This patent generally pertains to ceiling fans and, more specifically, to ceiling fans in the vicinity of an overhead fire sprinkler head.
Ceiling mounted fans are often used for circulating air within large buildings such as warehouses, factories, gymnasiums, churches, auditoriums, convention centers, theaters, and other buildings with large open areas. For fire safety, sprinkler heads are usually installed near the ceiling and are used for spraying water or other fire-suppressing media on any fires that might occur within the building. In the event of a fire, the fans can be turned off to avoid fanning the fire while the sprinklers are activated to quench the fire.
In some cases, a sprinkler head might be installed directly above the fan blades. In such situations, the fan blades might obstruct or interfere with the water spraying from the sprinkler head, regardless of whether the fan blades are rotating or stationary. Although it might be possible to relocate the fan or sprinkler so that they are farther apart, large diameter fans can be particularly difficult to fit among a relatively dense matrix of sprinkler heads.
A similar interference problem might occur between a ceiling fan and a nearby overhead light fixture. Fan blades rotating underneath a light fixture might not be much of a problem; however, if one of the fan blades stops directly underneath the light when the fan turns off, that single stationary fan blade might block a noticeable amount of light.
Certain examples are shown in the above-identified figures and described in detail below. In describing these examples, like or identical reference numbers are used to identify the same or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic for clarity and/or conciseness. Additionally, several examples have been described throughout this specification. Any features from any example may be included with, a replacement for, or otherwise combined with other features from other examples.
The term, “fire” used herein refers to any burning event or state of combustion including, but not limited to, an open flame and flameless smoldering.
Upon sensing a characteristic associated with a fire, a sensor triggers the operation of sprinkler head 12 so that sprinkler head 12 sprays a fire-extinguishing fluid (e.g., water) from a supply line 16 onto the fire. Examples of a characteristic associated with a fire include, but are not limited to, heat, smoke, and light. In some examples, an optical or ionization detector senses smoke and activates a solenoid valve that supplies water to sprinkler head 12. In another example, a fusible link on a valve portion of sprinkler head 12 melts in the presence of heat to activate sprinkler head 12. Sprinkler head 12 is schematically illustrated to represent the aforementioned examples as well as other sprinkler-activating methods commonly known to those of ordinary skill in the art.
In addition to activating sprinkler head 12 in the event of a fire, fan 10 preferably is de-energized or turned off automatically so as not to fan the fire or significantly interfere with the spray pattern of sprinkler head 12. In some examples, fan 10 is automatically turned off in response to a fire-related sensor 18, which can be any sensor responsive to a characteristic or event associated with a fire. Sensor 18, for instance, can be a water flow sensor in supply line 16. When sprinkler head 12 is open, sensor 18 provides a signal 20 upon sensing water flowing through supply line 16. In this example, water flowing through supply line 16 is the characteristic associated with a fire. To turn fan 10 off, signal 20 is conveyed to a controller 22 (e.g., motor starter, electrical contacts, variable frequency drive, etc.) that controls the operation of a motor 24 via a signal 20′, wherein motor 24 includes a fan rotor 26 (fan rotor 26 is the rotating portion of the fan). Fan rotor 26 includes a rotor 28 inductively coupled to a stator 30 of motor 24, the rotating fan blades 14, and any mechanical coupling that might couple rotor 28 to fan blades 14. Motor 24 rotates fan blades 14 about an axis 32.
To prevent fan blades 14 from stopping at a location that significantly interferes with the spray pattern of sprinkler head 12, the example fan rotor 26 disclosed herein is biased to one or more likely stop positions when the fan 10 is turned off. The expressions, “likely stop position” and “likely stop positions,” refer to one or more points or general locations where fan rotor 26 is intended to stop more often than other points or locations through which fan rotor 24 passes.
Referring to
In other examples, stopping a single fan blade 14 directly underneath a sprinkler head 12 might actually create less spray interference and be more desirable than stopping the fan blades 14 with the sprinkler head 12 midway between two fan blades 14. Thus, selecting point 36 based on the location of sprinkler head 12 means that the location of point 36 is chosen with reference to the location of sprinkler head 12 but does not necessarily mean that point 36 and sprinkler head 12 are radially inline with each other.
For sake of example, predetermined point 36 will be inline with sprinkler head 12, and the likely stop positions will be wherever fan 10 stops with sprinkler head 12 being generally midway between any two fan blades 14, as shown in
Referring to
In this example, catch mechanism 42 includes a roller 50; however, other catch mechanisms (e.g., a pawl) are also well within the scope of this disclosure. To mount catch mechanism 42, a stationary leaf 52 of a hinge 54 is anchored at a fixed point on a substantially stationary housing 56 within which fan rotor 26 rotates when fan 10 is on. A hinge pin 58 pivotally couples a pivotal leaf 60 of hinge 54 to stationary leaf 52. An arm 62 supporting roller 50 is pivotally attached to pivotal leaf 60 at a pivot point 63. Electric solenoid 44 or an alternate actuator includes a plunger 64 connected to arm 62 and a cylinder 66 attached to pivotal leaf 60. Solenoid 44 retracting plunger 64 to the solenoid's 44 run position of
To urge fan rotor 26 to the likely stop position of
To force roller 50 against lobed member 40, a stud 70 extends from stationary leaf 52 and slidingly protrudes through a hole in pivotal leaf 60. A spring 72 having a larger outer diameter greater than that of the hole through which stud 70 extends in pivotal leaf 60 is compressed between a head 74 of stud 70 and the outer face of pivotal leaf 60. Spring 72 urges the leaves 52 and 60 of hinge 54 toward each other, thereby urging roller 50 radially against lobed member 40. The flexibility of spring 72 allows hinge 54 to pivot open (compare
To adjust the position at which fan rotor 26 tends to stop in relation to sprinkler head 12, hinge 54 can be relocated and mounted at some other location around housing 56. Alternatively, lobed member 40 can be disconnected from bracket 48, shifted rotationally about axis 32 relative to housing 56, and reattached to bracket 48.
Although roller 50 rolls along the outer peripheral contour 68 of lobed member 40, wherein the lobes protrude radially outward from lobed member 40, it is also well within the scope of this disclosure to have the lobed member 40 be wavy vertically, rather than radially, wherein the lobes protrude axially upward and roller 50 is oriented to roll along the axial wavy face of the lobed member 40.
In addition, to minimize the forces on the catch mechanism 42 and fan rotor 26 from rapid deceleration, a timer (not shown) may be employed to prevent the catch mechanism 42 from engaging the fan rotor 26 for some period of time after the fan 10 is de-energized to enable the fan 10 to spin down to a slower rotational speed. A rotational sensor (not shown) could be used for some purpose.
As an alternative to using lobed member 40 and stop mechanism 38 to bias the fan rotor 26 to likely stop positions, another example ceiling fan 75 includes a disk 76 connected to rotate with fan blades 14, as shown in
To adjust the position at which fan blades 14 tend to stop in relation to sprinkler head 12, magnet 78 can be relocated and mounted at some other location around housing 56. Alternatively, pads 80 can be attached to other locations around disk 76.
When fan 82 turns off (or a later time when the fan 75 has slowed), brake 84 closes to the minimum caliper opening (stop position of
In some examples, fan 82 would be sensor 98 being a Hall effect sensor that detects the presence of one or more iron pads 102 on a disc 104 that rotates with fan blades 14. Pads 102 can be positioned such that fan blades 14 are at a predetermined likely stop position when one of pads 102 is aligned with sensor 98. Alternatively, pads 102 can be positioned such that the likely stop position is where sensor 98 is situated midway between two pads 102. Either way, controller 22 (
The processor 1502 of
The system memory 1512 may include any desired type of volatile and/or non-volatile memory such as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, read-only memory (ROM), etc. The mass storage memory 1514 may include any desired type of mass storage device including hard disk drives, optical drives, tape storage devices, etc.
The I/O controller 1510 performs functions that enable the processor 1502 to communicate with peripheral input/output (I/O) devices 1516 and 1518 and a network interface 1520 via an I/O bus 1522. The I/O devices 1516 and 1518 may be any desired type of I/O device such as, for example, a keyboard, a video display or monitor, a mouse, etc. The network interface 1520 may be, for example, an Ethernet device, an asynchronous transfer mode (ATM) device, an 802.11 device, a DSL modem, a cable modem, a cellular modem, etc. that enables the processor system 1500 to communicate with another processor system.
While the memory controller 1508 and the I/O controller 1510 are depicted in
At least some of the aforementioned examples include one or more features and/or benefits including, but not limited to, the following: In some examples, a ceiling fan stops at a predetermined likely stop position to purposely avoid obstructing an overhead sprinkler head.
In some examples, the location of the predetermined likely stop position can be adjusted relative to the fan's motor housing.
In some examples, the location of the predetermined likely stop position can be adjusted after the fan has already been installed near the ceiling.
In some examples, the fan automatically turns off in the event of a fire. In some examples, the fan stops at a desired likely stop position without having to rely on electrical power to do so.
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of the coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.