Rotating stream sprinklers, also known as mini stream sprinklers, deliver a plurality of rotating streams to the surrounding terrain. The streams are achieved by directing water against a rotatable deflector plate having a plurality of vanes on its lower surface. As the deflector plate rotates, these streams move within a predetermined watering arc set by the user.
The plurality of streams that emanate from the sprinkler provide a visually appealing water dispersal. Additionally, the plurality of streams provides greater wind resistance and more uniform distribution to the surrounding turf.
Due to their often small size, the watering arc and watering radius settings of the rotating stream sprinklers can be difficult to adjust. Further, the rotatable deflectors of most prior art rotating stream sprinklers are driven by the force of water striking angled surfaces on the deflector. Hence, it can be difficult to control the speed of rotation of the deflector plate.
Examples of mini stream sprinklers can be seen in U.S. Pat. No. 5,148,990; Re 33,823; U.S. Pat Nos. 4,842,201; 4,898,332; 4,867,379; 4,967,961; 5,058,806; 5,288,022; 6,135,364; 6,244,521; 6,499,672; 6,651,905; 6,688,539; 6,736,332; 6,814,304; 6,883,727; 6,942,164; 7,032,836; 7,086,608; 7,100,842; 7,143,957; and 7,159,795; the contents of all of these patents are hereby incorporated by reference.
In a preferred embodiment of the present invention a sprinkler is provided, having a first shaft coupled to a drive mechanism and a grooved deflector. A second shaft is disposed within the first shaft, coupled to a water flow adjustment mechanism and an adjustment region on the top of the deflector. The first shaft transfers rotational movement from the drive mechanism to a grooved deflector on the top of the sprinkler. The second shaft rotates with the first shaft during normal operation due to a friction clutch within the sprinkler. When the user desires to adjust the water flow (i.e., the radius of the water), the friction of the clutch can be overcome by rotating the second shaft, increasing openings of flow passages within the sprinkler body. In this respect, flow adjustments can be made from the top of the sprinkler while the deflector rotates.
As seen in the cross sectional views of
The drive shaft 114 includes a passage extending through its body and terminating at each end of the shaft 114. The passage is sized to contain the flow adjustment shaft 116 which is positioned within the passage. As will be described in greater detail below, this dual shaft design allows the flow adjustment shaft 116 to rotate with the drive shaft 114 during normal operation. However, during adjustment of the flow (i.e., radius), the flow adjustment shaft 116 can rotate relative to the drive shaft 114 to adjust water flow without stopping rotational movement of the deflector plate 104.
Referring to
As best seen in
A center gear framework 137 is coupled to the gears 131 within the gearbox 136 and is fixed from rotation to a bottom portion of the sprinkler 100. The rotating gear shaft is fixed to a plurality of drive gears 131B, which are each engaged with gears 131A. The gears 131A are also engaged with an inner geared surface 136A of the gearbox 136. Therefore, when the turbine 134 rotates, the outer case of the gearbox 136 rotates. Since the gearbox 136 is also coupled to a stator 132, the stator 132 similarly rotates.
As best seen in
Turning to
As previously discussed, the flow adjustment mechanism adjusts the flow of water through the sprinkler 100 and is best seen in
The water flow through the sprinkler 100 is adjusted by aligning spaces or apertures 130A formed by the throttle plate 130 with apertures 124B in the drive plate 124. The cross sectional view of
The throttle plate 130 is located below the drive plate 124 and includes center aperture 130B that engages with the mating lower end 116A of the flow adjustment shaft 116. In this respect, rotating the flow adjustment shaft 116 also rotates the throttle plate 130 relative to the drive plate 124.
The throttle plate 130 is frictionally engaged to the bottom of the drive plate 124, rotating the throttle plate 130 with the drive plate 124. For example, this frictional engagement could be caused by close proximity (contact) between the entire upper surface of the throttle plate 130 and lower surface of the drive plate 124. Additionally, the flow of water through the sprinkler 100 may cause slight movement and pressure of the throttle plate upwards against the drive plate 124, further increasing friction. The frictional or clutching force between the throttle plate 130 and the drive plate 124 is such that it can be overcome when the user adjusts the flow adjustment member 112 and therefore the flow of the sprinkler 100. Alternately, the frictional clutching of the throttle plate 130 can be achieved by contact with the upper end of the stator 132.
As best seen in
The stationary member 120, best seen in
The moving arc member 118, best seen in
The center boss 122 is positioned within the center aperture of stationary member 120 and includes a fin 122A which provides a nonmoving end to the arced nozzle passage created between the moving arc member 118 and the stationary arc member 120.
As seen in
To allow for vertical movement of the moving arc member 118 during rotation (i.e., from rotating on the thread of the stationary arc member 120), the moving arc member 118 is “captured” by the arc adjustment member 106. In other words, the arc adjustment member 106 rotates the moving arc member 118 but allows for free vertical movement of the moving arc member 118. Preferably this captured arrangement is achieved with a capture member 106A (seen in
It should be noted that the horizontal placement of the surface 118A and 120A (i.e., the gap created by these surfaces) can be modified to adjust the flow of the water emitted from the sprinkler. For example, increasing the horizontal distance increases the overall flow of water emitted from the sprinkler 100, while decreasing the horizontal distance decreases the overall flow. Therefore, the overall water flow can be increased or decreased (in addition to the previously described, user adjustable flow control).
Alternately, the moving arc member 118 may be replaced with a nonmoving version that prevents a user from adjusting the watering arc. This allows the manufacture to specify popular pre-set arcs for users or create non-arc shaped watering patterns (e.g., a square watering pattern). Additionally, since the non movable member does not require a full inner helical surface 118A compared with the moving arc member 118 (because the non moving member does not rotate), the opening of the non moving member can be larger. This larger opening allows for more water to deflect off the deflector 104 and therefore be distributed around the sprinkler 100.
As best seen in
Positioned below the washer 117 is O-ring 138. Additionally, O-ring 107 is located between the deflector plate 104 and the adjustment member 112. Preferably, the O-ring 138, as well as O-ring 107, is composed of rubber, silicone or a similar flexible, resilient material.
Since the O-ring 138 under the drive washer 117 and O-ring 107 is composed of a somewhat flexible material, the deflector plate 104 can wobble (i.e., can tilt slightly or rotate off-axis). In other words, O-rings 138 and 107 allow for some “give” or compression so that the deflector plate 104, if urged by a force, can tilt off its rotational axis. While this “wobble” would likely not be present during normal operation, it would allow the deflector plate 104 to “wobble” over dirt or debris trapped between the deflector plate 104 and moving arc member 118. Thus, debris that would have otherwise stopped or hindered the deflector plate 104 from rotation can be passed over, providing a greater chance that a moving stream of water will push the debris from the sprinkler 100.
As best seen in
As seen best in
In operation, water flows through the screen 110 and into passages132B, rotating the turbine 134 (or alternately bypassing the turbine through the bypass valve) and passing through apertures 130A and 124B. Finally, the water passes through the stationary arc member 120, the moving arc member 118 and deflects against the deflector plate 104 away from the sprinkler 100.
The rotating turbine 134 drives the rotation of the gears 131A and 131B within the gear assembly 136, rotating the outer case of the gear assembly 136. The gear assembly 136 rotates the stator 132, which rotates the drive plate 124. The drive plate 124 rotates the drive shaft 114, which ultimately rotates the deflector plate 104. The channels 104A within the deflector plate 104 create multiple water streams that move across the watering arc of the sprinkler 100.
The watering arc is adjusted by rotating the arc adjustment member 106 which rotates the moving arc member 118 and thereby opens or closes a gap between the moving arc member 118, the stationary arc member 120 and the center boss member 122.
The radius that the water is thrown from the sprinkler 100 (i.e., the water flow through the sprinkler 100) is adjusted by rotating the flow adjustment member 112 (e.g., by hand or with an adjustment tool). The flow adjustment member 112 rotates the flow adjustment shaft 116, causing the throttle plate 130 to overcome the friction with the drive plate 124. As the flow adjustment member 112 rotates relative to the drive plate 124, the apertures 130A and 124B move into or out of alignment, adjusting the water flow through the sprinkler 100.
As previously discussed, the flow adjustment member 112, the flow adjustment shaft 116 and the throttle plate 130 all rotate with the drive plate 124, drive shaft 114, deflector plate 104 and sprinkler cap 102 during normal operation. However, when the water flow is adjusted, as previously described, these components move relative to drive plate 124, drive shaft 114, deflector plate 104 and sprinkler cap 102 as the friction between the throttle plate 130 and drive plate 124 is overcome.
While a mini stream sprinkler has been specifically described, it should be understood that other sprinkler designs, such as rotating nozzle designs may also be used according to aspects of the present invention. Additionally, it should be noted that while the flow adjustment shaft 116 has been described as being within the drive shaft 114, an alternate arrangement is contemplated in which the drive shaft 114 is positioned within a passage of the flow adjustment shaft 116.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
The present application is a continuation of U.S. patent application Ser. No. 12/210,085 filed Sep. 12, 2008 now U.S. Pat. No. 8,006,919 entitled Sprinkler With Dual Shafts, which claims priority to U.S. Provisional Patent Application Ser. No. 61/012,202 filed Dec. 7, 2007 entitled Sprinkler with Dual Shafts, and U.S. Provisional Application Ser. No. 60/972,612 filed Sep. 14, 2007 entitled Mini Stream Sprinkler, the contents of all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4579285 | Hunter | Apr 1986 | A |
4681259 | Troup et al. | Jul 1987 | A |
4784325 | Walker et al. | Nov 1988 | A |
4842201 | Hunter | Jun 1989 | A |
4867379 | Hunter | Sep 1989 | A |
4898332 | Hunter et al. | Feb 1990 | A |
4944456 | Zakai | Jul 1990 | A |
4967961 | Hunter | Nov 1990 | A |
5058806 | Rupar | Oct 1991 | A |
RE33823 | Nelson et al. | Feb 1992 | E |
5148990 | Kah, Jr. | Sep 1992 | A |
5288022 | Sesser | Feb 1994 | A |
5330103 | Eckstein | Jul 1994 | A |
5556036 | Chase | Sep 1996 | A |
6019295 | McKenzie | Feb 2000 | A |
6085995 | Kah et al. | Jul 2000 | A |
6135364 | Nickish | Oct 2000 | A |
6145758 | Ogi et al. | Nov 2000 | A |
6244521 | Sesser | Jun 2001 | B1 |
6264117 | Roman | Jul 2001 | B1 |
6499672 | Sesser | Dec 2002 | B1 |
6651905 | Sesser et al. | Nov 2003 | B2 |
6688539 | Vander Griend | Feb 2004 | B2 |
6736332 | Sesser et al. | May 2004 | B2 |
6814304 | Onofrio | Nov 2004 | B2 |
6883727 | De Los Santos | Apr 2005 | B2 |
6942164 | Walker | Sep 2005 | B2 |
7032836 | Sesser et al. | Apr 2006 | B2 |
7086608 | Perkins | Aug 2006 | B2 |
7100842 | Meyer et al. | Sep 2006 | B2 |
7143957 | Nelson | Dec 2006 | B2 |
7159795 | Sesser et al. | Jan 2007 | B2 |
20020139868 | Sesser et al. | Oct 2002 | A1 |
20070012800 | McAfee et al. | Jan 2007 | A1 |
20080308650 | Clark | Dec 2008 | A1 |
Entry |
---|
United States Patent and Trademark Office, Notice of Allowance mailed Apr. 20, 2011 in U.S. Appl. No. 12/210,085, 8 pages. |
United States Patent and Trademark Office, Office Action mailed Oct. 27, 2010 in U.S. Appl. No. 12/210,085, 8 pages. |
United States Patent and Trademark Office, Final Office Action mailed Jul. 28, 2010 in U.S. Appl. No. 12/210,085, 7 pages. |
United States Patent and Trademark Office, Office Action mailed Apr. 6, 2010 in U.S. Appl. No. 12/210,085, 14 pages. |
WIPO, U.S. International Search Authority, International Search Report and Written Opinion mailed Nov. 21, 2008 in International Patent Application No. PCT/US2008/076304, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20110309161 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61012202 | Dec 2007 | US | |
60972612 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12210085 | Sep 2008 | US |
Child | 13221771 | US |