Information
-
Patent Grant
-
6584644
-
Patent Number
6,584,644
-
Date Filed
Tuesday, October 30, 200123 years ago
-
Date Issued
Tuesday, July 1, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Testa, Hurwitz & Thibeault, LLP
-
CPC
-
US Classifications
Field of Search
US
- 016 197
- 016 193
- 016 DIG 16
- 049 445
- 049 446
- 049 176
- 049 181
-
International Classifications
-
Abstract
A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, includes coiled ribbon springs; a spring support mounting including a single integral component for locating and supporting the springs, a support for the springs to support and locate the springs on the mounting, and formed by pairs of triangular cross section projections extending from the rear surface of the main body of the mounting such that when the springs recoil rapidly outer surfaces of adjacent springs contact each other, and including an end portion of the main body which is curved, wing projections extending from the front surface of the main body, and an inter engagement element on the longitudinal end of the mounting for cooperative engagement with cooperative inter engagement features on a sash shoe; and a locating arrangement for locating the mounting within the channel section.
Description
BACKGROUND OF THE INVENTION
The present invention relates to sash windows and in particular to a mounting for the spring tensioning arrangement used in such sash windows.
Modern sash window arrangements utilise flat coiled ribbon springs which are arranged to unwind as the sash is slid and moved within a window frame. The coiled springs provide a counterbalancing force to counterbalance the weight of the sash window thereby making movement, and opening of the window easier. Typically the coiled springs are mounted, via a mounting arrangement, within a vertical channel section of the window frame or jamb. A free end, referred to as a tail, of the spring is connected to a sash shoe slidably mounted within the channel section of the window frame. The shoe in turn is then connected to the sash window jamb, usually towards the lower portion of the sash window.
The coil springs are generally of a constant tension type in which the outer profile of the coil itself is rotatably held and supported within the mounting whilst the other free end of the spring is free such that the coil spring can rotate as the spring is unwound and the tail is extended. To provide sufficient force to counterbalance the weight of the sash window multiple springs may be provided with the free ends or tails connected together.
An example of a prior arrangement, as generally described above, for a mounting for multiple springs for use in a sash window is described in U.S. Pat. No. 5,365,638. As described in this prior patent, individual mounting means are provided for each of the coil springs. The spring mounting comprises two parallel arranged upstanding wall portions with a coil spring support element interconnecting these wall portions. The coil spring is inserted in between the wall portions with an outer coil surface of the spring supported and resting on the coil spring support element/surface. To provide a multiple spring assembly a number of individual mounting means are provided and stacked into an assembly in the window jamb.
Whilst this mounting arrangement, and similar prior arrangements, provide a practical method of mounting and supporting the springs, there are a number of problems with such an arrangement and the mounting arrangement can be improved generally. Particular problems are that the individual mounting for the springs are relatively complex and involve a number of different components. This increases production costs. The individual mountings also have to be installed individually and/or assembled which increases assembly time and costs. Installation of a stack of mountings within the channel section can also in practice be difficult. The installation of the sash shoe can also be problematic, in particular due to the applied tension of the springs which are attached to them. The correct lateral location of the prior mountings within the channel section and alignment of mounting can also be difficult especially due to the restricted access to the channel section. The stack of mountings secured to the jamb via a single screw fitting also have a tendency to undesirably bow under the tension of the springs. If multiple screw fasteners are used to reduce this bowing then assembly time is increased. It has also been found that dirt can accumulate within the mounting assembly and springs. This can adversely affect performance and operation of the counterbalance. The prior art mountings also obstruct the channel section within which the tilt latch is engaged to locate the sash. Consequently the prior art mountings have to be carefully positioned within the jambs such that opening of the window is not restricted.
SUMMARY OF THE INVENTION
It is therefore desirable to provide an improved sash window spring tensioning mounting arrangement which addresses some or all the above described problems and/or which offers improvements generally.
According to the present invention there is provided a sash window counterbalance spring mounting arrangement as described in the accompanying claims.
In an embodiment of the invention, which includes a number of complementary and/or separate but related aspects and features of the invention, there is provided a sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb. The arrangement comprises at least two coiled ribbon springs, a spring support mounting comprising support means for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and locating means adapted, in use, to locate the spring support mounting within and to said channel section. The spring support mounting comprises a single integral component from which the support means depend and from which the at least two springs are located and supported.
A spring support mounting comprising a single integral component, ie of a one-piece format, for a multi spring counterbalance arrangement is much simpler to fabricate than the prior multi piece format conventionally used. The single integral format is also much simpler to fit into the channel section than fitting the individual support mountings for each of the multiple springs as used in the prior art arrangements. Using a single integral support mounting component also allows the multiple springs to be more closely located to each other which reduces the potential bowing of the support mounting under the spring load.
The spring support mounting comprises an elongate plate like main body portion, the main body portion having a front and rear surface. The support means comprises integral projections from a rear surface of the main body portion. Preferably at least one of the at least two springs comprise a pair of triangular cross section integral projections which extend from the rear surface of the main body portion. The triangular cross section projections are respectively disposed laterally on the rear surface with the respective triangular cross sections laterally oppositely directed such that the pair of triangular projections define a cradle for said spring.
Such triangular cross section projections provide a simple and convenient support mounting for the springs. Furthermore they also allow the springs to be located closely together which, as mentioned above, reduces the possibility and problems of bowing of the spring support mounting.
An end portion of the main body portion of the support mounting is curved in a direction extending from the rear surface of the main body such that a tip edge of the end portion of the main body is disposed at a position spaced from a plane of the remainder of the main body portion. The end portion is thereby arranged to provide a curved head portion for the spring support mounting.
Such a curved head to the spring support mounting allows a tilt latch, which engages within the channel into which the support mounting is fitted, to glide over the installed spring support mounting.
When the mounting arrangement is installed within said channel section of the window jamb, the tip edge of the curved head portion is arranged to abut against a wall of said channel section with the curved head portion closing off an end of the mounting arrangement.
The abutment of the tip edge of the curved head portion with a wall of the channel section closes off the end of the mounting arrangement and assists in keeping dirt out of the mounting arrangement and the coiled springs. In addition it also, in part, seals off the channel section so reducing drafts through the channel section.
The curved head portion is resilient and tip edge of the curved head portion is arranged to resiliently abut against said wall of the channel section such that the spring support mounting is urged away from said wall.
The resilient abutment of the curved head and tip thereof ensures that there is a good seal between the tip and curved head portion. It also provides a secure means to locate the support mounting within the channel between the walls of the channel whilst also allowing the mounting arrangement to accommodate any manufacturing tolerance variations in the channel dimensions.
Wing projections extend from the front surface of the main body of the spring support mounting. A distal end of the wing projections is arranged, when the spring mounting is installed within the channel, to abut against a wall of said channel and to space the front surface of the main body of the spring support mounting from said channel wall.
The wing projections provide a means to laterally locate the support mounting within the channel section, whilst spacing the front surface from the channel wall such that a part of the cross section of the channel section is still unobstructed by the support mounting.
On the longitudinal end of the support mounting there are inter engagement means for cooperative engagement with cooperative inter engagement features on a sash shoe. The inter engagement means preferably comprise a finger extension which is arranged to be engaged within a cooperative recess. The finger extension extends from an end of the spring support mounting, and the cooperative recess is defined in an end portion of the sash shoe.
The inter engagement means between the sash shoe and spring support mounting locate and align the sash shoe and spring support mounting such that the sash shoe and spring support mounting can be installed within the channel as a single unit. The alignment of the sash shoe with the spring support mounting also makes the installation of the shoe within the channel easier.
The support means of the spring support mounting are disposed on the spring support mounting such that in use when the at least two springs recoil rapidly an outer surface of adjacent springs contact each other.
By arranging the support means such that the springs contact when they recoil rapidly, a braking effect is provided which slows the recoiling of the springs.
An end of the spring support mounting may be provided with a buffer means for absorbing, in use, an impact of a sash shoe against said end of the spring support mounting. The buffer means may comprise coil tension springs. Alternatively the buffer means comprises a finger extension which is engaged within a recess. The finger extension and recess are profiled such that as the finger extension is inserted into the recess the finger extension and recess progressively and increasingly frictionally engage each other.
Such a buffer means reduces damage that may be caused in the event that the sash shoe impact the spring support mounting.
The spring support mounting is resiliently flexible in directions extending from the front and rear surfaces.
Such flexibility in the support mounting allows the support mounting to be bent during installation of the support mounting within the channel section. This allows the support mounting comprising an elongate single integral component to be inserted through an industry standard channel opening which is shorter in length than the support mounting.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described by way of example only with reference to the following figures in which:
FIG. 1
is a schematic representation of a complete sash window assembly incorporating the counterbalance spring mounting arrangement in accordance with the present invention;
FIG. 2
is a vertical cross sectional schematic view through the window jamb and counter balance spring mounting and in accordance with the invention, and as shown in
FIG. 1
;
FIG. 3
is a cross sectional view in a vertical direction, on section
3
—
3
of FIG.
2
through the window jamb and spring mounting of the invention;
FIG. 4
is a schematic perspective view of the mounting support of
FIG. 2
but in isolation, showing the rear surface of the mounting body;
FIG. 5
is a schematic perspective view of the arrangement of springs alone as arranged in the mounting of
FIG. 2
;
FIG. 6
is a further schematic perspective view of the mounting body, similar to that of
FIG. 4
, but showing the facing surface of the body portion;
FIG. 7
is a more detailed schematic cross sectional view on arrow Y of the mounting and sash shoe ;
FIG. 8
is a similar view to that of
FIG. 7
but showing an alternative arrangement of the mounting and sash shoe;
FIG. 9
is a schematic perspective view, similar to that of
FIG. 4
, but of an alternative embodiment of the mounting; and
FIG. 10
is a side elevational view showing the support mounting fit into the channel.
DETAILED DESCRIPTION
Referring to
FIG. 1
, a sash window
1
comprises upper
2
and lower
4
sashes which are slidably mounted within a window frame
5
such that each sash
2
,
4
can be slid vertically to open the window. The sashes
2
,
4
are disposed generally vertically and are disposed closely adjacent to each other with one sash
2
sliding behind the other
4
. The window frame
5
comprises upper
6
and lower
8
horizontal frame members and two vertical laterally spaced window jamb members
10
,
12
. The window jambs
10
,
12
have a double vertically extending channel section. Each channel section
9
of the double channel section is disposed side by side within the window jamb adjacent to a respective sash.
FIG. 3
shows the profile of each channel section
9
and the two channel sections, of the double channel section within the window jamb
10
,
12
are of a similar configuration and are arranged laterally adjacent to each other to form the double channel section of the window jamb
10
,
12
. The open side of each respective channel section
9
extends vertically adjacent to the respective sides of the sashes
2
,
4
. The channel section
9
comprises rear wall
11
facing outwardly towards the sash
2
,
4
from which extend two side walls
11
a
,
11
b
. Short front wall portions
13
generally parallel to the rear wall
11
extend inwardly from the ends of the side walls
11
a
,
11
b
towards each other to partially close off and thereby define a channel or jamb pocket
40
with an opening
42
of the channel
9
of a smaller dimension adjacent to the sash
2
,
4
. Along a small section (typically 50 mm) of the channel section
9
however the front wall members
13
are removed to provide an enlarged access opening (not shown) into the channel section
9
. Such an opening in the channel section
9
is an industry standard and is to allow a spring assembly
18
a
,
18
b
and sash shoe
15
a
,
15
b
to be inserted into the channel section
9
.
Pivot pins
14
a
,
14
b
, located towards the lower end of each sash
2
,
4
, extend laterally from each lateral side of each sash
2
,
4
. The pivot pins
14
a
,
14
b
extend into a respective channel section
9
, through the open side and opening
42
in the channel section
9
and are pivotally engaged within a sash shoe
15
a
,
15
b
which is slidably located within a respective channel section
9
of the window jamb
10
,
12
. Tilt latches
16
a
,
16
b
, located towards the upper part of each sash
2
,
4
, similarly extend laterally from each lateral side of each sash
2
,
4
with a tip
17
of each tilt latch
16
a
,
16
b
extending into a respective channel section
9
of the window jamb
10
,
12
through the open side
42
of the channel section
9
. The pivot pins
14
a
,
14
b
, sash shoe
15
a
,
15
b
, and tilt latches
16
a
,
16
b
, thereby slidably locate the sashes
2
,
4
within the respective channel sections
9
of the window jambs
10
,
12
and secure the sashes
2
,
4
within the window frame
5
.
The tilt latches
16
a
,
16
b
are arranged to be retracted, as indicated by arrow C, into the sash
2
,
4
, such that the tip
17
of the tilt latch
16
a
,
16
b
can be withdrawn from the respective channel section
9
of the window jamb
10
,
12
. The sash
2
,
4
can then be pivoted about the pivot pins
14
a
,
14
b
, as indicated by arrow B. This allows, when the sash window is installed, access to the other side of the window for cleaning and other purposes.
To counter balance the weight of the sashes
2
,
4
, and assist in the vertical sliding of the of sashes
2
,
4
, a counterbalance mechanism is provided. The counter balance mechanism for each sash
2
,
4
comprises a pair of spring assemblies
18
a
,
18
b
mounted in and to the window jambs
10
,
12
, and specifically within the respective jamb channel and jamb pocket
40
, on each lateral side of the sash
2
,
4
. Each spring assembly
18
a
,
18
b
comprises a number of flat coiled ribbon springs
22
a
,
22
b
,
22
c
which are supported and mounted to the window jamb
10
,
12
via a spring assembly mounting
24
, as will be described in more detail later. The free outer ends, or tails, of each coiled spring are connected together to form a common tail
20
a
,
20
b
which is drawn out from the spring assembly
18
a
,
18
b
along the channel section
9
of the window jamb
10
,
12
and is connected to a respective sash shoe
15
a
,
15
b
. As the sash
2
,
4
slides vertically within the frame
5
the common tail
20
a
,
20
b
is drawn out and retracts into the spring assembly
18
a
,
18
b
with the coil springs
22
a
,
22
b
,
22
c
uncoiling and coiling within the spring assembly
18
a
,
18
b
. As a result a vertical upward force is provided by the springs
22
a
,
22
b
,
22
c
to counterbalance the weight of the sashes
2
,
4
and assist in the vertical sliding movement of the sashes
2
,
4
. The spring assemblies
18
a
,
18
b
for each sash
2
,
4
are located at vertical positions within and along the window jamb
10
,
12
such that over the full sliding movement of the sashes
2
,
4
the springs
22
a
,
22
b
,
22
c
are extended to some degree and are under tension to provide a positive vertical upward force over the entire range of sliding movement of the sashes
2
,
4
. Typically therefore, and since the tails
20
a
,
20
b
of the springs
22
a
,
22
b
,
22
c
are connected to sash shoes
15
a
,
15
b
towards the lower end of each sash
2
,
4
the spring assemblies
18
a
,
18
b
are generally mounted towards the middle of the window jambs
10
,
12
.
An individual spring assembly
18
a,
in this case for the left hand side of the lower sash
4
, is shown in more detail in
FIGS. 2
to
7
. The other spring assemblies
18
a,
18
b
which are located in other respective positions in the window jambs
10
,
12
and are connected to a respective sash
2
,
4
via respective sash shoes
15
a,
15
b
are generally similar. Consequently only this spring assembly
18
a
will be described in detail.
The spring assembly
18
a
comprises a one piece multi spring support mounting
24
which is dimensioned to fit into and within the channel section
9
of the window jamb
12
with the width W of a main body portion
25
corresponding to the approximate width W
1
of the jamb channel
9
within which it is inserted. The spring support mounting
24
is shown on its own more clearly in
FIGS. 4 and 6
. The spring support mounting
24
comprises a plate like generally rectangular main body portion
25
with a front surface
21
which when installed in the jamb
12
faces outwards from the window jamb channel section
9
, and a rear surface
23
which faces towards and into the jamb channel section
9
. Integral with the main body portion
25
and extending from the rear surface
23
thereof are spring support projections
33
,
35
,
37
disposed at spaced positions along the length of the main body portion
25
of the spring support mounting
24
.
Three flat ribbon coiled springs
22
, lower
22
a
, middle
22
b
and upper
22
c
(as considered in their final installed positions shown in
FIG. 2
) are arranged as shown in
FIG. 5
with the outer free ends or tails of each spring connected together to form a common tail
20
a
. The springs
22
are located within and on the spring support mounting
24
. The outer coiled body portions of the three flat coiled ribbon springs
22
are supported by and on the respective spring support projections
37
,
35
,
33
of the spring support mounting
24
. An axial end/side face of the coil springs
22
abuts against the rear surface
23
of the main body portion
25
of the support mounting
24
. Since the other axial end/side face of the coil springs is not enclosed by the support mounting the springs
22
can be fitted into the support very easily. Once the spring assembly
18
a
, (support mounting
24
and springs
22
) is installed into the jamb
12
and channel section
9
, the exposed axial end/side face of the spring is however then enclosed by the rear wall of the channel section which once the assembly
18
a
is installed prevents the springs
22
from sliding axially off the support projections
33
,
35
,
37
.
The inner free ends of the flat ribbon coil springs
22
are generally free such that as the springs
22
unwind they rotate within the spring support mounting
24
and the springs
22
provide a generally constant force as they are, in use, unwound.
The lower spring support projection
37
(shown to the left of
FIG. 4
) is of a generally rectangular section with one side of a curved/bowed profile to define a curved cooperating support surface
44
for the outer profile of the lower coil spring
22
a.
The centre support projection
35
comprises a pair of triangular cross section projections
34
′,
36
′ disposed on either side of the rear surface
23
of the main body
25
. The triangular cross section projections
34
′,
36
′ are arranged with a base side of the triangular section generally parallel to the longitudinal edge of the main body
25
and with an apex towards the centre of the main body
25
. The triangular projections
34
′,
36
′ are separated such that there is a space between the respective projections
34
′,
36
′ in the centre of the main body
25
. The pair of triangular projections
34
′,
36
′ thereby define a cradle within which the outer profile of the middle spring coil
22
b
is located and is supported. The shape of the triangular projections
34
′,
36
′ may preferably be profiled to cooperate with the outer profile of the spring
22
b
, however exact correspondence in profile is not required to provide support for the spring
22
b
. The centre support projection
35
is also adjacent to the lower coil spring
22
a
and so prevents movement of the lower spring
22
a
in an upwards direction when installed. In effect the triangular projections
34
′,
36
′ occupy the generally triangular space between adjacent springs
22
a
,
22
b
to thereby locate these springs
22
a
,
22
b
within the mounting
24
and support the springs
22
a
,
22
b
when the assembly
18
a
is installed.
The upper support protection
34
is the same as the centre support projection
35
and the upper spring
22
c
is supported by one side surface of the respective triangular projections
34
,
36
whilst the centre spring
22
b
is also adjacent to the lower side surface of the triangular projections
34
,
36
.
It will be appreciated that the number of springs may be different in other embodiments of the invention depending on the counterbalance force that is required and additional, or fewer support projections can be provided. For example in
FIG. 9
a support mounting of the same general type (in which like reference numerals have been used for like features) as that of
FIG. 4
is shown but for mounting two springs
22
. The invention however and its advantages are though particularly and mainly applicable to multiple spring mountings which include and provide a mounting for a minimum of two springs.
With the triangular projections
34
,
34
′,
36
,
36
′ located towards the sides of the main body
25
, and by virtue of the one piece format for the support mounting
24
, the springs
22
are located relatively close together along the support structure
24
. Indeed the springs
22
can with this support mounting
24
be located such that when fully wound, and of a maximum diameter, the outer profile of adjacent springs
22
a
,
22
b
and
22
b
,
22
c
almost touch in the centre space between the triangular support projections
34
,
34
′,
36
,
36
′. As a result the overall length of the spring assembly
18
a
is considerably less than that of previous arrangements incorporating similar sized springs. In addition bowing of the support mounting
24
due to the spring
22
loads is reduced.
It has also been found that when coil springs
22
of this type retract and rewind quickly, for example if the load of the sash window is suddenly removed or the window is moved upward quickly, then the outer diameter of the coil spring
22
expands to a diameter greater than that of the naturally coiled spring or present under normal recoiling of the spring
22
under slower movement. With this support mounting the springs
22
can be arranged such that when they quickly retract the outer profile of the adjacent springs
22
a
,
22
b
and
22
b
,
22
c
contact each other and for the lower
22
a
and middle
22
b
springs they contact the adjacent triangular supports
35
,
33
for the adjacent springs
22
b
,
22
c
. This contact advantageously brakes the retraction of the springs
22
and slows the retraction and movement of the sash
2
,
4
. The contact between adjacent springs
22
a
,
22
b
and
22
b
,
22
c
provides a particularly efficient braking action since respective opposite sides of the springs
22
, which are moving in opposite directions at the point of contact, contact each other.
The spring support mounting
24
, as shown in
FIG. 4
, is preferably made of a relatively flexible plastic material, for example nylon or acetyl. The spring support mounting
24
, including integral spring support projections
37
,
35
,
33
, is fabricated as a single piece construction preferably by injection moulding. The one piece format of the support mounting
24
simplifies assembly by reducing the number of parts involved and also reduces production and assembly costs. In particular such a one piece unit is cheaper to fabricate than having to make a number of, generally different individual support mountings for the individual springs.
The main body
25
of the support mounting
24
is relatively thin t, typically about 1 mm. Consequently the main body portion
25
, of spring support mounting
24
is relatively flexible and can be bent to allow the spring assembly
18
a
, which overall is longer than the typical 50 mm length of the access opening in the channel section
9
, to be inserted through the industry standard 50 mm access opening (not shown) in the channel section
9
of the window jamb
12
. The spring assembly
18
a
is then slid down within the channel section
9
to the correct position. The flexibility of the support mounting
24
of the present invention and one piece format, means that the support is simpler to manufacture and install into the channel section
9
of the jamb
12
as compared to the prior arrangement. This can be contrasted with prior arrangements, for example as shown in U.S. Pat. No. 5,365,638, in which the support mountings are of a rigid plastic multi piece construction with each piece of the support required to be small enough to be individually inserted through the access opening and then connected together once installed into the channel.
Wing projections
38
located at the edges of the main body
25
of the support mounting
24
and integral with the support mounting
24
extend from the front surface
21
of the support mounting. When the support mounting
24
is installed and fitted into the channel section
9
of the jamb
12
these wing projections
38
bear against the rear of the front walls
13
of the channel section as shown in FIG.
3
. The wing projections
38
thereby provide a means to locate the support mounting
24
within the channel section
9
. The wing projections, being fabricated from the same flexible plastic material as the rest of the support mounting
24
, are also flexible enough to bend slightly and accordingly take up any manufacturing tolerance variations in the dimensions of the channel section
9
. The wing projections
38
also space the front surface
21
of the support mounting
24
, a distance d
1
away from the channel opening
42
such that a recess is still defined in the region of the mounting
24
to allow the tip
17
of the tilt latch
16
a
which extends into the channel section
9
to remain engaged within the channel
9
as it passes over the mounting
24
.
The end portion of the main body
25
of the support
25
mounting
24
(when installed at the top end of the support mounting) is curved away from the rear surface of the support mounting in a direction extending from the rear surface to provide a curved head
26
, with in effect the end portion being curved longitudinally back upon the remainder of the main body of the rear surface
23
of the support mounting
24
. The curved head portion
26
curves and bows back towards the support projections
33
and closes off that end of the support mounting
24
. The tip edge
27
of the curved head is therefore disposed a distance d
2
from the front surface
21
, and the rest of the main body
25
of the support mounting
24
. Preferably this distance d
2
is slightly greater than the depth d
4
of the channel section
9
within which the support mounting
24
is fitted. When the support mounting
24
is fitted into the channel section, and since the main body
25
is relatively flexible, the curved head portion
26
is bent and straightened slightly such that the tip edge
27
is a closer distance d
3
from the rear surface
23
and rest of the main body
25
of the support mounting
24
. This allows the support mounting
24
to fit into the channel section
9
. This is shown in exaggerated form in
FIG. 10
with the installed position of the curved head
26
indicated in phantom, as compared to the normal unreflected free position of the curved head portion shown in solid line. As a result of this bending of the curved head portion
26
when installed, the tip edge
27
of the curved head
26
resiliently presses against the rear wall
11
of the jamb
12
channel section
9
. This urges the front surface
21
and main body
25
of the support mounting
24
outwards and presses the wing projections
38
against the inner surface of the front walls
13
of the channel section
9
. The support mounting
24
, and in particular the top end of the mounting
24
, is thereby located relatively securely between the front
13
and rear walls
11
of and within the channel section
9
of the jamb
12
. The resilience and bending of the curved head
26
accommodates any manufacturing tolerances within the depth d
4
of the channel section
9
. The curved head portion
26
and abutment against the channel section
9
wall
11
when the support mounting
24
is installed also provides a tight seal within the channel section
9
which reduces drafts. The curved head
26
also encloses the top of the spring assembly
18
a
with the springs
22
enclosed by the curved head
26
, main body
25
, and channel section
9
walls of the jamb
12
. As a result dirt, which may interfere with the springs
22
is kept out of the assembly l
6
a
and the springs
22
are protected to some degree.
The curved head portion
26
also deflects the tilt latch
16
a
into the sash allowing the tilt latch
16
a
to glide over the mounting
24
as the sash
2
,
4
is moved. It will be appreciated that the tilt latch
16
a
normally extends a considerable distance into the channel section
9
to provide a secure and robust location of the top of the sash
2
,
4
. When passing over the support mounting
24
the tilt latch
16
a
is still though engaged within the channel section
9
and jamb
12
due to the spacing d
1
of the support mounting
24
from the front walls
13
by the wings
38
and due to a groove formed within the front surface
21
of the support mounting
24
. The lower end of the support mounting may also preferably be of a curved profile to allow the tilt latch
16
a
to glide over the support mounting
24
when the sash
2
,
4
and tilt latch
16
a,
16
b
are moved over the support mounting
24
from below the support mounting
24
.
The lateral location and positioning of the support mounting
24
within the channel section
9
itself, as opposed to the vertical position, is provided by the abutting of the wing projections
38
with the front wall
13
, the bearing of the tip edge
27
of the curved head
26
against the rear wall
11
and the width W of the support mounting
24
with the longitudinal edges abutting the side walls
11
a
,
11
b
of the channel section
9
. However to locate the support mounting
24
vertically along the channel section
9
and to secure the support mounting
24
to the jamb
12
an aperture
31
is defined within the lower support projection
37
. A single mounting screw
32
, is engaged within this aperture
31
and, when the spring assembly
18
a
is fitted into the jamb
12
this secures the spring support mounting
24
as a whole to the window jamb
12
. Since the width W of the support mounting
24
corresponds generally to that W
1
of the channel section
9
the support mounting
24
is restrained from rotating about the single screw
32
fitting. The one piece format of the support mounting
24
for supporting multiple springs
22
enables the single screw
32
fitting to secure the support mounting
24
to the jamb
12
. This can be contrasted with some prior arrangements in which individual mounting structures which are individually secured to the jamb are used. The use of a single fixing screw
32
represents a simplification and reduces assembly and installation time.
The support mounting
24
may in alternative embodiments be secured and located vertically within the channel section
9
and jamb using pegs, spigots or catches instead of the single screw fastening described and shown. The screw fitting
32
, or other securing means may also locate the support mounting
24
against the rear wall
11
of the channel section
9
and within the channel section
9
in other embodiments, and in particular in other embodiments which do not include the curved head
26
and/or wing projections
38
.
The support mounting
24
also includes an integral finger extension projection
28
which extends from an end of the main body portion
25
. This finger
28
is engagable within a cooperatively shaped recess
46
within the sash shoe
15
a
to which the tails
20
a
of the springs
22
are attached and which is located beneath the spring assembly
18
a
within the channel section
9
of the window jamb
12
. This finger extension projection
28
provides a means to locate the sash shoe
15
a
relative to and with the spring assembly
18
a
such that both the shoe
15
a
and spring assembly
18
a
can be inserted into the channel section
9
together as a single unit. This aids assembly and furthermore makes it easier to slide the sash shoe
15
a
to the correct position since the spring assembly
18
a
provides a means for more easily guiding the sash shoe
15
a
within the channel section
9
. The finger
28
also, by locating the sash shoe
15
a
relative to the spring assembly
18
a
, holds and locates the sash shoe
15
a
in position preventing it from twisting under pressure from the springs
22
. Such twisting of the shoe
15
a
may cause the shoe
15
a
to jam in the channel section
9
as it is being installed and consequently by preventing such twisting assembly is made easier. It will be appreciated that such twisting of the sash shoe
15
a
is not a problem once the shoe
15
a
is installed and attached to the sash
4
due to the load of the sash
4
on the shoe
15
a.
The finger extension
28
also provides a buffer zone to absorb the impact of the sash shoe
15
a
on the lower end of the spring support assembly
18
a
. Such impact may occur in the event of excessive rapid opening and sliding of the sash
4
or if the sash
4
, and so load on the sash shoe
15
a
, is suddenly removed from the shoe, for example during removal of the sash
4
. This buffer action can be further enhanced by tapering of the recess
46
and/or finger extension
28
such that they progressively engage and abut as the finger
28
is inserted into the recess
46
. The recess surface
47
, and/or finger outer profile surface
47
, could also be serrated to increase the contact friction between them which further improves the impact absorbency. In an alternative arrangement the positions of the finger
28
and recess
46
could be reversed with the sash shoe
15
a
including finger projections which engage within slots in the main body of the mounting. A suitably shaped mounting support
24
′ is shown in
FIG. 9
with slots
48
defined between projections
49
from the main body
25
and the lower mounting projection
37
. In a yet further variation, shown in
FIG. 8
, coil compression springs
50
are mounted on the lower end of the support mounting
24
and are arranged to axially abut against shoulders on the sash shoe
15
a
. It will be appreciated that alternatively springs could be mounted on the sash shoe
15
a
. In this arrangement of
FIG. 8
a finger projection could also be incorporated to locate the sash shoe
15
a
and spring assembly
18
a.
As described the spring support mounting
24
is fixed to and within the jamb
12
and the sash shoe
15
a
is, in use, slidable within the channel section
9
and is attached to the sash
4
. This is the preferred arrangement. It will be appreciated though that this arrangement could be reversed in other embodiments and the spring support
24
could be slidably located within the channel section
9
of the jamb
12
and pivotally attached to the sash
4
with a fixed shoe. The vertical positions of the pivot pins
14
a
and tilt latches
16
a
could also be reversed with the pivot pins located at the top of the sash
4
and the tilt latch
16
a
towards the lower part of the sash
4
.
Along the front surface
21
of the mounting
24
, and extending longitudinally there is a spine
29
which projects from the front surface
21
and runs along the centre of the front surface
21
. This spine
29
reinforces and stiffens the support mounting
24
again assisting in preventing bowing of the support mounting. In alternative arrangements a longitudinal groove indentation could be provided and defined within the front surface
21
of the mounting
24
instead of a raised spine
29
. Such a longitudinal indentation would similarly stiffen and strengthen the support mounting. In addition a longitudinal groove would provide a track and groove within which the tip of the tilt latch could run as the tilt latch in use passes over the support mounting
24
.
Many other variations of the inventions will also be apparent to those skilled in the art are contemplated. Furthermore various combinations, and use of individual advantageous features of the different embodiments described may be used individually or in other combinations from those described are also contemplated.
Claims
- 1. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising:at least two coiled ribbon springs, a spring support mounting comprising: an elongate plate like main body portion formed as a single integral component from which the at least two springs are located and supported, the main body portion having a front and rear surface, and a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, the support comprising integral projections depending from a rear surface of the main body portion, the support for at least one of the at least two springs comprise a pair of triangular cross section integral projections which extend from the rear surface of the main body portion, the triangular cross section projections respectively disposed laterally on the rear surface with the respective triangular cross sections laterally oppositely directed such that the pair of triangular projections define a cradle for said spring, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section.
- 2. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising:at least two coiled ribbon springs, a spring support mounting comprising: an elongate plate like main body portion formed as a single integral component from which the at least two springs are located and supported, the main body portion having a front and rear surface, an end portion of the main body portion is curved in a direction extending from the rear surface of the main body portion such that a tip edge of the end portion of the main body portion is disposed at a position spaced from a plane of a remainder of the main body portion, the end portion providing a curved head portion for the spring support, and a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section.
- 3. A sash window counterbalance spring mounting arrangement as claimed in claim 2 in which, when the mounting arrangement is installed within said channel section of the window jamb, the tip edge of the curved head portion is arranged to abut against a wall of said channel section with the curved head portion closing off an end of the mounting arrangement and, in part, providing said locating arrangement for locating the spring support mounting within the channel.
- 4. A sash window counterbalance spring mounting arrangement as claimed in claim 3 in which the tip edge of the curved head portion is arranged to resiliently abut against said wall of the channel section such that the spring support mounting is urged away from said wall.
- 5. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising:at least two coiled ribbon springs, a spring support mounting comprising: an elongate plate like main body portion formed as a single integral component from which the at least two springs are located and supported, the main body portion having a front and rear surface, and a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section, said locating arrangement comprises, in part, wing projections extending from the front surface of the main body of the spring support mounting, a distal end of the wing projections arranged when the spring mounting is installed within the channel to abut against a wall of said channel and to space the front surface of the main body portion of the spring support mounting from said channel wall.
- 6. A sash window counterbalance spring mounting arrangement as claimed in claim 5 in which the wing projections are disposed towards lateral sides of the front surface of the support mounting.
- 7. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising:at least two coiled ribbon springs, a spring support mounting comprising: a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and a single integral component from which the support depends and from which the at least two springs are located and supported, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section, and an end of the spring support mounting comprising a buffer for absorbing, in use, an impact of a sash shoe against an end of the spring support mounting, said buffer comprising coil tension springs.
- 8. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising at least two coiled ribbon springs, a spring support mounting comprising a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section, an end portion of the spring support mounting comprising a curved head portion, with a tip edge of the curved head portion arranged, when the mounting arrangement is installed within said channel section of the window jamb, to abut against a wall of said channel section with the curved head portion closing off an end of the mounting arrangement and, in part, providing said locating arrangement for locating the spring support mounting within the channel.
- 9. A sash window counterbalance spring mounting arrangement for fitment into a channel section within a window jamb, comprising at least two coiled ribbon springs, a spring support mounting comprising a spring support for each of said at least two coiled ribbon springs to support and locate said coiled ribbon springs to the spring support mounting, and a locating arrangement adapted, in use, to locate the spring support mounting within and to said channel section, said locating arrangement comprising, in part, wing projections which extend from a front surface of the spring support mounting, a distal end of the wing projections arranged when the spring mounting is installed within the channel to abut against a wall of said channel and to space the front surface of the main body of the spring support mounting from said channel wall.
Priority Claims (1)
Number |
Date |
Country |
Kind |
0027397 |
Nov 2000 |
GB |
|
US Referenced Citations (16)
Foreign Referenced Citations (5)
Number |
Date |
Country |
329996 |
May 1930 |
GB |
1505782 |
Mar 1978 |
GB |
2254875 |
Oct 1992 |
GB |
2278626 |
Dec 1994 |
GB |
2295634 |
Jun 1996 |
GB |