The present invention relates generally to ferromagnetic core inductors, and more particularly to support structures for ferromagnetic inductor cores.
Inductors are passive electronic components which store electrical energy in magnetic fields. Ferromagnetic core inductors have two principal components: a rigid core of ferromagnetic or ferrimagnetic material, and a conductor, usually wound about the core in one or more turns. Some inductors include multiple phases of coils. Inductors are characterized by an inductance L which resists changes in current through the conductor. According to Faraday's law, the magnetic flux induced by changing current through the conductor generates an opposing electromotive force opposing the change in voltage. For a ferromagnetic inductor with a rectangular cross-section toroidal core,
Where L=inductance (μH), μ0=permeability of free space=4π*10−7 H/m, N=number conductor turns, h=core height (in), d1=core inside diameter (in), and d2=core outside diameter (in).
Real-world inductors are not perfectly energy efficient. During operation, ferromagnetic core inductors radiate heat both from core losses, and from series resistance. Liquid and immersion cooling configurations house the inductor within a sealed housing containing a coolant fluid. At least one connection with the conductor extends through the housing, allowing the inductor to be contacted externally. Liquid and immersion cooling configurations require fluid passages between inductor cores and inductor conductors.
Many aircraft electronics use inductors. The cores of liquid cooled inductors to be used in aircraft electronics could shift relative to conductor coils, during flight. This shifting would make maintaining proper fluid passage between inductor cores and inductor conductors difficult.
The present invention is directed toward an inductor comprising a ferromagnetic core, a plurality of conductor turns encircling the ferromagnetic core, a bobbin, and a wave spring. The bobbin encloses the ferromagnetic core and supports the plurality of conductor turns, and the wave spring is situated between the bobbin and the ferromagnetic core.
a is an exploded perspective view of a core and wave springs of an inductor according to the present invention.
b is a cross-sectional view of the core and wave springs of
a is a perspective view of the inductor of
b is a cross-sectional view of the inductor of
a and 1b depict core 12 and wave springs 14 of inductor 10.
Inductor 10 is a ferromagnetic core inductor, and core 12 is a toroidal ferromagnetic core with a rectangular cross-section. Core 12 is formed of a material with high magnetic permeability, such as iron or ferrite. During operation of inductor 10, core 12 serves to confine magnetic fields induced by changing current through conductors 18 (see
Wave springs 14 are conventional ring-shaped wave springs. Wave springs 14 are stacked atop and beneath core 12. When inductor 10 is fully assembled, wave springs 14 abut core 12 as seen in
a and 2b depict bobbin 16, conductors 18 (including conductor 18a, conductor 18b, and conductor 18b), pins 20, and coolant passage 22.
As described above with respect to
Bobbin 16 is a rigid or semi-rigid nonconductive toroidal support structure which positions and restrains conductors 18 about core 12, and aligns pins 20 with connections to external electronics. As shown in
Wave springs 14 fit atop and beneath core 12, between core 12 and bobbin 16. In some embodiments, bobbin 16 and/or core 12 may include slots which serve to locate wave springs 14. Wave springs 14 can be compressed to fit tolerances between core 12 and bobbin 16, and serve to define coolant passages 22. Coolant passages 22 include passage above and below core 12, defined by wave spring 14. In particular, wave springs 14 substantially equalize flow area through coolant passages 22 above and below core 12 by supporting core 12 substantially equidistant from top and bottom interior surfaces of bobbin 16. As mentioned above, cores of inductors in aircraft applications may shift during flight. Wave spring 14 supports core 12 relative to bobbin 16 (and thereby conductor 18), and maintains coolant passages 22 during flight.
The entirety of inductor 10, as depicted in
Although inductor 10 is depicted with only two wave springs 14, some embodiments of inductor 10 may feature additional wave springs or other support components along the radially outer surface of core 12, which similarly support core 12 relative to bobbin 16. Wave springs 14 ensure that coolant passages 22 remain open even as core 12 shifts during flight or other movement of inductor 10. By supporting core 12 and maintaining coolant passages 22, wave springs 14 allow core 12 and conductors 18 to be uniformly cooled despite large tolerances between core 12 and bobbin 16, and despite movement of core 12.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.