The present invention relates to a spring retainer for supporting a coil spring such as a valve spring and a spring system having a coil spring combined with the spring retainer.
In recent years, valve train systems are light-weighted to increase the output of car engines and decrease the fuel consumption thereof. For this, some retainers are made of aluminum alloys or titanium alloys so as to reduce inertial weight and decrease spring load.
The aluminum- or titanium-alloy spring retainers are expensive, and compared with iron-based ones, have limits on improving strength, thinness and the like.
They, therefore, have a risk of causing a fatigue fracture if the pressing force of a valve spring causes stress concentration on a spring seat base of the spring retainers.
The spring retainer has a tapered support hole in which a cotter is placed to support the spring retainer with a valve stem. If a strong shock is applied to the valve stem, large force will be applied to the support hole to cause a fracture.
The aluminum- or titanium-alloy spring retainer is structured to support a valve spring made of spring steel, and therefore, has a limit on improving abrasion resistance.
To deal with the problems, there have been proposed a light-metal spring retainer in which abrasion resistive particles are embedded into a surface layer thereof and a light-metal spring retainer whose tapered support hole has a lining made of an iron-based sleeve.
Each of them, however, increases the number of materials or parts, to complicate manufacturing or parts management.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. H07-63020
Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2000-161029
Patent Literature 3: Japanese Unexamined Patent Application Publication No. H06-307212
Problems to be solved by the invention are that the light-metal spring retainers have limits on improving strength, reducing thickness, and increasing abrasion resistance and that the light-metal spring retainers embedding abrasion resistive particles in a surface layer or having an iron-based sleeve as a lining of the tapered support hole increase the number of materials or parts to complicate manufacturing or parts management.
The present invention reduces the thickness and weight of a spring retainer manufactured from an iron-based material that improves the strength and abrasion resistance of the spring retainer. The spring retainer has a retainer body having a support hole to be supported with a shaft and a flange-like spring seat circumferentially formed on a periphery at an axial one side of the retainer body to receive and support a coil spring. The retainer body and spring seat are integrally formed from resilient metal with grain flows continuously formed from the retainer body to the spring seat.
The spring retainer according to the present invention has the retainer body having the support hole to be supported with a shaft and the flange-like spring seat circumferentially formed on a periphery at an axial one side of the retainer body. The retainer body and spring seat are integrally formed from an iron-based material with grain flows continuously formed from the retainer body to the spring seat.
[
[
[
[
[
[
[
[
[
[
[
[
[
The spring retainer made from the iron-based material improves strength and abrasion resistance. Even if the pressing force of a coil spring causes stress concentration on a base of the spring seat, the continuous grain flows prevent a fatigue fracture. As a result, the spring retainer can reduce the thickness and weight thereof.
An object to make a spring retainer from an iron-based material, improve the strength and abrasion resistance of the spring retainer, and make the spring retainer thin and light is realized by grain flows.
[Spring System]
As illustrated in
On a tip end of the valve stem 5, a tappet 11 is mounted through a shim 9 to contact with a cam 15 of a cam shaft 13. The spring retainer 3 is in contact with an end of a valve spring 17 that is a coil spring. The other end of the valve spring 17 is in contact with and supported by a spring seat 19 on an engine side.
Between the spring retainer 3 and the spring seat 19, the valve spring 17 creates resiliency to push the front end of the valve stem 5 to the cam 15, so that the valve stem 5 follows the cam 15 due to the resiliency of the valve spring 17, to open and close a valve seat 27 with a valve 21.
[Spring Retainer]
As illustrated in
The retainer body 25 has a tapered support hole 29 that is supported through the collet 7 by the axial end of the valve stem 5. A second side end 25a of the retainer body 25 has a thickness t1 that is thicker than a thickness t2 (t1>t2) of an intermediate part 25b between the second side end 25a and the spring seat 27.
The spring seat 27 is formed on a periphery of an axial first side 25c of the retainer body 25 and has a flange shape to receive and support the valve spring 17. The spring seat 27 has a circumferential seat face 31 extending in a diametrical direction and an inner contact face 33 extending in an axial direction.
Between the seat face 31 and inner contact face 33 of the spring seat 27, a recess 35 is formed to avoid an interference with an inner diameter side of the coil spring 17. The details of the recess 35 will be explained later.
A surface 37 of the spring seat 27 gradually descends toward the periphery thereof in an axial direction of the support hole 29 assumed to be a top-bottom direction. The periphery of the surface 37 has a chamfered portion 39. An inner circumferential side of the surface 37 is continuous through a circular-arc shoulder 41 and a first circular-arc constriction 43 to the end of the first side 25c of the retainer body 25. An inner contact 45 having the inner contact face 33 is continuous through a second circular-arc constriction 47, which positionally corresponds to the first constriction 43 in a diametrical direction, to the intermediate part 25b of the retainer body 25.
Every corner is rounded.
As illustrated in
[Grain Flow]
As illustrated in
The grain flows L are formed by hot-forging one of spring steel, dies steel, bearing steel, and tool steel that are iron-based materials into the spring retainer 3.
When the material block 49 is hot-forged, grain flows L are continuously formed allover a formed product 51, as illustrated in
[Hardness and Others]
According to the embodiment, the spring retainer 3 is formed, is quenched, and is tempered, so that the retainer body 25 and spring seat 27 have a surface hardness of Hv650 to 1000 and an inner hardness of Hv450 to 700. The “inner” means a part except the surface having a depth of, for example, 0.1 to 0.6 mm.
As illustrated in
The inner hardness of the retainer body 25 and spring seat 27 is set to Hv590.
As illustrated in
Compared with the fatigue strength (around 900 MPa) of the spring retainers made from SNMC420H and processed by vacuum carburizing and normal carburizing of
The surfaces of the retainer body 25 and spring seat 27 are set to have a compressive residual stress of −200 to −2000 MPa by, for example, shot peening to improve durability.
[Weight Reduction]
a) is a sectional view illustrating an essential part of a lightweight spring retainer made from a titanium alloy and (b) is a sectional view illustrating an essential part of the spring retainer of the embodiment having the same performance and made from spring steel with continuous grain flows.
As illustrated in
[Effect of Embodiment]
The spring retainer 3 according to the embodiment has the retainer body 25 having the tapered support hole 29 supported by the valve stem 5 and the flange-like spring seat 27 circumferentially formed on a periphery at the first side 25c of the retainer body 25, to receive and support the valve spring 17. The retainer body 25 and spring seat 27 are integrally made from any one of the spring steel, dies steel, bearing steel, and tool steel, so that continuous grain flows are formed from the retainer body 25 to the spring seat 27.
Manufactured from one of the spring steel, dies steel, bearing steel, and tool steel, the spring retainer 3 improves strength and abrasion resistance. Even when the pressing force of the valve spring 17 causes stress concentration on a base of the spring seat 27, it resists against a fatigue fracture according to the continuity of the grain flows. As a result, the spring retainer 3 as a whole can be made thin and lightweight.
The retainer body 25 and spring seat 27 are able to be set to have an inner hardness of Hv450 to 700 to improve bending fatigue strength within this range.
The retainer body 25 and spring seat 27 are set to have a surface hardness that exceeds the hardness of the valve spring 17.
This results in improving the abrasion resistance of the spring retainer 3 with respect to the valve spring 17 made of spring steel.
The surfaces of the retainer body 25 and spring seat 27 are set to have a compressive residual stress of −200 to −2000 MPa.
This results in improving the durability of the spring retainer.
The spring seat 27 is provided with the recess 35 to avoid an interference with the inner diameter side of the valve spring 17.
This suppresses abrasion of this part due to an interference with the valve spring 17, thereby preventing a fracture from occurring between the retainer body 25 and the spring seat 27 due to the abrasion.
The retainer body 25 has the thickness t1 at the second side end 25a that is thicker than the thickness t2 of the intermediate part 25b between the second side end 25a and the spring seat 27.
This prevents a fracture from occurring from the second side end 25a when the tapered support hole 29 of the spring retainer 3 receives a strong shock or repetitive load from the valve stem 5 through the cotter 7.
[Others]
The spring system of the present invention is applicable not only to valve train systems of car engines but also to other mechanisms.
Number | Date | Country | Kind |
---|---|---|---|
P2008-201071 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/003690 | 8/3/2009 | WO | 00 | 2/3/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/016227 | 2/11/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3021593 | Cousino | Feb 1962 | A |
4230491 | Behnke | Oct 1980 | A |
4432311 | Holtzberg et al. | Feb 1984 | A |
4665869 | Hinz et al. | May 1987 | A |
4989556 | Shiina et al. | Feb 1991 | A |
5381765 | Rhodes | Jan 1995 | A |
6341588 | Kobayashi et al. | Jan 2002 | B2 |
6371063 | Oyama et al. | Apr 2002 | B2 |
6966539 | Ucman | Nov 2005 | B2 |
20010042530 | Kobayashi et al. | Nov 2001 | A1 |
20010047784 | Kobayashi et al. | Dec 2001 | A1 |
20020035979 | Kobayashi et al. | Mar 2002 | A1 |
20090008846 | Yamakawa et al. | Jan 2009 | A1 |
20100001224 | Edgar | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
62-243907 | Oct 1987 | JP |
62-291409 | Dec 1987 | JP |
6-246387 | Sep 1994 | JP |
6-307212 | Nov 1994 | JP |
7-063020 | Mar 1995 | JP |
8-090139 | Apr 1996 | JP |
9-329008 | Dec 1997 | JP |
2000-161029 | Jun 2000 | JP |
2002-038912 | Feb 2002 | JP |
2002-363773 | Dec 2002 | JP |
2005-000960 | Jan 2005 | JP |
2006-125289 | May 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20110140327 A1 | Jun 2011 | US |