Efficient degradation of materials is important to a variety of industries including the asphalt, mining, construction, drilling, and excavation industries. In the asphalt industry, pavement may be degraded using picks, and in the mining industry, picks may be used to break minerals and rocks. Picks may also be used when excavating large amounts of hard materials. In asphalt recycling and trenching, a drum or chain supporting an array of picks may rotate such that the picks engage a paved surface causing it to break up. Examples of degradation assemblies from the prior art are disclosed in U.S. Pat. No. 6,824,225 to Stiffler, U.S. Patent Publication No. 2005/0173966 to Mouthaan, U.S. Pat. No. 6,692,083 to Latham, U.S. Pat. No. 6,786,557 to Montgomery, Jr., U.S. Pat. No. 3,830,321 to McKenry et al., U.S. Patent Publication No. 2003/0230926, U.S. Pat. No. 4,932,723 to Mills, U.S. Patent Publication No. 2002/0175555 to Merceir, U.S. Pat. No. 6,854,810 to Montgomery, Jr., and U.S. Pat. No. 6,851,758 to Beach, which are all herein incorporated by reference for all they contain.
The picks typically have a tungsten carbide tip. Many efforts have been made to extend the life of these picks. Examples of such efforts are disclosed in U.S. Pat. No. 4,944,559 to Sionnet et al., U.S. Pat. No. 5,837,071 to Andersson et al., U.S. Pat. No. 5,417,475 to Graham et al., U.S. Pat. No. 6,051,079 to Andersson et al., U.S. Pat. No. 4,725,098 to Beach, U.S. Pat. No. 6,733,087 to Hall et al., U.S. Pat. No. 4,923,511 to Krizan et al., U.S. Pat. No. 5,174,374 to Hailey, and U.S. Pat. No. 6,868,848 to Boland et al., all of which are herein incorporated by reference for all that they disclose.
In one aspect of the invention, an apparatus for degrading natural and man-made formations includes an axially spring loaded pick comprising a central axis and being attached to a holder secured to a driving mechanism. The pick comprising a steel body with an axial shank disposed within a bore of the holder.
The tip of the pick comprises a material selected from the group consisting of cubic boron nitride, diamond, diamond like material, carbide, a cemented metal carbide, or combinations thereof. The material may be at least 0.100 inches thick, and may have a 6% to 20% metal binder concentration by volume. The tip may also have a 0.050 to 0.200 inch apex radius. The steel body of the tip may have a carbide core and the tip may be brazed to the carbide core.
A spring mechanism may be built into the holder which allows the tip to engage the formation and then recoil away from the formation lessening drag that would otherwise occur on the tip. The recoiling effect is believed to reduce wear caused from the drag. The recoiling effect is also believed to degrade the formation in larger chucks than dragging the tip against the formation surface. The spring mechanism may comprise a coil spring, a compression spring, a tension spring, Belleville spring, wave spring, elastomeric material, gas spring, or combinations thereof. The pick may also comprise an axial shank which is press fit into the holder. The shank is secured within a holder which is secured to the driving mechanism.
The driving mechanism is a drum, chain, wheel, or combinations thereof. The driving mechanism may be attached to a trenching machine, excavator machine, pavement milling machine, a coal mining machine, or combinations thereof. The driving mechanism may be attached to a motorized vehicle with a dampening element adapted to insulate the vehicle from the vibrations of the driving mechanism. The dampening element may comprise a shock, an elastic material, or a combination thereof.
In another aspect of the invention, a method comprising the steps of providing an axially spring loaded pick comprising a central axis and being attached to a holder secured to a driving mechanism, the pick comprising a steel body with an axial shank disposed within a bore of the holder and comprising a tip with a hardness greater than 4000 HV; positioning the driving mechanism adjacent to the formation; and degrading the formation with a spring loaded pick by activating the driving mechanism. The formation may be pavement, coal, soil, rock, limestone, or a combination thereof.
a is a cross-sectional diagram of another embodiment of a pick.
b is a cross-sectional diagram of another embodiment of a pick.
The spring mechanism 209B may be a Belleville spring or a stack of Belleville springs to control the spring constant or amount of deflection. The springs are stacked in alternating directions resulting in greater deflection. The spring mechanism 209B may also be stacked in the same direction creating a stiffer joint. Mixing and matching directions allow a specific spring constant and deflection capacity to be designed.
The pick 101B impacts the formation 104B in the direction of the arrow 214B creating pressure on the spring mechanism 209B. With applied pressure, the spring mechanism 209B compresses allowing the pick 101B to retract slightly from the formation 104B. When pressure is taken away from the pick 101B, it returns to its original position. Spring loading the pick 101B causes the picks 101B to vibrate and move in a recoiling motion 214B across the formation 104B which is optimized for the wear life of the pick 101B. The recoiling motion 214B reduces the effects of drag and eventual wear on the pick 101B. In some embodiments, when no pressure is applied to the pick 101B at least one of the Belleville springs generally has a 45 degree angle 213B from a pick central axis 250B. When the pick 101B engages the formation 104B and pressure is applied, the spring may potentially compress to a lesser angle.
The holder 207B is welded to a plate 210B horizontally bolted onto a chain 102B which moves in the direction of the arrow 215B. As the pick 101B travels and degrades the formation 104B, it carries the formation cuttings with it exposing new formation 104B for engagement with adjacent picks.
The superhard material 307C may be diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof. The superhard material 307C may be a polycrystalline structure with an average grain size of 10 to 100 microns.
Referring now to
The superhard material 307C may be bonded to the cemented metal carbide substrate 405C through a high-temperature/high-temperature (HTHP). During HTHP processing, some of the cobalt may infiltrate into the superhard material such that the cemented metal carbide substrate 405C comprises a slightly lower cobalt concentration than before the HTHP process. The superhard material 307C may comprise a 6 to 20 percent cobalt concentration by volume after the cobalt or other binder infiltrates the superhard material 307C. The superhard material 307C may also comprise a 1 to 5 percent concentration of tantalum by weight. Other binders that may be used with the present invention include iron, cobalt, nickel, silicon, carbonates, hydroxide, hydride, hydrate, phosphorus-oxide, phosphoric acid, carbonate, lanthanide, actinide, phosphate hydrate, hydrogen phosphate, phosphorus carbonate, alkali metals, ruthenium, rhodium, niobium, palladium, chromium, molybdenum, manganese, tantalum or combinations thereof. In some embodiments, the binder is added directly to the superhard material's mixture before the HTHP processing and does not rely on the binder migrating from the substrate into the mixture during the HTHP processing.
The superhard material 307C may have a substantially pointed geometry with a sharp apex comprising a radius of 0.050 to 0.200 inches. In some embodiments, the radius is 0.090 to 0.110 inches. The apex may be adapted to distribute impact forces, which may help to prevent the superhard material 307C from chipping or breaking. The superhard material 307C may have a thickness of 0.100 to 0.500 inches from the apex to the interface with the substrate 405C, preferably from 0.125 to 275 inches. The superhard material 307C and the substrate 405C may comprise a total thickness of 0.200 to 0.700 inches from the apex to the cemented metal carbide core 201C. The sharp apex may allow the high impact resistant pick 101C to more easily cleave pavement, rock, or other formations.
A radius 407C on the second end 401C of the core 201C may have a smaller diameter than the diameter 402C of the cemented metal carbide core 201C. A reentrant 408C may be formed on the shank 204C near and/or at an intersection 409C of the shank 204C and the body 203C. Placing the reentrant 408C near the intersection 409C may relieve strain on the intersection 409C caused by impact forces.
a discloses another embodiment of a spring mechanisms 209F between a base 203F of a pick 101F and a holder 207F. In some embodiments, the spring mechanism 209F may be a Bellville spring 550F or it may be a stack of Bellville springs.
In the embodiments of
The pick 101A may be used in a trenching machine, as disclosed in
Referring now to
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a divisional of U.S. patent application Ser. No. 11/749,039 filed on May 15, 2007.
Number | Date | Country | |
---|---|---|---|
Parent | 11749039 | May 2007 | US |
Child | 12963464 | US |