring device 1 is provided with a receiving device 15. This device is embodied as a cylindrical connection piece 16, coaxial in reference to the longitudinal axis of the cylinder 4, and receives in its opening, facing the piston 3 and not shown in greater detail, the fixed end of the connection device 10 formed by the connection tube 10. At the end facing away from the piston 3 the actuating element 20 is located, which in cooperation with the actuator 22 can control the connection of the two working spaces 8, 8′ and thus their volumes via a blocking member 21 being a type of valve, arranged at the external end of the cylinder 4.
While
A subsequent operation at the actuating element 20 leads to an active separation of the working spaces 8, 8′ so that subsequently the spring device remains in the compressed position, providing only a limited spring travel. Only a renewed opening of the blocking member 21 at the actuating element 20 allows the spring device 1 to return to the rebounded position with a releasing effect.
Finally, for better clarity
Therefore, the above-described invention also relates to a spring and/or damper device, embodied in the exemplary embodiment as a pneumatic spring device 1. It serves to limit the impact response of a vehicle wheel having at least one piston-cylinder arrangement 2, which is provided with a piston 3, supported in an axially displaceable manner in an interior cavity 5 of the cylinder 4, with the cylinder 4 at its end sections, facing away from each other, being closed by end walls 6 arranged at a fixed distance from each other, with the piston 3 being connected to a piston rod 7 penetrating one of the end walls 6 and guided in it in a sealing fashion, with working spaces 8, 8′ being located on both sides of the piston 3, formed as the piston space 8 and the piston rod space 8′ which are separated from each other by the piston 3, and filled with a compressible medium, and with the working spaces 8, 8′ being connected to each other by a connection device 10. By changing the spring travel of the spring device 1 a user of the above-mentioned spring device 1 has the ability to adjust the position of a vehicle part, particularly the stem with the handlebar, to the conditions of the terrain such that the connection of the working spaces 8, 8′ can be controlled by an external actuating element and that the connection device 10 automatically separates the working spaces 8, 8′ after a displacement of the piston 3 by at least a predetermined spring travel.
In the exemplary embodiment, the application of the invention is shown using a conventional telescopic fork. Alternatively, the invention can also be used in so-called upside down telescopic forks. However, the invention is not limited to the application of the telescopic fork, but it is also possible to use it with any other type of spring and/or damping elements, i.e. spring forks, dampers, spring legs, and the like according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 010 245.2 | Mar 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/01601 | 2/23/2007 | WO | 00 | 7/22/2008 |