The invention relates to a spring terminal element having
The invention also relates to a terminal block having an insulating material housing and having at least one spring terminal element which is held in the insulating material housing.
Such tensioning bracket spring force terminals are particularly suitable for high-current applications. The helical spring can exert an adequate clamping force on the clamping edge of the tensioning bracket, and can therefore exert a clamping effect, which is suitable for high current, on an electrical conductor which rests on the clamping edge.
DE 198 17 924 C2 discloses a high-current terminal having a tensioning bracket spring force terminal connection such as this. In order to open the clamping point, the tensioning bracket is pushed downward with the aid of a forward-movement rotation cylinder, and the helical compression spring is compressed in the process. The forward-movement rotation cylinder is in this case guided in the insulating material housing of the high-current terminal.
When the forward-movement rotation cylinder has been moved down to the maximum extent, it can be secured in the open end position by a bolt which can be moved against the restoring force of the spring.
DE 10 2008 008 651 A1 describes an electrical terminal having a spring terminal connection in the form of a cage tension spring. The cage tension spring is inserted into a contact cage, and the clamping limbs of the cage tension spring can be moved via a threaded screw. The threaded screw is mounted in a fixed position and such that it can rotate in the insulating material housing of the terminal, and interacts with a threaded nut, which is guided in a rotationally secure manner, but such that it can be moved longitudinally, in the insulating material housing. The opening in the terminal connection for holding the electrical conductor is produced by pulling the threaded nut on the clamping limb of the cage tension spring.
DE 600 07 149 T2 describes a connecting terminal having a tensioning bracket spring terminal connection, in which a pin which is mounted such that it can rotate and has a screw surface on the external circumference is inserted between two sleeves with a corresponding screw surface. One sleeve rests on the tensioning bracket, while the other sleeve is formed integrally with the insulating material housing. The tensioning bracket can be adjusted by rotation of the operating pin, with the screw surfaces sliding on one another.
Furthermore, DE 195 13 281 A1 discloses a connecting terminal having a stationary connecting bracket and a socket terminal which can be moved relative thereto. A compression spring is arranged between the socket terminal and the connecting bracket. The threaded shank of a clamping screw passes through a hole in the connecting bracket, and engages in a threaded shank in the socket terminal. The screw head of the clamping screw is supported in the form of a stop on the housing during operation, thus allowing the socket terminal to release the holding area. A greater opening in the holding area can be produced by pushing the clamping screw down.
The known spring force terminal connection with a tensioning bracket is subject to the problem of operating the tensioning bracket connection by application of force to the insulating material housing. The connecting terminals which are equipped with such tensioning bracket spring terminal connections therefore have to be made relatively solid, and this has a disadvantageous effect on physical size. Furthermore, the operating members occupy a relatively large amount of space above the tensioning bracket, which in turn increases the physical height.
The object of the present invention is therefore to provide an improved spring terminal element and an improved terminal block having a spring terminal element such as this.
The object is achieved by the spring terminal element of the type mentioned initially in that an operating cylinder with a screw thread is mounted such that it can rotate and fixed in position in the extent direction of the operating cylinder on the tensioning bracket or on the busbar piece, wherein the operating cylinder is arranged with its screw thread essentially in the internal area of the tensioning bracket, at least in the clamping state when it is clamped on an electrical conductor, and wherein the screw thread on the operating cylinder engages with a screw thread on an operating section, which is coupled to the tensioning bracket or to the busbar piece, in order to move the tensioning bracket relative to the busbar piece during rotation of the operating cylinder.
According to the teaching of the present invention, the screw thread on an operating cylinder extends into the internal area of the tensioning bracket, at least in the clamping state. In this case, the operating cylinder is mounted such that it can rotate but in a fixed position in its extent direction on the tensioning bracket or on the busbar piece. The helical spring is axially loaded or unloaded by relative movement between the operating cylinder and the operating section with respect to one another during rotation of the operating cylinder, thus opening or closing the spring terminal element. Because the operating cylinder is held in the internal area of the tensioning bracket, the action area which is required to operate the spring terminal element is moved into the unused internal area of the tensioning bracket. There is no need for additional physical space for the operating member above the tensioning bracket.
Furthermore, the operating cylinder provides a self-supporting spring terminal element, in which the operating member need no longer be supported on the insulating material housing of a terminal block, in order to allow operation of the spring terminal element. When the operating cylinder and the operating section are rotating relative to one another, the operating force is absorbed by the tensioning bracket, because the operating cylinder is borne on the tensioning bracket, and by the spring terminal element itself, by the mating operating piece being borne directly or indirectly on the helical spring.
This allows the design of the insulating material housing for a terminal block to be simplified without having to make it solid and reinforced.
It is particularly advantageous for the operating cylinder to have an external thread and for the operating section in the mating operating piece to be in the form of a sleeve with an internal thread. The operating cylinder then enters the sleeve, and its external thread interacts with the internal thread in the sleeve.
The opposite variant is, of course, also feasible, in which the operating cylinder has an internal thread, and the mating operating piece has an external thread which engages in an internal area in the operating cylinder, in order to produce a relative movement between the operating bolt and the mating operating piece when one of the two parts is rotated.
It is particularly advantageous for the screw thread in the operating cylinder to extend into the internal area of the helical spring, thus using the internal area of the helical spring as a holding area.
In this case, furthermore, the operating section, in particular the sleeve, may furthermore have, for example, a projection on its external circumference, with the helical spring resting on this projection. The sleeve and the operating cylinder therefore enter the internal area of the helical spring thus making use of this space which has been unused until now, and significantly reducing the physical size of the spring terminal element in comparison to the conventional solutions.
In the same manner, the operating cylinder may have a projection on its external circumference, and the tensioning bracket can rest on this projection. The projections may be provided in at least one subarea of the external circumference or else, if required, may be circumferential with a varying depth all round the external circumference.
Alternatively, it is also feasible for the helical spring to be held in the internal area of the sleeve and to be arranged between the free end of the operating cylinder, which enters the sleeve, and the bottom of the sleeve. In this case, the otherwise unused internal area of the sleeve is used as a holding area, and a small physical size is likewise achieved. In this case, the helical spring acts against the bottom of the sleeve and against the end face of the operating cylinder, that is to say of the bolt.
It is particularly advantageous for a circumferential projection to have latching troughs and for a rotation block, which can be latched into the latching trough, to be provided in order to fix the operating cylinder against rotation in at least one end position. When a rotation block enters a latching trough, this prevents further rotation of the operating cylinder. Rotation such as this can occur in particular if the helical spring is prestressed and pressure is exerted on the operating cylinder, which would lead to an automatic rotational movement of the operating cylinder, and therefore to automatic closing of the spring terminal element.
It is particularly advantageous for a metal tunnel sheet to be attached to the busbar piece, providing a connecting area between the busbar piece and the inner wall, which is opposite the busbar piece, of the metal tunnel sheet. The helical spring and, if appropriate, the mating operating piece or the sleeve is mounted on a metal tunnel sheet. The connecting area between the inner wall of the metal tunnel sheet and the busbar piece can be used for introduction of a contact pin, for example of a lateral bridge. In order to allow a contact pin such as this to make reliable electrical contact with the metal tunnel sheet, and in particular with the busbar piece, it is particularly advantageous for a leaf spring to be arranged in the connecting area, for applying a contact pressure to a contact pin which can be inserted into the connecting area. This ensures that the spring force or insertion force is independent of a connected conductor.
The object is also achieved by a terminal block having an insulating material housing and having at least one spring terminal element, which is held in the insulating material housing, of the abovementioned type.
In this case, it is particularly advantageous for at least two clamping points to be provided on a common busbar piece. The clamping points are then each provided by a tensioning bracket and an operating member. The operating member is in each case formed by an associated pair of operating cylinders, which engage in one another, and an operating section having a screw thread.
It is also advantageous for a rotation block to in each case be mounted in the insulating material housing such that it can move, such that the rotation block engages with a latching trough in the operating cylinder in the end position of the tensioning bracket of a prestressed helical spring. In this way, the rotation block prevents the operating cylinder from rotating on its own, and therefore the spring terminal element being closed on its own.
The invention will be explained in more detail in the following text, with reference to exemplary embodiments and the attached drawings, in which:
A spring terminal element 1a, 1b in each case uses a section of a busbar piece 2 in which a tensioning bracket 3 is mounted such that it can move. For this purpose, the tensioning bracket 3 has, for example, openings 4a, 4b on opposite side walls of the tensioning bracket 3, through which the busbar 2 is passed. The openings 4a, 4b are each bounded by clamping edges 5a, 5b, which are arranged under the busbar 2.
In the exemplary embodiment, the busbar piece 2 has a metal tunnel sheet 6 which, starting from the busbar piece 2, is curved in a section extending parallel to the busbar piece 2 such that a connecting area 7 is provided between the busbar piece 2 and the inner wall of the metal tunnel sheet 6. A helical spring 8 in the form of a helical compression spring is arranged above the metal tunnel sheet 6, its lower end rests on the metal tunnel sheet 6, and its upper end rests on an upper terminating wall 9 of the tensioning bracket 3. The force of the helical spring 8 pushes the tensioning bracket 3 upward in the axial direction of the helical spring 8, thus producing a clamping force between the clamping edges 5a and 5b and the busbar piece 2, in order to clamp in electrical conductors.
In order to allow the clamping point, which is formed between the clamping edges 5a, 5b and the busbar piece 2, to be opened in order to clamp in an electrical conductor, the helical spring 8 must be compressed. An operating cylinder 10 is provided for this purpose, which operating cylinder 10 extends into the internal area of the helical spring 8 and has a screw thread 11 in the form of an external thread in the external circumference. The screw thread 11 engages with a corresponding screw thread 12 on an operating section 13. The operating section 13 is provided on the terminating wall 9 by fitting a threaded nut 14 to the terminating wall 9, which threaded nut 14, together with the upper terminating wall 9, produces an internal thread.
The lower end of the operating cylinder 10 is mounted on the metal tunnel sheet 6 such that it can rotate, and is therefore fitted in a fixed position in the axial direction to the lower end of the helical spring 8, the metal tunnel sheet 6 and the busbar piece 2.
During rotation of the operating cylinder 10, the tensioning bracket 3 is moved downward in the axial extent direction of the operating cylinder 10 by the interaction between the screw thread 11 on the operating cylinder 10 and the screw thread 12 on the operating section 13, with the helical spring 8 being compressed, and with the distance between the clamping edges 5a and 5b and the busbar 2 being increased. In the process, the clamping point is opened for an electrical conductor, and an electrical conductor can be withdrawn.
It is also clear that no threaded nut element 14 is fitted to the upper terminating wall 9 in the spring terminal element 1b, that is to say the variant illustrated on the right. The screw thread 12 on the operating section 13 is in fact provided exclusively in the corresponding aperture opening in the terminating wall 9.
In the busbar piece 2, which is in the form of a box with an upper wall and two opposite side walls and possibly a lower wall, the depth stop 15 acts as a stop for an electrical conductor which has been inserted into the busbar piece 2. The depth stop 15 also acts as a test point on a terminal upper face.
It is also clear that the metal tunnel sheet has a foot, which is bent down in the direction of the busbar piece 2, in order to mount the metal tunnel sheet 6 on the busbar piece 2.
The figure also shows that the operating cylinder 10 is guided in the internal area of the helical spring 8.
In this embodiment of the spring terminal element 1, an operating cylinder 19 is once again mounted on the tensioning bracket 3 such that it can rotate, and its screw thread 11 extends into the internal area of the helical spring 8.
Furthermore, a sleeve 20 having an internal thread 21 is provided, and rests on the metal tunnel sheet 6. The free end of the operating cylinder 19 extends into the internal area of the sleeve 20, as a result of which the screw thread 11 on the operating cylinder 19 engages with the screw thread 21 on the sleeve 20. In this way, the sleeve 20 provides an operating section for an operating member which is formed from the sleeve 20 and the operating cylinder 19.
At the lower end, the sleeve 20 has a circumferential projection 22 (flange), on which the lower end of the helical spring 8 rests. Furthermore, a pin 23 projects upward from the metal tunnel sheet 6 and engages in a recess in the projection 22, thus fixing the sleeve 20 to the metal tunnel sheet 6 such that they cannot rotate with respect to one another. The projection 22 may also be a rectangular flange, whose side walls are supported on the insulating material housing 30 or the tensioning bracket 30, thus preventing a rotary movement.
In the area of the upper end, the operating cylinder 19 likewise has a circumferential projection 24, which rests on the terminating wall 9 of the tensioning bracket 3. In this way, the operating cylinder 19 is screwed into the sleeve 20 during rotation of the operating cylinder 19, and the tensioning bracket 3 is moved downward in the direction of the busbar piece 2, with the helical spring 8 being compressed.
It is also clear that the metal tunnel sheet 6 has a section which extends at a distance from and parallel to the busbar piece 2, and this provides a connecting area between the adjacent busbar piece section and the opposite inner wall of the metal tunnel sheet 6. A leaf spring 18 is once again arranged on the lower piece of the metal tunnel sheet, in order to make contact by spring force with a contact pin, for example of a lateral bridge, which has been inserted into the connecting area 7.
As can be seen from the illustration of the operated spring terminal element 1b on the right-hand side in
The clamping edges 5a, 5b are guided, if required, in incisions 28 in the side walls of the busbar piece 2.
It is also clear that the operating cylinder 19 now extends into the sleeve 20 in the internal area of the helical spring 8, as a result of which no additional physical space is required for the operation of the spring terminal element 1a.
A depth stop 15 is once again passed into the insulating material housing between the two spring terminal elements 1a, 1b. In the upper end of the depth stop 15, the insulating material housing 30 has a test opening 31, in order to gain access to the upper end of the depth stop 15.
This allows the depth stop 15, which engages with the busbar 2, to be used as a test point. The depth stop 15 is furthermore used as an end stop in the busbar piece 2 for an electrical conductor, or its core end sleeve L, which has been inserted into the busbar piece 2 from an open side.
The illustration clearly shows that the terminal block 29 has a latching holder 32 in the lower area, by means of which the terminal block 29 can be latched to a mounting rail 33, in a manner known per se. Alternatively, the terminal block 29 can also be attached to a mount by a screw connection.
Furthermore, as can be seen in particular from the operating spring terminal element 1b on the right-hand side that the spring terminal elements 1a, 1b are self-supporting and that no significant operating force is exerted on the insulating material housing 30 during operation. In fact, the operating member, which is formed from the operating cylinder 19 and the sleeve 20 acts in the internal area of the helical spring 8 and merely exerts a force on the tensioning bracket 3 and the free end, which is adjacent to the busbar piece 2, for example to the metal tunnel sheet 6, of the helical spring 8, but not on the insulating material housing 30.
As can also be seen, the rotation block 25 is moved in the direction of the center axis of the operating cylinder 19, and has a latching finger 35 which engages in a latching trough 26 in the projection 24. This prevents the operating cylinder 19 from rotating on its own, which would lead to removal of the load from the helical spring 8 and therefore to closing of the clamping point.
As can be seen, contact pins of a lateral bridge 36 are inserted into the connecting areas 7. This allows an electrical potential to be passed from one terminal block 29a to the adjacent terminal block 29b.
The rotation block 25 is released by over-rotation of the operating cylinder 10, 19, by removing the friction block between the projection 24 and the rotation block 25. The rotation block 25 is then pushed outward automatically by spring force. This process is assisted by the contour of the latching trough 26.
The illustrated embodiment is distinguished in that the helical spring 8 is held in the internal area of the sleeve 20 and acts against the bottom of the sleeve 20, and against the end face of the operating cylinder 19 (threaded bolt). In the unsecured state, that is to say after unlocking the rotation block 25 and thus after releasing the tensioning bracket 3, the spring force unscrews the operating cylinder 19 ever further upward out of the sleeve 20, as a result of which the tensioning bracket 3 is moved upward and pushes the electrical conductor L against the busbar piece 2. This embodiment is distinguished by the clamping system having less friction than the solutions described above, with an external helical spring, and is suitable in particular for use when the separation width between the terminals is relatively large.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 023 423 | Jun 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1204457 | Kreeft | Nov 1916 | A |
2360304 | McLoughlin et al. | Oct 1944 | A |
3304392 | Isler | Feb 1967 | A |
3806860 | Flammini | Apr 1974 | A |
3989345 | DeVito | Nov 1976 | A |
4040712 | Dahlstrom | Aug 1977 | A |
4907989 | Huska | Mar 1990 | A |
5030139 | Huska | Jul 1991 | A |
5041901 | Kitano et al. | Aug 1991 | A |
6379197 | Matsuda et al. | Apr 2002 | B2 |
6478605 | Stuckmann et al. | Nov 2002 | B2 |
6916213 | Nyblin et al. | Jul 2005 | B2 |
7029336 | Cox | Apr 2006 | B2 |
7033231 | Lu | Apr 2006 | B2 |
8105118 | Claprood, Jr. | Jan 2012 | B2 |
8206186 | Kisic et al. | Jun 2012 | B2 |
20020042231 | Brooks et al. | Apr 2002 | A1 |
20050130508 | Yeh | Jun 2005 | A1 |
20080070450 | Pizzi | Mar 2008 | A1 |
20110065330 | Miller et al. | Mar 2011 | A1 |
20110294363 | Yeh | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
195 13 281 AL | Oct 1996 | DE |
198 17 924 AL | Oct 1999 | DE |
600 07 149 | Aug 2004 | DE |
10 2008 008 651 | Aug 2008 | DE |
Number | Date | Country | |
---|---|---|---|
20120028483 A1 | Feb 2012 | US |