The herein disclosed and claimed inventive concept(s) generally relates to a sprinkler head, and more particularly to a sprinkler head utilizing a distribution disc for randomizing fluid distribution.
Various sprinkler heads have been utilized to distribute irrigation water. What is needed is a sprinkler head that provides for increased functionality, including a more randomized distribution pattern, and control by proving a sprinkler head having a distribution disk utilizing two axes of rotation on two axles.
The purpose of the Summary is to enable the public, and especially the scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection, the nature and essence of the technical disclosure of the application. The Summary is neither intended to define the inventive concept(s) of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the inventive concept(s) in any way.
What is disclosed is a sprinkler head having two axles for providing rotation of a distribution disk. The distribution disk is configured to distribute fluid, such as irrigation water, sprayed from a nozzle at the distribution disk. The sprinkler head utilizes dampeners on one axle or both axles to control the speed of rotation of that axle or of an element about that axle.
In a preferred embodiment the sprinkler head has a housing that has a fluid intake. A nozzle is positioned and configured to direct said fluid from the intake at a distribution disk. In a preferred embodiment the nozzle is positioned within a sprinkler disc of the sprinkler housing. The distribution disk is configured to rotate in response to fluid directed onto the distribution disk from the nozzle. In a preferred embodiment the distribution disk comprises a generally peaked surface having an apex, said surface incised by spirally radiating grooves. The distribution disk is attached to an upper axle. The distribution disk is configured to rotate with the upper axle. The upper axle is configured to rotate within an upper axle housing. A lower axle is attached to the upper axle housing. The upper axle housing is configured to rotate on the lower axle providing two axis of rotation of the distribution disk. The bushing can be integral with the distribution disk.
In a preferred embodiment the distribution disk has geared teeth configured to interact with geared teeth of the sprinkler housing to control rotation of the distribution disk. Preferably the geared teeth of the sprinkler housing are positioned on a sprinkler disk of the sprinkler housing. Alternatively the device is configured with a bushing configured to rotate with the distribution disk. The bushing has geared teeth positioned on or integral with the circumference of the bushing. The geared teeth are configured to interact with geared teeth on the sprinkler housing to control rotation of the distribution disk and bushing.
In an embodiment the upper axle and said lower axle are arranged in a parallel orientation. Alternatively the upper axle and lower axle can be oriented in a non-parallel orientation to provide a nutating rotation of the distribution disk. For example, the upper axle can be positioned at an angle relative to the lower axle to provide notational rotation. In a further embodiment the upper axle and lower axle can be configured to be oriented in the same plane during a portion of the rotation, for example if the upper axle housing is configured to rotate in a random orientation about the lower axle.
In a preferred embodiment at least one of the upper axle and the lower axle is configured with a speed control unit to slow the rotational speed in association with the axle. In a preferred embodiment the upper axle housing is configured to rotate on the lower axle to cause nutation of said distribution plate within said housing. In a further preferred embodiment the upper axle housing defines a circumference having a series of geared teeth projecting there from. The geared teeth are configured to interact with a series of geared teeth on an inner surface of said sprinkler housing.
In a preferred embodiment the sprinkler has a fluid delivery tube which extends through the sprinkler disk, and is directed at a distribution plate. In a preferred embodiment the sprinkler disk has on its periphery a number of projections which form gear teeth. Corresponding gear teeth on the distribution disk periphery engage the gear teeth on the sprinkler disk, and direct the path and speed of the rotation of the distribution disk.
In a preferred embodiment the distribution disk is set at a fixed angle so the gear teeth on the distribution plate and the gear teeth on the sprinkler disk engage as the distribution disk rotates around the lower axle. The lower axle is positioned within a housing that is supported by one or more support is which are attached to the sprinkler disk. The sprinkler disk and arms are commonly referred to herein as the sprinkler housing. In a preferred embodiment, an upper axle housing is set at an angle from the lower axle and secures the distribution disk. In a preferred embodiment the distribution disk is positioned at a non-horizontal angle such that the distribution disk both rotates and nutates in a fixed trajectory. In this embodiment the upper axle and lower axle are not parallel or coplanar. In an alternative preferred embodiment the distribution disk and upper axle are configured to provide rotation of the distribution disk without nutation. In this preferred embodiment the upper axle and lower axle are generally oriented in parallel. In a further preferred embodiment the upper axle housing and the lower axle can be configured such that the upper axle housing rotates about the lower axle to cause nutation of the distribution disk. As used herein when rotation is discussed about and axle, the axle can rotate with the object rotating, or the object rotation can rotate freely of the axle and not deviate from the scope of the invention.
In a preferred embodiment an axle extends from the distribution disk through a speed control hub. The speed control hub contains a viscous fluid which dampens the speed of rotation of the axle, and thus the speed of rotation of the distribution disk. The distribution disk has a raised center peak, which contains spiral grooves which guide water from the distribution disk. Water (or other fluid) is sprayed onto the distribution disk from the delivery tube and imparts a rotary force onto the distribution disk which causes the distribution disk to rotate. and/or nutate. Alternatively the speed control can be positioned within the upper axle housing such that the speed of rotation of the upper axle housing around its pivot axle (or pivot pin). In a further embodiment both the rotation of the upper axle housing as well as the nutation of the distribution disk can be controlled by speed control devices.
Still other features and advantages of the presently disclosed and claimed inventive concept(s) will become readily apparent to those skilled in this art from the following detailed description describing preferred embodiments of the inventive concept(s), simply by way of illustration of the best mode contemplated by carrying out the inventive concept(s). As will be realized, the inventive concept(s) is capable of modification in various obvious respects all without departing from the inventive concept(s). Accordingly, the drawings and description of the preferred embodiments are to be regarded as illustrative in nature, and not as restrictive in nature.
While the presently disclosed technology is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the claimed technology to the specific form disclosed, but, on the contrary, the presently disclosed and claimed technology is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the inventive concept(s) as defined in the claims. The use of the term “upper” and “lower” refer to the orientation shown in the figures and are not to be construed as limiting in the event of rotation of a device. The term fluid is used generically herein to define a fluid flow of which can be distributed by a sprinkler head, including but not limited to irrigation water.
In the embodiment depicted in
In a preferred embodiment either or both of the axles 26, 28 can utilize a speed control unit 30 such as a viscous or magnetic brake, to control the speed of rotation of either the distribution disk or the upper axle housing.
The teeth of the bushing are configured to interact with teeth 91 positioned or formed integral with the upper gear housing 87 of the sprinkler body 100 to direct the rotation of the distribution disk. The upper axle 92 is positioned within the upper axle housing 89. The upper axle housing is configured to rotate about a lower axle 96 when fluid is sprayed onto the distribution disk from the nozzle. The upper axle housing further has a disk 102 having a series of geared teeth that are configured to engage the series of geared teeth 103 in the lower gear housing 89. The upper gear housing 87 and/or gear housing 89 make up the motor gear housing 83. The motor housing 85 is supported by one or more arms 85. The depicted configuration allows the distributor disk to spin while allowing it to rotate about the lower axle.
The upper axle housing also has a void or opening 98 configured for receiving the lower axle 98 or pin. As depicted, the upper axle housing is configured to rotate about the lower axle 96 to provide a nutation like movement to the distributor disk when fluid is sprayed on the distribution disk from the nozzle.
While certain exemplary embodiments are shown in the Figures and described in this disclosure, it is to be distinctly understood that the presently disclosed inventive concept(s) is not limited thereto but may be variously embodied to practice within the scope of this disclosure. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined herein.
This application claims the benefit of U.S. Provisional Application No. 62/627,053, filed May 4, 2018, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
581252 | Quayle | Aug 1897 | A |
5439174 | Sweet | Aug 1995 | A |
6267299 | Meyer | Jul 2001 | B1 |
7100842 | Meyer et al. | Sep 2006 | B2 |
8584969 | Drechsel | Nov 2013 | B2 |
8590806 | Drechsel | Nov 2013 | B2 |
8991724 | Sesser et al. | Mar 2015 | B2 |
9511383 | Drechsel | Dec 2016 | B2 |
10239066 | Sesser | Mar 2019 | B2 |
20170333924 | Sesser et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
3248690 | Nov 2017 | EP |
Number | Date | Country | |
---|---|---|---|
20190336994 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62627053 | May 2018 | US |