The present subject matter relates to fluid processing cassettes and, more particularly, to a flexible sheeting or diaphragm of such a cassette.
Whole blood is routinely separated into its various components, such as red blood cells, platelets, and plasma. Conventional blood separation methods use durable centrifuge equipment in association with single use, sterile processing sets, typically made of plastic. The configuration of the single use processing sets used in combination with different centrifuges varies widely, but some sets include a molded plastic flow control member commonly referred to as a cassette. As used herein, the term “cassette” refers to a component of a fluid processing system that includes a number of defined fluid passageways and valve stations. In addition to blood separation systems, cassettes may be employed in other fluid processing systems, such as dialysis systems, intravenous administration systems, and others.
The cassette is secured to a cassette holder of the durable equipment of the fluid processing system. The cassette holder includes actuators for opening and closing the valve stations, which determine which of the fluid passageways are connected to each other, thereby directing fluid between a number of sources and destinations.
An exemplary cassette and cassette holder are employed by the AMICUS® system marketed by Fenwal, Inc. of Lake Zurich, Ill. One version of the AMICUS® system is described in greater detail in U.S. Pat. No. 5,868,696, which is hereby incorporated herein by reference. In the AMICUS® system, fluid flow is controlled by one or more disposable cassettes with preformed fluid passages, which interface with an array of actuators and sensors located on a panel of the durable reusable hardware. Each cassette has a flexible diaphragm or sheeting on the side facing the actuators and sensors. A solenoid clamp of the hardware presses the sheeting against the cassette to cover selected fluid passages or valve stations, thereby preventing fluid flow therethrough. When it becomes desirable for fluid to flow through the fluid passages, a vacuum is applied by the hardware to assist in drawing the sheeting away from the fluid passages, thereby opening them for fluid flow therethrough. Operating the vacuum requires additional power and involves a number of mechanical parts, so for purposes of simplifying the system and reducing its power consumption, it would be advantageous to provide a system in which fluid flow through the cassette may be controlled without the need for an applied vacuum to unseat the sheeting from the fluid passages.
There are several aspects of the present subject matter, which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
In one aspect, a sheeting is provided for use with a fluid processing cassette having at least one valve station that includes a plurality of fluid flow ports. The sheeting comprises a generally flexible layer having first and second sides. A biasing member is associated with one of the sides of the generally flexible layer and configured to cooperate with the valve station of the cassette and to bias the sheeting away from a closed valve station position.
In another aspect, a fluid processing cassette includes an interior wall defining a topside and an underside, with at least one valve station associated with the underside. A plurality of fluid flow ports are associated with one of the valve stations. The cassette further includes a sheeting comprising a generally flexible layer. The generally flexible layer has first and second sides, with a biasing member associated with one of the sides. The biasing member is positioned between the interior wall and the generally flexible layer, within the valve station.
In yet another aspect, a fluid processing system and a disposable processing set are provided in combination. The combination includes a fluid processing cassette and a valve actuator. The fluid processing cassette includes an interior wall defining a topside and an underside, with at least one valve station associated with the underside. A plurality of fluid flow ports are associated with one of the valve stations. The cassette further includes a sheeting comprising a generally flexible layer. The generally flexible layer has first and second sides, with a biasing member associated with one of the sides. The biasing member is positioned between the interior wall and the generally flexible layer, within the valve station. The valve actuator is configured to engage the sheeting of the cassette and includes a piston substantially aligned with one of the fluid flow ports when the sheeting of the cassette is in engagement with the valve actuator. The piston is configured to move been an extended position and a retracted position. In the extended position, the piston presses the sheeting against the interior wall of the cassette so as to cover the associated fluid flow port and thereby prevent fluid flow through the valve station. In the retracted position, the piston is spaced away from the cassette so as to allow the sheeting to uncover the associated fluid flow port and thereby allow fluid flow through the valve station. The biasing member is configured to assist in displacing the sheeting from the fluid flow port when the piston moves from the extended position to the retracted position.
The embodiments disclosed herein are for the purpose of providing the required description of the present subject matter. They are only exemplary, and may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting the subject matter as defined in the accompanying claims.
A sloped front panel 12 of the system 10 includes at least one cassette holder 14, which is shown in greater detail in
The illustrated cassette 16, as shown in
In one embodiment, the cassette 16, the interior wall 20, and the upper panel 28 are made of a rigid medical grade plastic material, while the sheeting 26 is made of a flexible sheet of medical grade plastic, such as polyvinyl chloride or silicone. The upper panel 28 and the sheeting 26 are sealed about their peripheries to the peripheral edges of the top- and undersides 22, 24 of the cassette 16, respectively.
As shown in
The valve and sensing stations 30, 32 resemble shallow wells open on the cassette underside 24 (
The sensing stations 32 are likewise closed by the interior wall 22 on the topside 22 of the cassette 16, except that each sensing station 32 includes three through holes or ports 38 in the interior wall 20 (
In one embodiment, the flexible sheeting 26 overlying the underside 24 of the cassette 16 is sealed by ultrasonic welding or other suitable means to the upstanding peripheral edges 36 of the valve and sensing stations 30, 32. This isolates the valve stations 30 and sensing stations 32 from each other and the rest of the system. In an alternative embodiment, the flexible sheeting 26 can be seated against the upstanding edges 36 by an external positive force applied by the cassette holder 14 against the sheeting 26. The positive force, like the ultrasonic weld, peripherally seals the valve and sensing stations 30, 32.
The localized application of additional positive force (referred to herein as a “closing force”) upon the intermediate region of the sheeting 26 overlying a valve station 30 serves to flex the sheeting 26 into the valve station 30. Such closing force is provided by the cassette holder 14 or valve members associated therewith, as will be described in greater detail herein. The sheeting 26 seats against one of the ports 38 to seal the port 38, which closes the valve station 30 to liquid flow. Upon removal of the closing force, fluid pressure within the valve station 30 and/or the plastic memory of the sheeting 26 itself helps to unseat the sheeting 26 from the port 38, opening the valve station 30 to liquid flow. Most advantageously, the sheeting 26 is provided with a biasing feature, such as the biasing member 62 (
Upstanding channel sides or edges 40 rise from the interior wall 20 to peripherally surround and define the liquid paths 34, which are open on the topside 22 of the cassette 16. The liquid paths 34 are closed by the interior wall 20 on the underside 24 of the cassette 16, except for the ports 38 of the valve and sensing stations 30, 32 (
In the illustrated embodiment, a plurality of (e.g., ten) pre-molded tube connectors 42 extend out along opposite side edges 44, 46 of the cassette 16. The tube connectors 42 are arranged five on one side edge 44 and five on the other side edge 46. The other side edges 48 of the cassette 16, as illustrated, are free of tube connectors. The tube connectors 42 are associated with external tubing (not illustrated) to associate the cassette 16 with the remainder of the disposable set.
The tube connectors 42 communicate with various interior liquid paths 34, which constitute the liquid paths of the cassette 16 through which a fluid enters or exits the cassette 16. The remaining interior liquid paths 34 of the cassette 16 constitute branch paths that link the liquid paths 34 associated with the tube connectors 42 to each other through the valve stations 30 and sensing stations 32.
Turning now to the cassette holder 14 (
The flexible sheeting 26 covering the underside 24 of the cassette 16 is urged into intimate contact with a valve and sensor array or assembly 54 by the cassette holder 14 (
The pressure sensing transducers 58 sense liquid pressures in the sensing stations 32 of the cassette 16. The sensed pressures are transmitted to a controller of the system 10 as part of its overall system monitoring function.
As for the valve actuators 56, each includes an electrically actuated solenoid pin or piston 60. Each piston 60 is independently movable between a retracted position (
The sheeting 26 comprises a generally flexible layer 64 (i.e., the diaphragm-like, flexible sheet of material that overlays the underside 24 of the cassette 16), with each biasing member 62-62b being associated with the side facing the cassette body 18. In particular, each biasing member 62-62b is configured to be positioned between the interior wall 20 and the generally flexible layer 64 of the sheeting 26, received within one of the valve stations 30, as shown in
In the embodiment of
In one embodiment, the biasing member 62 is configured to be in constant contact with the interior wall 20, regardless of whether the piston 60 is in the extended position (
In the illustrated embodiment, the biasing member 62 is generally concentric with the port 38a and generally arcuate or C-shaped to define the opening 66. The biasing member 62 may define an arc greater than 180° or greater than 300° to substantially, but not entirely, surround the port 38a and define the opening 66. The illustrated configuration is merely exemplary, as the biasing member may have any other (preferably, but not necessarily, non-closed) shape to define an opening 66, an need not be circular or semicircular. It could, for example, be in the general shape of a square, oval, or polygon or other configuration. It may be advantageous for the biasing member 62 to be configured and oriented so as to be spaced away from (i.e., be out of alignment with) the uppermost end or tip of the piston 60. For example, in the embodiment of
The biasing member 62 of
In other embodiments, the biasing member 62 may be secured to the interior wall 20 of the cassette body 18 (or some other portion of the cassette body 18), rather than being secured to the generally flexible layer 64. It is also within the scope of the present disclosure for the biasing member 62 to be secured to both the generally flexible layer 64 of the sheeting 26 and the cassette body 18 or to neither (e.g., by press-fitting the biasing member 62 into the space between the generally flexible layer 64 and the interior wall 20).
In use, the cassette 16 is loaded onto the valve assembly 54, with the generally flexible layer 64 of the sheeting 26 in engagement with the valve actuators 56 (optionally with a membrane or cover of the valve assembly 54 positioned above the valve actuators 56) and the valve stations 30 aligned with the valve actuators 56. The pistons 60 of the valve actuators 56 are in the retracted position of
When it becomes desirable to prevent flow through the valve station 30, the piston 60 is actuated to move from the retracted position to the extended position of
When it becomes desirable to again allow flow through the valve station 30, the piston 60 is actuated to move from the extended position of
In an alternative embodiment, shown in
In the illustrated embodiment, the biasing member 62a is generally concentric with the port 38a, with an inner diameter slightly larger than the perimeter of the uppermost end or tip of the piston 60, such that the piston 60 does not directly compress the biasing member 62a when in an extended position. However, it is also within the scope of the present disclosure for the biasing member 62a to be non-concentric with the port 38a and/or to have an inner diameter less than or equal to the perimeter of the uppermost end or tip of the piston 60. Further, the biasing member 62a may be either substantially annular or non-annular without departing from the scope of the present disclosure.
In use, the biasing member 62a of
When it becomes desirable to again allow flow through the valve station 30, the piston 60 is actuated to move back to the retracted position of
In another alternative embodiment, shown in
In the illustrated embodiment, the biasing member 62b is positioned opposite the second port 38b (i.e., 180° away from the second port 38a when viewed with respect to the first port 38a). This location helps to prevent the biasing member 62b from interfering with fluid flow between the ports 38a and 38b. However, it is within the scope of the present disclosure for the biasing member 62b to be positioned at other locations, including between the two ports 38a and 38b, which allows for fluid communication between the ports 38a and 38b through and/or around the biasing member 62b (depending on its configuration). Most advantageously, the biasing member 62b is positioned adjacent to the perimeter of the uppermost end or tip of the piston 60, which provides a strong spring response without compromising the functionality of the piston 60. However, it is also within the scope of the present disclosure for the biasing member 62b to be positioned elsewhere within the valve station 30, including locations farther from the piston 60 and the port 38a.
The biasing member 62b of
The biasing member 62b of
Besides the biasing members illustrated herein, other configurations may also be employed without departing from the scope of the present disclosure. For example, the biasing member may be configured to completely or partially surround both ports 38a and 38b or only the second port 38b (i.e., the port that is not directly valved by the piston 60). Also, the biasing member does not necessarily have to be in constant contact with the cassette interior wall 20, but may be spaced away from the interior wall 20 when the piston 60 is in the retracted position and only in contact with the interior wall 20 when the piston 60 is in the extended position or an intermediate position between the extended and retracted positions.
Additionally, while the biasing members illustrated and described herein are relatively resilient (i.e., having the tendency to deform upon an applied force from the piston 60 and then return to their initial configuration), non-resilient configurations may also be employed. For example, the biasing member may comprise a rigid, substantially non-deformable projection from the cassette body 18, preferably positioned adjacent to the first port 38a and extending toward the sheeting 26. Such a projection may be integrally formed with the cassette body 18 or formed separately and subsequently secured to the cassette body 18. Alternatively, the projection may be secured to the sheeting 26 instead of the cassette body 18. The projection is configured so as to allow the sheeting 26 to be pressed over the first port 38a, while resisting the movement of the sheeting 26 toward the cassette body 18. Thus, the mere presence of the substantially rigid projection, rather than any inherent resiliency, assists in biasing the sheeting 26 away from the closed position and toward the open position.
Aspects of the present subject matter described above may be beneficial alone or in combination with one or more other aspects. Without limiting the foregoing description, in accordance with one aspect of the subject matter herein, there is provided a sheeting for use with a fluid processing cassette having at least one valve station with a plurality of fluid flow ports. The sheeting comprises a generally flexible layer and a biasing member. The sheeting has first and second sides, with the biasing member being associated with one of the sides of the generally flexible layer and configured to be received within the valve station of the cassette.
In accordance with another aspect which may be used or combined with the preceding aspect, the biasing member is comprised of the same material as the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the biasing member comprises a molded protrusion of the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the biasing member is generally arcuate.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the biasing member is generally C-shaped.
In accordance with another aspect which may be used or combined with the first aspect, the biasing member comprises a spring.
In accordance with another aspect which may be used or combined with the first aspect, the biasing member comprises a foam insert.
In accordance with another aspect, there is provided a fluid processing cassette, which includes an interior wall defining a topside and an underside. At least one valve station is associated with the underside of the interior wall. A plurality of fluid flow ports are associated with one of the valve stations. The cassette also includes a sheeting comprising a generally flexible layer having first and second sides. A biasing member is associated with one of the sides of the generally flexible layer and positioned between the interior wall and the generally flexible layer, within the valve station.
In accordance with another aspect which may be used or combined with the preceding aspect, the biasing member is comprised of the same material as the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding two aspects, the biasing member comprises a molded protrusion of the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding three aspects, the biasing member is generally arcuate.
In accordance with another aspect which may be used or combined with any of the preceding four aspects, the biasing member is generally C-shaped.
In accordance with another aspect which may be used or combined with the eighth aspect, the biasing member comprises a spring.
In accordance with another aspect which may be used or combined with the eighth aspect, the biasing member comprises a foam insert.
In accordance with another aspect which may be used or combined with any of the preceding seven aspects, the biasing member engages the interior wall and the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding eight aspects, the interior wall includes a channel receiving one end of the biasing member.
In accordance with another aspect which may be used or combined with any of the preceding nine aspects, the biasing member partially surrounds one of the fluid flow ports.
In accordance with another aspect which may be used or combined with the eighth aspect, the biasing member surrounds one of the fluid flow ports.
In accordance with another aspect, there is provided the combination of a fluid processing system and a disposable processing set. The combination includes a fluid processing cassette and a valve actuator. The fluid processing cassette includes an interior wall, at least one valve station, and a plurality of fluid flow ports, and a sheeting. The interior wall defines a topside and an underside, with the at least one valve station being associated with the underside of the interior wall. A plurality of fluid flow ports are associated with one of the valve stations. The sheeting includes a generally flexible layer having first and second sides and a biasing member associated with one of the sides. The biasing member is positioned between the interior wall and the generally flexible layer, within the valve station.
In accordance with another aspect which may be used or combined with the preceding aspect, the biasing member is comprised of the same material as the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding two aspects, the biasing member comprises a molded protrusion of the generally flexible layer.
In accordance with another aspect which may be used or combined with any of the preceding three aspects, the biasing member is generally arcuate.
In accordance with another aspect which may be used or combined with any of the preceding four aspects, the biasing member is generally C-shaped.
In accordance with another aspect which may be used or combined with the nineteenth aspect, the biasing member comprises a spring.
In accordance with another aspect which may be used or combined with the nineteenth aspect, the biasing member comprises a foam insert.
In accordance with another aspect which may be used or combined with any of the preceding seven aspects, the biasing member engages the interior wall and the generally flexible layer when the piston is in the extended and retracted positions.
In accordance with another aspect which may be used or combined with any of the preceding eight aspects, the interior wall includes a channel receiving one end of the biasing member.
In accordance with another aspect which may be used or combined with any of the preceding nine aspects, the biasing member partially surrounds one of the fluid flow ports.
In accordance with another aspect which may be used or combined with the nineteenth aspect, the biasing member surrounds one of the fluid flow ports.
It will be understood that the embodiments described above are illustrative of some of the applications of the principles of the present subject matter. Numerous modifications may be made by those skilled in the art without departing from the spirit and scope of the claimed subject matter, including those combinations of features that are individually disclosed or claimed herein. For these reasons, the scope hereof is not limited to the above description but is as set forth in the following claims, and it is understood that claims may be directed to the sheeting alone, the sheeting in combination with the hardware or cassette, and/or the sheeting in combination with the hardware and cassette.
This application claims the benefit of and priority of U.S. Provisional Patent Application Ser. No. 61/693,804, filed Aug. 28, 2012, the contents of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/030130 | 3/11/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61693804 | Aug 2012 | US |