Sprung coupling

Information

  • Patent Grant
  • 10731780
  • Patent Number
    10,731,780
  • Date Filed
    Thursday, March 12, 2020
    4 years ago
  • Date Issued
    Tuesday, August 4, 2020
    3 years ago
Abstract
A coupling has first and second segments attached to one another end to end surrounding a central space for receiving pipe elements. A spring assembly attaches the segments to one another at a first end and an adjustable attachment assembly attaches the segments to one another at a second end opposite to the first end. The spring assembly cooperates with the attachment assembly to bias the second ends of the segments away from one another sufficient to permit insertion of the pipe elements into the central space while the segments are attached to one another.
Description
FIELD OF THE INVENTION

This invention relates to mechanical pipe couplings for joining pipe elements.


BACKGROUND

Mechanical couplings for joining pipe elements together end-to-end comprise interconnectable segments that are positionable circumferentially surrounding the end portions of co-axially aligned pipe elements. The term “pipe element” is used herein to describe any pipe-like item or component having a pipe-like form. Pipe elements include pipe stock, pipe fittings such as elbows, caps and tees as well as fluid control components such as valves, reducers, strainers, restrictors, pressure regulators and the like.


Each mechanical coupling segment comprises a housing having projections which extend inwardly from the housing and engage, for example, the outer surfaces of pipe elements of various configurations including, for example, pipe elements having circumferential grooves. Engagement between the projections and the pipe elements provides mechanical restraint to the joint and ensures that the pipe elements remain coupled even under high internal pressure and external forces. The housings define an annular channel that receives a ring gasket or seal, typically an elastomeric ring which engages the ends of each pipe element and cooperates with the segments and the pipe elements to provide a fluid tight seal. The segments have connection members, typically in the form of lugs which project outwardly from the housings. The lugs are adapted to receive fasteners, such as nuts and bolts, which are adjustably tightenable to draw the segments toward one another.


Mechanical couplings for grooved pipe elements according to the prior art have continuous arcuate projections on the segments that engage the outer surfaces of the pipe elements which they are joining end to end. These arcuate projections are part of the segment structure commonly referred to as the “keys” of the coupling. The keys may engage the outer surface of pipe element in various configurations including, for example, pipe element having circumferential grooves.


The arcuate projections on prior art couplings for grooved pipe elements typically have arcuate surfaces with a radius of curvature that is marginally larger than the radius of curvature of the outer surface of the pipe element within the groove that it is intended to engage. For couplings used with grooved pipe elements, the radii of curvature of the arcuate surfaces are smaller than the radii of curvature of the outer surfaces of the pipe elements outside of the grooves so that the projections fit within and engage the grooves.


Methods of securing pipe elements in end to end relation comprise a sequential installation process when mechanical couplings according to the prior art are used. Typically, the coupling is received by the technician with the segments bolted together and the ring gasket captured within the segments' channels. The technician first disassembles the coupling by unbolting it, removes the ring gasket, lubricates it (if not pre-lubricated) and places it around the ends of the pipe elements to be joined. Installation of the ring gasket often requires that it be lubricated and stretched to accommodate the pipe elements. With the ring gasket in place on both pipe elements, the segments are then placed one at a time straddling the ends of the pipe elements and capturing the ring gasket against them. During placement, the segments engage the gasket, the projections are aligned with the grooves, the bolts are inserted through the lugs, the nuts are threaded onto the bolts and tightened, drawing the coupling segments toward one another, compressing the gasket and engaging the projections within the grooves.


As evident from the previous description, installation of mechanical pipe couplings according to the prior art requires that the technician typically handle at least seven individual piece parts (and more when the coupling has more than two segments), and must totally disassemble and reassemble the coupling. Significant time, effort and expense would be saved if the technician could install a mechanical pipe coupling without first totally disassembling it and then reassembling it, piece by piece.


SUMMARY

The invention concerns a coupling for joining pipe elements. In an example embodiment the coupling comprises first and second segments attached to one another end to end surrounding a central space for receiving the pipe elements. A spring assembly joins a first end of the first segment to a first end of the second segment. By way of example the spring assembly comprises a first boss projecting from the first end of the first segment, a second boss projecting from the first end of the second segment and positioned adjacent to the first boss, a first fulcrum positioned on the first boss and contacting the second boss, the segments pivoting about the fulcrum, and a link extending between and attaching the first and second bosses to one another. The coupling further comprises an adjustable attachment assembly joining a second end of the first segment to a second end of the second segment, wherein the spring assembly biases the second ends of the segments away from one another when the segments are attached to one another end to end. The adjustable attachment assembly is adapted to draw the second ends of the first and second segments toward one another for engaging the segments with the pipe elements.


An example embodiment may further comprise a second fulcrum positioned on the second boss. The second fulcrum contacts the first boss. In another example embodiment, a first land is positioned adjacent to the first fulcrum on the first boss, and a second land is positioned adjacent to the second fulcrum on the second boss. The first and second lands are in facing spaced apart relation to one another when the segments are attached to one another end to end.


In an example embodiment the link comprises a ring encircling the first and second bosses. By way of further example, the adjustable attachment assembly comprises a first lug attached to the second end of the first segment. A second lug is attached to the second end of the second segment and is positioned in facing relation with the first lug. Each lug defines a respective hole. A fastener extends between the first and second lugs. The fastener is received within the respective holes. The fastener is adjustable for drawing the second ends of the segments toward one another against the biasing of the spring assembly. In an example embodiment the fastener is adjustable so as to cooperate with the spring assembly to establish a separation of the second ends of the segments at a predetermined distance. By way of example, the predetermined distance is sufficient to permit insertion of the pipe elements into the central space when the first and second segments are attached to one another end to end.


In an example embodiment, each of the first and second segments comprises first and second shoulders positioned on opposite sides of each of the segments. The shoulders extend lengthwise along the segments and project toward the central space. The shoulders define a channel therebetween. A first arcuate surface is positioned on the first shoulder. A second arcuate surface is positioned on the second shoulder. The arcuate surfaces face the central space.


An example embodiment further comprises a ring seal positioned within the channel. The ring seal has an inner surface sized to receive the pipe elements. By way of example the ring seal comprises an outer surface sized to support the segments in spaced apart relation sufficient to permit insertion of the pipe elements into the central space while the segments are attached to one another.


In a further example, the invention comprises, in combination, a pair of pipe elements and a coupling for joining the pipe elements as described above.


The invention further encompasses a method of joining first and second pipe elements to one another using a spring assembly attaching first ends of first and second segments together. The spring assembly is used in conjunction with an adjustable attachment assembly attaching second ends of the first and second segments together to hold the second ends of the segments in spaced apart relation sufficient to insert the first and second pipe elements into a central space surrounded by the first and second segments. In an example embodiment the spring assembly comprises a first boss projecting from the first end of the first segment. A second boss projects from the first end of the second segment and is positioned adjacent to the first boss. A fulcrum is positioned on the first boss and contacts the second boss. The segments pivot about the fulcrum. A link extends between and attaching the first and second bosses to one another.


In an example embodiment the method further comprises:

    • biasing the second ends of the first and second segments away from one another when the segments are attached to one another surrounding the central space;
    • inserting the first pipe element into the central space;
    • inserting the second pipe element into the central space;
    • adjusting the adjustable attachment assembly and thereby drawing the second ends of the segments toward one another and engaging the coupling with the pipe elements.


An example method may further comprise receiving the first and second pipe elements within a ring seal upon insertion of the pipe elements into the central space.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of an example embodiment of a pipe coupling according to the invention;



FIG. 1A is an isometric view of a portion of the example pipe coupling shown in FIG. 1;



FIG. 2 is an axial view of the example pipe coupling shown in FIG. 1;



FIG. 3 is a sectional view of the example pipe coupling shown in FIG. 1;



FIG. 4 is a partial sectional view of the example pipe coupling shown in FIG. 1;



FIG. 5 is an isometric view of a component used in an example coupling;



FIG. 6 is a partial sectional view of the example pipe coupling shown in FIG. 1;



FIG. 7 is a sectional view of the example pipe coupling shown in FIG. 1;



FIG. 8 is an end view of the example pipe coupling shown in FIG. 1;



FIG. 9 is an exploded isometric view of an example preassembled combination coupling and pipe element according to the invention;



FIG. 9A is an isometric view of the example combination of FIG. 9 shown in a preassembled state;



FIG. 9B is a sectional view of the example combination shown in FIG. 9;



FIG. 9C is an axial view of the example combination shown in FIG. 9;



FIGS. 10 and 11 are sectional views of the example combination shown in FIG. 9 illustrating assembly of a pipe joint; and



FIG. 12 is a sectional view of an example preassembled combination coupling and pipe element.





DETAILED DESCRIPTION

An example embodiment of a coupling 10 according to the invention is shown in FIGS. 1 and 1A. Coupling 10 is for joining pipe elements and comprises first and second segments 12 and 14 positioned end to end surrounding a central space 16 for receiving the pipe elements. A spring assembly 18 joins a first end 20 of first segment 12 to a first end 22 of the second segment 14. The spring assembly 18 biases the segments 12 and 14 away from one another toward or into an open, pre-assembled state shown. When in this open or pre-assembled state, pipe elements can be inserted into the central space 16 without disassembling the coupling 10 as described below.


The example spring assembly 18 shown in FIGS. 1 and 2 comprises a first boss 24 projecting from the first end 20 of the first segment 12, and a second boss 26 projecting from the second end 22 of the second segment 14. The second boss 26 is positioned adjacent to the first boss 24. Bosses 24 and 26 are cantilevers and thus are substantially responsible for the biasing force of the spring assembly 18 as described below. A first fulcrum 28 is positioned on the first boss 24, the first fulcrum 28 contacting the second boss 26 and providing an axis 30 about which the segments 12 and 14 may pivot. In this example embodiment a second fulcrum 32 is positioned on the second boss 26. The second fulcrum 32 contacts the first fulcrum 28 to further define the pivot axis 30 about which the segments 12 and 14 pivot. First and second fulcrums 28 and 32 are defined in this example embodiment by first and second lands 34 and 36. The first and second lands 34 and 36 are respectively positioned on the first and second bosses 24 and 26, the first land 34 being contiguous with the first fulcrum 28, and the second land 36 being contiguous with the second fulcrum 32 (when present). At least the first land 34 is oriented angularly with respect to a plane 38 comprising the interface between the first and second segments 12 and 14. In this example embodiment both the first and second lands 34 and 36 are angularly oriented with respective orientation angles 40.


A link 42 extends between the first and second bosses 24 and 26. Link 42 captures the bosses, while permitting pivoting motion of the segments 12 and 14. In this example the link 42 comprises a ring 44 which encircles the first and second bosses 24 and 26. Ring 44 is retained on the bosses 24 and 26 by engagement with first and second heads 46 and 48 respectively projecting from the first and second bosses 24 and 26. Ring 44 and the bosses 24 and 26 cooperate to provide the spring biasing action of the spring assembly 18. The thickness 50 of the ring 44, the distance 52 between the fulcrums 28 and 32 and the point where the bosses 24 and 26 engage the ring 44, along with the area moment of inertia of the bosses, are parameters which will establish the spring constant of the spring assembly 18 and thus determine the amount of force necessary to close the coupling 10 and effect a joint. The angular orientation 40 of the lands 34 and 36 and the distance the fastener 70 has been tightened each act to set the maximum limit of separation between the segments 12 and 14, and the inner diameter 54 of the ring 44 determines the minimum separation of the segments when supported by an undeformed spring assembly 18 as shown in FIGS. 1 and 2. In one embodiment, the angular orientation 40 is such that, if the fastener 70 is not present (such as during the assembly of the coupling by the manufacturer) bosses 24, 26 may be brought near enough together that the inner diameter 54 of ring 44 will clear heads 46, 48, allowing ring 44 to be easily assembled over bosses 24, 26. Subsequent assembly and tightening of fastener 70 to a pre-determined distance 71 (see FIG. 2) acts to separate heads 46, 48 sufficient to retain ring 44 behind heads 46 and 58 as described above. The ring inner diameter 54 may be sized to hold the segments 12 and 14 in the open or pre-assembled state sufficient to permit insertion of pipe elements into the central space 16, or the diameter 54 may be larger, and permit the segments 12 and 14 to be supported in the open or pre-assembled state by other elements of the coupling as described below. In this situation the segments 12 and 14 will have some angular free play as the segments are drawn toward one another to close the coupling, the spring assembly 18 not immediately coming into effect upon pivoting of the segments.


Segments 12 and 14 are drawn toward one another by an adjustable attachment assembly 56. Attachment assembly 56 joins the second end 58 of the first segment 12 to the second end 60 of the second segment 14. Attachment assembly 56 is adapted to draw the segments 12 and 14 toward one another and into engagement with the pipe elements as described below. In this example the adjustable attachment assembly 56 comprises a first lug 62 attached to the second end 58 of the first segment 12, and a second lug 64 attached to the second end 60 of the second segment 14. Each lug 62, 64 defines a respective hole 66, 68 which receive a fastener 70 that extends between the lugs. In this example fastener 70 comprises a bolt 72 and a nut 74, which, when tightened, draw the segments 12 and 14 toward one another against the biasing force of the spring assembly 18.


As shown in cross section in FIG. 3, each segment 12 and 14 comprises first and second channels 76 and 78 respectively positioned on opposite sides 80 and 82 of each segment. The first and second channels 76 and 78 extend between the first and second ends 20 and 58 of the first segment 12, and the first and second ends 22 and 60 of the second segment 14 (see also FIG. 1). Channels 76 and 78 face the central space 16. As shown in detail in FIG. 4, each channel 76, 78 (channel 78 in segment 14 being shown) is defined by sidewalls 84 and 86 positioned in spaced relation to one another. Each channel 76, 78 furthermore has first and second floors 88 and 90 located between sidewalls 84 and 86. Floors 88 and 90 face the central space 16 and are arcuate in shape as they extend between the ends 20 and 58 and 22 and 60 of the segments 12 and 14. As shown in FIG. 4, first floor 88 is positioned closer to the side 82 of segment 14 and has a greater radius of curvature 92 than the second floor 90, which has a radius of curvature 94. As shown in FIG. 3, the channels 76 and 78 and the arrangement of their floors 88 and 90 are symmetric about an axis 96 extending transversely through the coupling 10.


As further shown in FIGS. 3 and 4, the channels 76 and 78 each receive a respective retainer 98. Retainer 98 is shown in detail in FIG. 5 and comprises an arcuate band 100 having oppositely disposed ends 102 and 104. Band 100 thus forms a “split ring” which, when compressed radially will deform to a smaller radius of curvature (see FIG. 7). In some embodiments, each band 100 is sized such that contact between bands 100 and the respective segments 12 and 14 within channels 76 and 78 allow one or both bands 100 to support segments 12 and 14 in spaced apart relation as shown in FIG. 1. A plurality of teeth 106 are positioned along one edge 108 of band 78. Teeth 106 project from band 100 toward the central space 16. As shown in FIGS. 3 and 4, teeth 106 are oriented angularly toward axis 96 with respect to a line 110 extending radially from an axis 112 arranged coaxially with the central space 16. The angular orientation is advantageous for retaining pipe elements as described below.


As shown in FIG. 5, at least one, but in this example embodiment, a plurality of tabs 114 are positioned along an edge 116 oppositely disposed from edge 108. As shown in FIG. 4, the one or more tabs 114 are oriented substantially perpendicular to the line 110 and are offset from the band 100 toward axis 112 arranged coaxially with the central space 16. This offset of tabs 114 permits them to overlie the second floor 90, and the band 100 to overlie the first floor 88, when retainers 98 are properly received within respective channels 76 and 78 as shown in FIGS. 3 and 4. Proper assembly of the retainers 98 within the channels 76 and 78 permits pipe elements to be inserted into a pre-assembled coupling 10 as described below. However, as shown in FIG. 6, the channels 76 and 78 (78 shown) and the retainers 98 are sized such that if the coupling 10 is improperly assembled with the band 100 overlying the second floor 90 and the tab or tabs 114 overlying the first floor 88, the retainer's radius of curvature is smaller and teeth 106 effectively prevent insertion of the pipe element into the central space 16 with the segments 12 and 14 in spaced apart relation in the pre-assembled state. This cooperation between the retainer 98, its tabs 114, teeth 106, and the first and second floors 88 and 90 of channels 76 and 78 prevent improper assembly of a pipe joint using coupling 10. If the pipe elements could be inserted with the retainer teeth 106 facing in the wrong direction (FIG. 6) then the teeth will not be self-actuating against forces which would draw or push the pipe element out of the coupling. Thus the retainer would provide reduced mechanical restraint.


As shown in FIG. 3, segments 12 and 14 further comprise a third channel 118. Channel 118 is positioned between the first and second channels 76 and 78 and faces the central space 16. Channel 118 receives a ring seal 120 which ensures a fluid tight joint. Ring seal 120 is formed of a flexible, resilient material such as EPDM or other rubber compounds and has inner surfaces 122 sized to receive pipe elements when they are inserted into the central space 16 as described below. A pipe stop 124 is positioned between inner surfaces 122. The pipe stop projects into the central space 16 and limits insertion of pipe elements by engaging the pipe elements when they are inserted into coupling 10 to the desired depth. Ring seal 120 also has an outer surface 126 that may be sized to engage and support the segments 12 and 14 in spaced apart relation as shown in FIGS. 1 and 3. One or more of the bands 100 may also cooperate with the ring seal 120 to support the segments 12 and 14 in spaced apart relation. The separation of the segments 12 and 14, when supported by the ring seal 120 and/or band or bands 100, is sufficient to permit pipe elements to be inserted into the coupling when it is in its pre-assembled state (FIGS. 1, 2 and 3). FIG. 3 shows an example channel configuration wherein the second floors 90 are positioned between the first floors 88 and the third channel 118. In this example the tabs 114 project toward the third channel 118 when the retainers 98 are properly oriented within the coupling 10.


As shown in FIG. 1, coupling 10 further comprises a first aperture 128 in segment 12. In this example embodiment aperture 128 is aligned with the first channel 76 and provides a line of sight 130 toward the central space 16. In this example embodiment, aperture 128 is positioned at the interface 132 between segments 12 and 14 and is formed as a trough 134 in both segments 12 and 14. The troughs 134 in each of the segments 12 and 14 are aligned so that when the segments are drawn into engagement they provide a view toward the central space 16 to permit visual confirmation that the retainer is present and that a pipe element is present within the central space and seated at least past the retainer. As shown in FIG. 1A, a second aperture 136 is also positioned in at least one of the segments 12 and 14. The second aperture 136 is aligned with the second channel 78 in this embodiment (see FIG. 3) and also provides a line of sight toward central space 16. Again, in the example embodiment 10 illustrated, the second aperture 136 is positioned between the segments 12 and 14. Aperture 136 is also formed by troughs 134 at the interface 132 between the segments 12 and 14. The second aperture also permits visual confirmation that a pipe element is present within the central space 16.


As shown in FIGS. 1 and 3, each segment 12 and 14 also comprises first and second arcuate surfaces 138 and 140 respectively positioned on sidewalls 84 and 86. Arcuate surfaces 138 and 140 face the central space 16 and a plurality of projections 142 may be positioned on each arcuate surface 138, 140. Projections 142 are arranged in spaced relation to one another along the arcuate surfaces 138 and 140 and project toward the central space 16. As described below, projections 142 engage the pipe elements and increase joint stiffness and accommodate a wider tolerance range on the pipe outer diameter.


When projections 142 are forced into engagement with the pipe elements as the segments 12 and 14 are drawn toward one another they add stiffness to the joint between the coupling 10 and the pipe elements upon their engagement with the outer surfaces of the pipe elements. Additionally, the projections 142 allow the coupling 10 to accommodate a larger pipe outer diameter tolerance in combination with known manufacturing tolerances for coupling 10. When the outer diameter of pipe elements is near the small end of the tolerance range the presence of the projections 142 ensures mechanical engagement between the coupling 10 and the pipe elements. However, when the pipe diameter is at the large end of the tolerance range the projections will tend to deform the outer surface of the pipe elements locally, and projections 142 may also deform. For couplings 10 used with plain end pipe elements this is particularly advantageous as plain end couplings are typically designed so that the arcuate surfaces 138, 140 (see FIG. 3) do not engage the outer surfaces of the pipe elements. This arrangement ensures that the clamping force provided by the fastener 70 (see FIG. 2) is fully applied to the retainers 98. Were the arcuate surfaces 138, 140 of the coupling 10 to engage the pipe outer surface directly, the clamping force would be divided between contact of the arcuate surfaces with the pipe and contact between the retainers 98 and the pipe elements. Because the surface areas of projections 142 are small relative to the arcuate surfaces 138, 140, and contact the pipe element outer surface only at discrete points, only minimal clamping force from the fastener 70 needs to be diverted into contact between the projections 142 and the pipe elements to provide enhanced stiffness without compromising the axial retention provided by the retainers 98. Projections 142 are advantageous in that they achieve greater rigidity even with the lesser clamping force available with the single fastener design of the coupling 10. The single fastener 70 acts in conjunction with the spring assembly 18 to ensure that adequate clamping force is applied to the pipe elements.


Operation of coupling 10 is illustrated in FIGS. 1, 3, 7 and 8. With the coupling 10 in the pre-assembled state as shown in FIGS. 1 and 3, pipe elements 144 and 146 are inserted into the central space 16. The pipe elements clear the teeth 106 of retainers 98, engage and the inner surfaces 122 of ring seal 120, and engage the pipe stop 124. Next, the fastener 70 is tightened (see also FIG. 2) drawing the segments 12 and 14 toward one another. As shown in FIG. 7 the ring seal 120 and the teeth 106 are compressed between the segments 12 and 14 and the pipe elements 144 and 146. Pivoting motion of the segments about fulcrums 28 and 32 (see FIG. 2) is resisted by the biasing force of the spring assembly 18. As shown in FIG. 8, the elements comprising the spring assembly, in this example, the bosses 24 and 26 and the ring 44, deform in proportion to the spring force, with the ring 44 extending into an oval shape and the bosses 24 and 26 bending as cantilevers (deformed shapes shown in solid line, undeformed in broken line). Apertures 128, 136 may be used to visually confirm that the pipe elements are present in the coupling 10.



FIG. 9 shows an exploded view, and FIG. 9A shows an assembled view, of a preassembled combination coupling and pipe element 147 according to the invention. The combination coupling and pipe element 147 comprises a coupling 148 and a first pipe element 184, and is used to couple a second pipe element 186 to the first pipe element (see FIGS. 10 and 11). The second pipe element 186 may, for example, be part of a piping network (not shown), and the first pipe element 184 may be part of another assembly, such as a flexible hose for a fire suppression sprinkler, or an inlet or and outlet of a pump or a valve to cite a few examples.


The coupling 148 comprises first and second segments 150 and 152 positioned end to end surrounding a central space 154 for receiving pipe elements. A spring assembly 156 and an adjustable attachment assembly 158, as described above for coupling 10, join the ends of the segments. Coupling 148 further comprises first and second shoulders 160 and 162 (see also FIG. 10) positioned on opposite sides 164, 166 of each segment 150 and 152. Shoulders 160 and 162 extend lengthwise along the segments 150 and 152 and project toward the central space 154. Shoulders 160 and 162 define a channel 168 which extends between the ends of the segments 150 and 152 and faces central space 154. Channel 168 receives a ring seal 170 for a fluid tight joint. Ring seal 170 has an inner surface 172 sized to receive pipe elements (see also FIG. 10) and an outer surface 174 which may be sized to support the segments 150 and 152 in the preassembled state, i.e., in spaced relation sufficient to insert the second pipe element 186 into the central space 154 without disassembling the combination 147. FIG. 9A shows the coupling in the preassembled state with the segments 150 and 152 in spaced relation. As described above for coupling 10, the spring assembly 156 may also be used to bias the segments 150 and 152 into the open, preassembled state shown in FIG. 9A. Ring seal 170 may also comprise a pipe stop 176 positioned between the inner surfaces 172. Pipe elements inserted into the central space engage the pipe stop 176 when properly seated (see FIG. 11).


As shown in FIGS. 9 and 10, each segment 150 and 152 further comprises a first arcuate surface 178 positioned on the first shoulder 160 and a second arcuate surface 180 positioned on the second shoulder 162. Arcuate surfaces 178 and 180 face the central space 154. A plurality of projections 182 may be positioned on the arcuate surfaces 178 and 180. Projections 182 are arranged in spaced relation to one another along the arcuate surfaces 178 and 180 and project toward the central space 154. Projections 182 engage the pipe elements and increase joint stiffness and accommodate a wider tolerance range on the pipe outer diameter. As shown in FIG. 9A, the coupling 148 may have at least one aperture 171 in one of the segments 150, 152. In this example the aperture 171 comprises a trough 173 positioned at an interface between the first and second segments 150 and 152.


As shown in FIG. 9, the first pipe element 184 comprises a rim 188 which projects outwardly from the first pipe element and extends circumferentially around. Rim 188 is positioned in spaced relation to an end 190 of the first pipe element 184, and as shown in FIGS. 9A and 10, is captured within the central space 154 by engagement with the shoulder 162. Rim 188 may be defined by a circumferential groove 192 in the first pipe element 184, or a circumferential bead 194 which projects radially outwardly from the first pipe element 184. In the example embodiment shown in FIG. 9, the rim 188 is defined by both the groove 192 and the bead 194.


The preassembled combination coupling and pipe element 147 shown in FIG. 9A in its preassembled state is assembled as illustrated in FIGS. 9B and 9C. The first pipe element 184 is engaged with the ring seal 170. The ring seal 170 is then positioned within the channel 168 of the first segment 150 while the rim 188 is engaged with the first shoulder 160 within what will become the central space 154. Next the spring assembly 156 is formed by engaging the first end 175 of the first segment 150 with the first end 177 of the second segment 152. In the example shown, engagement of the first ends 175 and 177 is effected by joining a first boss 179 projecting from the first end 175 of the first segment 150 with a second boss 181 projecting from the first end 177 of the second segment 152 and pivotably linking them together using a link 183. In this example the link 183 comprises a ring 185 into which the bosses 179 and 181 are inserted, each boss having a respective head 187, 189 which retain the bosses within the ring 185 when the segments are pivoted into the preassembled state. As shown in FIG. 9C, the second boss 181 is contacted by a fulcrum 191 on the first boss 179, and the first boss 179 is contacted by a fulcrum 193 on the second boss 181. The bosses 179 and 181 joined by the ring 185 act as cantilever springs which bias the segments 150 and 152 away from one another and can also be used to support the segments in spaced apart relation, either alone or in combination with the ring seal 170 as described above. Next the second end 195 of the first segment 150 is attached to the second end 197 of the second segment 152 using the adjustable attachment assembly 158. In this example embodiment the adjustable attachment assembly comprises a first lug 201 mounted on the second end 195 of the first segment 150, a second lug 203 mounted on the second end 197 of the second segment 152, and a fastener 205 extending between the first and second lugs.


Working together with the spring assembly 156 (and/or the ring seal 170), initial tightening of the fastener 205 holds the segments 150 and 152 in the preassembled state shown in FIGS. 9A and 9C. In this configuration the segments 150, 152 are supported in spaced apart relation sufficient to permit the second pipe element 186 to be inserted into the central space 154 (see FIGS. 10-11) while also capturing the first pipe element 184 by engagement between the shoulder 160 and the rim 188. As shown in FIG. 9C, the projections 182 increase the ability of the segments 150, 152 to retain the first pipe element 184 when the combination 147 is in the preassembled state.



FIGS. 10 and 11 illustrate use of the combination 147 to join pipe elements 184 and 186. As shown in FIG. 10, with the combination 147 in the preassembled state the second pipe element 186 is inserted into the central space 154. Upon insertion the second pipe element 186 engages with surface 172 on the ring seal 170 (the first pipe element 184 is similarly engaged with the ring seal). As shown in FIG. 11, the segments are then drawn toward one another using the adjustable attachment assembly 158. In this example the fastener 205 is tightened, drawing the segments 150 and 152 against the biasing force of the spring assembly 156 (see FIG. 9C) and compressing the ring seal 170 to form a fluid tight joint. If projections 182 are present they engage the pipe elements 184, 186, otherwise, the arcuate surfaces 178 and 180 engage the pipe elements. FIG. 11 shows the arcuate surface 178 engaging a groove 192 in the second pipe element 186.



FIG. 12 shows an embodiment of the preassembled combination 147 wherein the first arcuate surface 178 has a first radius of curvature 207 and the second arcuate surface 180 has a second radius of curvature 209. In this example embodiment the second radius of curvature 209 is less than the first radius of curvature 207. This configuration of radii is appropriate when rim 188 of the first pipe element is defined by a groove 192 because it permits the first pipe element 184 to be captured by coupling 148 when it is in the preassembled state, while allowing the second pipe element 186 to be inserted into the central space 154 without disassembling the coupling. The groove 192 in the first pipe element 184 may be deeper than the groove 192 in the second pipe element 186 to accommodate this embodiment.


The use of the combination 147 having a single fastener 205 and a captured pipe element 184 provides significant advantage by increasing the stability of the coupling on the pipe elements through engagement between the coupling shoulder and the rim of the pipe element. The presence of the spring assembly and single fastener significantly inhibit the ability to manipulate the coupling by rocking it, making it much more difficult to separate the pipe element from the coupling. The single fastener also simplifies the tightening step, as only one fastener need be tightened, as opposed to two fasteners, which must be tightened in an alternating sequence to avoid damage to the ring seal.


Couplings according to the invention are expected to improve the efficiency of installation and the reliability of joints formed. Further expected advantages include a lighter weight coupling which has a lower external profile and which is smaller for a given pipe size. Having only one fastener reduces the part count and contributes to reduced errors during assembly, as well as eliminating the need to tighten more than one fastener in an alternating sequence.

Claims
  • 1. A coupling for joining pipe elements, said coupling comprising: first and second segments attached to one another end to end surrounding a central space for receiving said pipe elements;a spring assembly joining a first end of said first segment to a first end of said second segment, said spring assembly comprising:a first boss projecting from said first end of said first segment;a second boss projecting from said first end of said second segment and positioned adjacent to said first boss;a first fulcrum positioned on said first boss and contacting said second boss, said segments pivoting about said fulcrum;a link extending between and attaching said first and second bosses to one another;said coupling further comprising an adjustable attachment assembly joining a second end of said first segment to a second end of said second segment; whereinsaid spring assembly biases said second ends of said segments away from one another when said segments are attached to one another end to end, said adjustable attachment assembly adapted to draw said second ends of said first and second segments toward one another for engaging said segments with said pipe elements.
  • 2. The coupling according to claim 1, further comprising a second fulcrum positioned on said second boss, said second fulcrum contacting said first boss.
  • 3. The coupling according to claim 2, further comprising: a first land positioned adjacent to said first fulcrum on said first boss;a second land positioned adjacent to said second fulcrum on said second boss, said first and second lands being in facing spaced apart relation to one another when said segments are attached to one another end to end.
  • 4. The coupling according to claim 1, wherein said link comprises a ring encircling said first and second bosses.
  • 5. The coupling according to claim 1, wherein said adjustable attachment assembly comprises: a first lug attached to said second end of said first segment;a second lug attached to said second end of said second segment and positioned in facing relation with said first lug, each said lug defining a respective hole;a fastener extending between said first and second lugs, said fastener being received within said respective holes, said fastener being adjustable for drawing said second ends of said segments toward one another against said biasing of said spring assembly.
  • 6. The coupling according to claim 5, wherein said fastener is adjustable so as to cooperate with said spring assembly to establish a separation of said second ends of said segments at a predetermined distance.
  • 7. The coupling according to claim 6 wherein said predetermined distance is sufficient to permit insertion of said pipe elements into said central space when said first and second segments are attached to one another end to end.
  • 8. The coupling according to claim 1, wherein each of said first and second segments comprises: first and second shoulders positioned on opposite sides of each of said segments, said shoulders extending lengthwise along said segments and projecting toward said central space, said shoulders defining a channel therebetween;a first arcuate surface positioned on said first shoulder;a second arcuate surface positioned on said second shoulder, said arcuate surfaces facing said central space.
  • 9. The coupling according to claim 8, further comprising: a ring seal positioned within said channel, said ring seal having an inner surface sized to receive said pipe elements.
  • 10. The coupling according to claim 9, wherein said ring seal comprises an outer surface sized to support said segments in spaced apart relation sufficient to permit insertion of said pipe elements into said central space while said segments are attached to one another.
  • 11. In combination, a pair of pipe elements and a coupling for joining said pipe elements, said coupling comprising: first and second segments attached to one another end to end surrounding a central space for receiving said pipe elements;a spring assembly joining a first end of said first segment to a first end of said second segment, said spring assembly comprising:a first boss projecting from said first end of said first segment;a second boss projecting from said first end of said second segment and positioned adjacent to said first boss;a first fulcrum positioned on said first boss and contacting said second boss, said segments pivoting about said first fulcrum;a link extending between and attaching said first and second bosses to one another;said combination further comprising an adjustable attachment assembly joining a second end of said first segment to a second end of said second segment; whereinsaid spring assembly biases said second ends of said segments away from one another when said segments are attached to one another end to end, said adjustable attachment assembly adapted to draw said second ends of said first and second segments toward one another for engaging said segments with said pipe elements.
  • 12. The combination according to claim 11, further comprising a second fulcrum positioned on said second boss, said second fulcrum contacting said first boss.
  • 13. The combination according to claim 12, further comprising: a first land positioned adjacent to said first fulcrum on said first boss;a second land positioned adjacent to said second fulcrum on said second boss, said first and second lands being in facing spaced apart relation to one another when said segments are attached to one another end to end.
  • 14. The combination according to claim 11, wherein said link comprises a ring encircling said first and second bosses.
  • 15. The combination according to claim 11, wherein said adjustable attachment assembly comprises: a first lug attached to said second end of said first segment;a second lug attached to said second end of said second segment and positioned in facing relation with said first lug, each said lug defining a respective hole;a fastener extending between said first and second lugs, said fastener being received within said respective holes, said fastener being adjustable for drawing said second ends of said segments toward one another against said biasing of said spring assembly.
  • 16. The combination according to claim 15, wherein said fastener is adjustable so as to cooperate with said spring assembly to establish a separation of said second ends of said segments at a predetermined distance.
  • 17. The combination according to claim 16 wherein said predetermined distance is sufficient to permit insertion of said pipe elements into said central space when said first and second segments are attached to one another end to end.
  • 18. The combination according to claim 11, wherein each of said first and second segments comprises: first and second shoulders positioned on opposite sides of each of said segments, said shoulders extending lengthwise along said segments and projecting toward said central space, said shoulders defining a channel therebetween;a first arcuate surface positioned on said first shoulder;a second arcuate surface positioned on said second shoulder, said arcuate surfaces facing said central space.
  • 19. The combination according to claim 18, further comprising: a ring seal positioned within said channel, said ring seal having an inner surface sized to receive said pipe elements.
  • 20. The combination according to claim 19, wherein said ring seal comprises an outer surface sized to support said segments in spaced apart relation sufficient to permit insertion of said pipe elements into said central space while said segments are attached to one another.
  • 21. A method of joining first and second pipe elements to one another using a spring assembly attaching first ends of first and second segments together, in conjunction with an adjustable attachment assembly attaching second ends of said first and second segments together, to hold said second ends of said segments in spaced apart relation sufficient to insert said first and second pipe elements into a central space surrounded by said first and second segments, said spring assembly comprising: a first boss projecting from said first end of said first segment;a second boss projecting from said first end of said second segment and positioned adjacent to said first boss;a fulcrum positioned on said first boss and contacting said second boss, said segments pivoting about said fulcrum;a link extending between and attaching said first and second bosses to one another;said method further comprising:biasing said second ends of said first and second segments away from one another when said segments are attached to one another surrounding said central space;inserting said first pipe element into said central space;inserting said second pipe element into said central space;adjusting said adjustable attachment assembly and thereby drawing said second ends of said segments toward one another and engaging said coupling with said pipe elements.
  • 22. The method according to claim 21, further comprising receiving said first and second pipe elements within a ring seal upon insertion of said pipe elements into said central space.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claim benefit of priority to U.S. application Ser. No. 15/593,662, filed May 12, 2017, which application is based upon and claims the benefit of priority to U.S. Provisional Application No. 62/336,879, filed May 16, 2016, and U.S. Provisional Application No. 62/336,885, filed May 16, 2016, all aforementioned applications being hereby incorporated by reference herein.

US Referenced Citations (182)
Number Name Date Kind
1020123 Brampton et al. Mar 1912 A
1074395 Welch Sep 1913 A
1203989 Dehn Nov 1916 A
1287108 Robinson et al. Dec 1918 A
1379811 Fyffe May 1921 A
1497549 Conradi Jun 1924 A
1831641 Skinner Jul 1927 A
1649594 Johnson Nov 1927 A
1770271 Hoppes Jul 1930 A
1969043 Sham Aug 1934 A
1999045 Goetz Apr 1935 A
2021081 Nagao Nov 1935 A
2021082 North Nov 1935 A
2094258 Thompson Sep 1937 A
2128720 Tweedale Aug 1938 A
2225208 Crickmer Dec 1940 A
2412394 Giles Dec 1946 A
2426423 Woolsey Aug 1947 A
2459251 Stillwagon Jan 1949 A
2463235 Andrews Mar 1949 A
2491004 Graham Dec 1949 A
2635901 Osborn Apr 1953 A
2775806 Love Jan 1957 A
2926028 Hookings et al. Feb 1960 A
2958546 Lee Nov 1960 A
3014259 Louis Dec 1961 A
3116078 Scherer Dec 1963 A
3148896 Chu Sep 1964 A
3153550 Hollett Oct 1964 A
3235293 Condon Feb 1966 A
3362730 Clair et al. Jan 1968 A
3466069 Hoke et al. Sep 1969 A
3517701 Smith Jun 1970 A
3596935 McGeoch Aug 1971 A
3633943 Ramm et al. Jan 1972 A
3680894 Young Aug 1972 A
3788677 Stade et al. Jan 1974 A
3794360 Bachle et al. Feb 1974 A
3825286 Henry, III Jul 1974 A
3861723 Kunz et al. Jan 1975 A
3920270 Babb, Jr. Nov 1975 A
3944260 Petroczky Mar 1976 A
4018979 Young Apr 1977 A
4073514 Pate Feb 1978 A
4119333 Straub Oct 1978 A
4123090 Kotsakis et al. Oct 1978 A
4225160 Ortloff Sep 1980 A
4273367 Keeney et al. Jun 1981 A
4284298 Kaufmann, Jr. Aug 1981 A
4408788 Beukema Oct 1983 A
4443029 Laxo Apr 1984 A
4461498 Kunsman Jul 1984 A
4471979 Gibb et al. Sep 1984 A
4611839 Rung et al. Sep 1986 A
4629217 Straub Dec 1986 A
1633913 Carty et al. Jan 1987 A
4633913 Carty et al. Jan 1987 A
4639020 Rung et al. Jan 1987 A
4652023 Timmons Mar 1987 A
4664422 Straub May 1987 A
4678208 DeRaymond Jul 1987 A
4702499 deRaymond et al. Oct 1987 A
4792160 Hwang Dec 1988 A
4819974 Zeidler Apr 1989 A
4838584 Dierksmeier Jun 1989 A
4842306 Zeidler et al. Jun 1989 A
4861075 Pepi et al. Aug 1989 A
4893843 DeRaymond Jan 1990 A
4896902 Weston Jan 1990 A
4898407 Zeidler Feb 1990 A
5018768 Palatchy May 1991 A
5022685 Stiskin et al. Jun 1991 A
5080400 Adamek Jan 1992 A
5121946 Jardine Jun 1992 A
5137305 Straub Aug 1992 A
5161836 McKinnon Nov 1992 A
5203594 Straub Apr 1993 A
5230537 Newman Jul 1993 A
5273322 Straub Dec 1993 A
5280970 Straub Jan 1994 A
5452922 Ziu Sep 1995 A
5603350 Stoll et al. Feb 1997 A
5605865 Maniar et al. Feb 1997 A
5675873 Groess Oct 1997 A
5681062 Fukao et al. Oct 1997 A
5722702 Washburn Mar 1998 A
5758907 Dole et al. Jun 1998 A
5769467 Bridges Jun 1998 A
5772257 Webb et al. Jun 1998 A
5782499 Gfrer et al. Jul 1998 A
5786054 Platusich et al. Jul 1998 A
5813437 Esser Sep 1998 A
5911446 McLennan et al. Jun 1999 A
5961154 Williams et al. Oct 1999 A
6030006 Lin Feb 2000 A
6056332 Foster May 2000 A
6276726 Daspit Aug 2001 B1
6276729 Sanwald Aug 2001 B1
6305719 Smith, Jr. et al. Oct 2001 B1
6328352 Geppert et al. Dec 2001 B1
6367849 Tatsuta et al. Apr 2002 B1
6450551 Lee Sep 2002 B1
6499771 Snyder, Sr. et al. Dec 2002 B1
6502865 Steele Jan 2003 B1
6505865 Minemyer Jan 2003 B2
6626456 Terbu et al. Sep 2003 B2
6672631 Weinhold Jan 2004 B1
6749232 Wachter Jun 2004 B2
7070209 Collins Jul 2006 B2
7086131 Gibb et al. Aug 2006 B2
7341287 Gibb et al. Mar 2008 B2
7434846 Baumgartner Oct 2008 B2
7490866 Webb et al. Feb 2009 B2
7500699 Snyder, Sr. et al. Mar 2009 B2
7523963 Draper Apr 2009 B2
7644960 Casey, Sr. et al. Jan 2010 B2
7654587 Gibb et al. Feb 2010 B2
7712796 Gibb et al. May 2010 B2
7726703 Porter et al. Jun 2010 B2
7789434 Nagle et al. Sep 2010 B2
7798535 Calhoun Sep 2010 B2
7841630 Auray et al. Nov 2010 B1
7861982 McClure Jan 2011 B1
7996981 Dole et al. Aug 2011 B2
8424179 Webb et al. Apr 2013 B2
8777277 Dole et al. Jul 2014 B2
8820795 Dole Sep 2014 B2
8827214 Ogawa Sep 2014 B2
9151422 Kayacik et al. Oct 2015 B2
9791083 Gibb Oct 2017 B2
9890884 Chiproot Feb 2018 B1
9976677 Lurk May 2018 B2
20020135184 Snyder, Sr. et al. Sep 2002 A1
20020185868 Snyder, Sr. et al. Dec 2002 A1
20030020276 Steele Jan 2003 A1
20040237632 Van Keeken Dec 2004 A1
20050001428 Scherrer Jan 2005 A1
20050028366 Bien et al. Feb 2005 A1
20050067538 Stigler Mar 2005 A1
20050082831 Borland Apr 2005 A1
20050253380 Gibb et al. Nov 2005 A1
20060138776 Amedure et al. Jun 2006 A1
20060214422 Cuvo et al. Sep 2006 A1
20070024056 Borland Feb 2007 A1
20080265568 Bekkevold Oct 2008 A1
20080272595 Gibb et al. Nov 2008 A1
20090127846 Dole et al. May 2009 A1
20090160183 Felber Jun 2009 A1
20090172939 Dole Jul 2009 A1
20090206598 Gibb et al. Aug 2009 A1
20100115733 Bouchiat May 2010 A1
20100197627 Baudoin et al. Aug 2010 A1
20100296925 Sakai Nov 2010 A1
20100320756 Gibb et al. Dec 2010 A1
20100320758 Sisk Dec 2010 A1
20100327576 Linhorst et al. Dec 2010 A1
20110062706 Henry Mar 2011 A1
20110154646 Hagiya Jun 2011 A1
20110254268 Johnson et al. Oct 2011 A1
20120074689 Petersen et al. Mar 2012 A1
20120098259 Sarkisian et al. Apr 2012 A1
20120205909 Bird Aug 2012 A1
20120235405 Dole et al. Sep 2012 A1
20120256415 Dole Oct 2012 A1
20120256418 Horgan Oct 2012 A1
20120306118 Hayashyi et al. Dec 2012 A1
20130181446 Le Clinche Jul 2013 A1
20130327415 Camp, Jr. et al. Dec 2013 A1
20140327238 Bowman Nov 2014 A1
20150021911 Bowman Jan 2015 A1
20150176728 Bowman Jun 2015 A1
20150204471 Sato Jul 2015 A1
20160084420 Barrientos Mar 2016 A1
20170184226 Cuvo et al. Jun 2017 A1
20170328500 Bowman et al. Nov 2017 A1
20170328507 Sith et al. Nov 2017 A1
20180163905 Ohnemus et al. Jun 2018 A1
20180163906 Ohnemus et al. Jun 2018 A1
20180200550 Bancroft Jul 2018 A1
20190032824 McNamara et al. Jan 2019 A1
20190032825 McNamara et al. Jan 2019 A1
20200088330 Lippka Mar 2020 A1
Foreign Referenced Citations (39)
Number Date Country
102345774 Feb 2012 CN
102933886 Feb 2013 CN
105423015 Mar 2016 CN
105473923 Apr 2016 CN
3111997 Oct 1982 DE
3443942 Jun 1985 DE
3443943 Jun 1985 DE
19532356 Apr 1996 DE
10006029 Aug 2001 DE
0462454 Dec 1991 EP
2113701 Nov 2009 EP
1840439 Jun 2010 EP
2487397 Aug 2012 EP
2747453 Apr 1997 FR
2921985 Mar 2013 FR
2098297 Nov 1982 GB
52126317 Mar 1951 JP
S5615891 Feb 1981 JP
S524772 Feb 1993 JP
6147362 May 1994 JP
07269764 Oct 1995 JP
2001304468 Oct 2001 JP
2002147664 May 2002 JP
2006250247 Sep 2006 JP
2007537414 Dec 2007 JP
2008202791 Sep 2008 JP
2009167971 Jul 2009 JP
201163474 Aug 2011 JP
2012026578 Feb 2012 JP
2012189147 Oct 2012 JP
2013542382 Nov 2013 JP
2014001848 Jan 2014 JP
100315861 Nov 2001 KR
1020090007813 Jan 2009 KR
100904419 Jun 2009 KR
1020090066767 Jun 2009 KR
199703811 Feb 1997 WO
2005114023 Dec 2005 WO
2013115963 Aug 2013 WO
Related Publications (1)
Number Date Country
20200208762 A1 Jul 2020 US
Provisional Applications (2)
Number Date Country
62336879 May 2016 US
62336885 May 2016 US
Continuations (1)
Number Date Country
Parent 15593662 May 2017 US
Child 16816780 US