Sputter chamber pressure gauge with vibration absorber

Information

  • Patent Grant
  • 9581510
  • Patent Number
    9,581,510
  • Date Filed
    Tuesday, May 27, 2014
    10 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
A pressure gauge for measuring pressure in a vacuum chamber includes a flange couplable with the vacuum chamber, a pressure sensor configured to measure pressure, an air valve between the flange and the pressure sensor, and a vibration dampening assembly configured to dampen vibration in the pressure gauge. A sputtering system for sputter deposition includes a sputter chamber and the pressure gauge. The flange of the pressure gauge is coupled with the sputter chamber. A method of measuring pressure in a vacuum chamber with the pressure gauge includes coupling the flange with the vacuum chamber, dampening vibration in the pressure gauge with the vibration dampening assembly, and obtaining a pressure measurement from the pressure sensor.
Description
BACKGROUND

Machines that utilize pressure may include a pressure gauge to monitor pressure. One such machine is a sputter machine for production of magnetic media for hard disk drives. Sputter machines include multiple sputter chambers, which are under pressure during operation (sputter deposition). A conventional pressure gauge may be coupled to a sputter chamber to measure the pressure of the sputter chamber. The pressure sensor may be connected to a manufacturing computer to provide real time pressure measurements. However, during magnetic media production, the sputter chamber can experience vibration. One source of the vibration can be due to a carrier holder traveling from one sputter chamber to the next. Another source of the vibration can be a gate valve assembly opening and closing. This vibration may result in the pressure gauge proving a false reading, which can even lead to stopping the sputter chamber operation.


Thus, there is a need in the art for a pressure gauge for use with a sputter chamber that prevents false readings due to vibration originating from the sputter chamber.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present invention will now be presented in the detailed description by way of example, and not by way of limitation, with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of an exemplary embodiment of a pressure gauge.



FIG. 2 is a side view of the exemplary embodiment pressure gauge of FIG. 1.



FIG. 3 is an exploded view of the exemplary embodiment pressure gauge of FIG. 1.



FIG. 4 is a perspective view of an exemplary embodiment of a sputtering system having a sputtering chamber coupled with the exemplary embodiment pressure gauge of FIG. 1.



FIG. 5 is a side view of the exemplary embodiment sputtering system of FIG. 4 coupled with the exemplary embodiment pressure gauge of FIG. 1.



FIG. 6 is a flowchart of a method of measuring pressure in a vacuum chamber with a pressure gauge.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the present invention. Acronyms and other descriptive terminology may be used merely for convenience and clarity and are not intended to limit the scope of the invention.


The various aspects of the present invention illustrated in the drawings may not be drawn to scale. Rather, the dimensions of the various features may be expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus or method.


The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiment” of an apparatus, method or article of manufacture does not require that all embodiments of the invention include the described components, structure, features, functionality, processes, advantages, benefits, or modes of operation.


Any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element.


As used herein, the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof


In the following detailed description, various aspects of the present invention will be presented in the context of apparatuses and methods for measuring pressure in a sputtering system (e.g., a sputter chamber of the sputtering system) used to produce magnetic media for hard disk drives (HDD). However, those skilled in the art will realize that these aspects may be extended to any suitable application where it is desirable to accurately measure pressure of a chamber with a pressure gauge when vibration originates from the chamber (e.g., to avoid a false reading in a pressure gauge due to pressure originating from the chamber). Accordingly, any reference to a measuring pressure of a sputter chamber of a sputtering system used to produce magnetic media for an HDD is intended only to illustrate the various aspects of the present invention, with the understanding that such aspects may have a wide range of applications.



FIGS. 1-3 are various views of an exemplary embodiment of a pressure gauge 10. The pressure gauge 10 may generally include a flange 11, an air valve 12, and a pressure sensor 13, where all three are mechanically and fluidly connected. Pressure sensor 13 may be a capacitance manometer. For example, the pressure sensor may be a Baratron® capacitance manometer manufactured by MKS Instruments Inc. The pressure gauge 10 may further include a vibration dampening assembly 24 configured to dampen vibration in the pressure gauge 10. In one exemplary embodiment, the vibration may originate from a sputter chamber 30 of a sputtering system (FIGS. 4 and 5). The dampening assembly 24 may be configured to dampen the vibration originating from the sputter chamber 30 thereby minimizing the propagation of the vibration through the pressure gauge 10. Without the vibration dampening assembly 24, the vibration originating from the sputter chamber 30 may propagate through a pressure gauge and cause the pressure sensor to measure an incorrect pressure. The incorrect pressure measurement may trigger an alarm that requires inspection and possible interruption of the sputtering process. By dampening the vibration with the vibration dampening assembly 24, the pressure sensor 13 of the pressure gauge 10 will accurately measure the pressure in the sputter chamber 30, thereby avoiding and/or reducing the occurrence of a false alarm.


The vibration dampening assembly 24 may include an air conduit 17, a ring member 16, a clamp member 15a, 15b, and a base member 14. The air valve 12 and pressure sensor 13 may be connected to each other through the air conduit 17. As shown in FIGS. 1-3, one end of the air conduit 17 may be coupled with the pressure sensor 13 and the opposite end may be coupled with the air valve 12. The air conduit 17 may be coupled to the pressure sensor 13 and the air vale 12 through any suitable fastening mechanism, such as through a threaded portion. The air conduit 17 may be configured to reduce vibration originating from the sputter chamber 30 of the sputtering system. The air conduit 17 may include a tube 22 and a flexible bellows 26. The flexible bellows 26 may circumferentially surround a portion of the tube 22. As shown in FIGS. 1-3, the flexible bellows 26 may extend along a longitudinal axis of the tube 22 and may be approximately centered relative to the ends of the tube 22. Due to the flexible nature, the flexible bellows 26 assists in dampening vibration propagating through the tube 22.


The ring member 16 may be coupled with pressure sensor 13 and may be configured to further reduce vibration at the pressure sensor 13. The ring member 16 may be made from any suitable material that is capable of dampening vibration at the pressure sensor. For example the ring member 16 may comprise a sponge material. As shown in FIGS. 1-2, the ring member 16 may circumferentially surround the pressure sensor 13. The ring member 16 may be disposed around the pressure sensor 13 at any location suitable for optimally dampening vibration at the pressures sensor 13. For example, as shown in FIGS. 1-2, the ring member 16 may be disposed around the pressure sensor 13 such that the ring member 16 is closer to the end of the pressure sensor 13 coupled with the air conduit 17.


The ring member 16 may be secured around the pressure sensor 13 by the clamp member 15a, 15b. The clamp member may include a first portion 15a, and a second portion 15b. Each of the first portion 15a and the second portion 15b may be curved to correspond to the curvature of the ring member 16. As shown in FIGS. 1-3, the first portion 15a may surround an upper portion of the ring member 16 while the second portion 15b may surround a lower portion of the ring member 16. The first portion 15a may be coupled with the base member 14. As shown in FIG. 3, the first portion 15a may be integrally formed with the base member 14 to provide optimal stability. The second portion 15b may be a separate piece that is mechanically coupled to the first portion 15a. For example, as shown in FIG. 3, each of the first portion 15a and the second portion 15b may include tabs 27 with through holes. The tabs 27 may extend radially away from the ring member 16. The vibration dampening assembly 23 may include a plurality of securing member 28 that may pass through the through holes of the tabs 27 to secure the first portion 15a to the second portion 15b. For example, as shown in FIGS. 1-3, two sets of nuts and bolts may be used to secure the first portion 15a to the second portion 15b.


The base member 14 may further include a seat 18 for receiving the underside surface of the air valve 12. The air valve 12 may include a body 29 that houses the flow path. As shown in FIGS. 1-2, one end of the body 29 may be coupled with the air conduit 17 and the opposing end may be coupled with the flange 11. The seat 18 may be shaped to match the shape of the underside surface of the body 29 to provide optimal support. For example, as shown in FIG. 3, when the body 29 has a generally square shaped underside surface, the seat 18 may similarly have a square shaped surface. The body 29 may be mounted onto the seat 18 of the base member 14. The seat 18 may include one or more through holes (e.g., four) to securely mount the body 29 onto the seat 18. Any suitable fastening member (not shown) may be used to secure the body 29 to the seat 18. The securing of the valve 12 to the base member 14 provides a point of stability in addition to the clamp member 15a, 15b.


As shown in FIG. 3, the base member 14 may further include a free end portion 19 that extends substantially perpendicular relative to the longitudinal axis of the base member (e.g. upwardly). The free end portion 19 may include holes 20 having an open upper edge (e.g., the material of the base portion does not surround all sides of the holes). The holes 20 may also be referred to as cutouts. While two holes are shown in the exemplary embodiment, it should be understood that one hole or more than two holes may also be used. Furthermore, while shown having a rectangular shape, the holes may have any shape that is capable of receiving a securing member (e.g., a screw, a bolt, and the like). Additionally, instead of having an open upper edge the holes may be enclosed (e.g., such that the entire perimeter of the hole is surrounded by the material of the base portion).


The length of the free end portion 19 and location of the cutouts 20 may be configured such that the cutouts 20 are aligned with the flange 11 to provide stable engagement of the base member 14 with the flange 11. As shown in FIGS. 1 and 3, the flange 11 may include a plurality of through holes 21 along the circumferential edge of the flange face. The through holes 21 may pass entirely through flange. The through holes 21 may be threaded. As best shown in FIGS. 1 and 2, when the air valve 12, pressure sensor 13, and flange 11 are mounted onto the base member 14, each of the cutouts 20 may align with one of the holes 21 of the flange 11. Thus, a securing member (not shown), such as a screw, may pass through the flange via the holes 21 and then pass through the cutouts 20. In another exemplary embodiment the cutouts may be threaded such that a securing member may be securely fixed within a cutout.



FIGS. 4 and 5 show a perspective view and a side view, respectively, of the pressure gauge 10 coupled with a sputtering system having a sputter chamber 30. As best shown in FIG. 4, the sputter chamber 30 may include a plurality of mounting rings 32. Each of the mounting rings may include a plurality of holes 34. The number and positioning of the holes 34 of each of the mounting rings 32 of the sputter chamber 30 may correspond to the number and positioning of the holes 21 of the flange 11. Thus, when the flange 11 is aligned with one of the rings 32, each of the holes 21 of the flange 11 will be aligned with one of the holes 34 of the ring 32. Once aligned, the user can then secure the pressure gauge 10 to the sputter chamber 30 by passing securing member (not shown) through the aligned holes 21, 34. As noted above, two of the holes 21 of the flange 11 may be aligned with the cutouts 20 of the base member 14 after the flange 11 has been mounted to the base member 14. Thus, once the flange 11 is aligned with the mounting ring 32, each of the cutouts 20 will be aligned with one of the holes 21 of the flange 11 and one of the holes 34 of the mounting ring 32. A securing member such as screw can be inserted through each of the sets of holes. The securing member that passes through holes 11, 21 that are aligned with a cutout 20, may also pass into the cutout 20. This arrangement provides for an additional point of stability for the pressure gauge relative to the sputter chamber 30.


While only one pressure gauge 10 is shown as being coupled with the sputter chamber 30, it should be understood that more than one pressure gauge 10 may be coupled with the sputter chamber 30 via another ring 32. For example, a second pressure gauge (or more) may provide a backup measurement if another pressure gauge fails, or may ensure that the other pressure gauge (or gauges) is running properly. For example, if two pressure gauges are providing different pressure measurements then this may indicate that one of the gauges is not working properly.



FIG. 6 is a flowchart illustrating a method of measuring pressure in a vacuum chamber with the pressure gauge 10. The method may begin with step 40, coupling the flange with a vacuum chamber/sputter chamber 30 of a sputtering system. The coupling the flange 11 with the vacuum chamber 30 may include first aligning the flange 11 of the pressure gauge 10 with the mounting ring 32. The aligning the flange 11 with mounting ring 32 may further include aligning the holes 21 of the flange 11 and the holes 20 of the base member 14 with the holes 34 of the mounting ring 32. Once aligned, the user may then secure the flange 11 to the mounting ring 34 by inserting a securing member (e.g., a screw) through holes 21, 34. The securing member may pass through each of the sets of holes 21, 34. With respect to holes 21, 34 that are aligned with the holes 20 of the base member 14, the securing member may also be inserted into the holes 20.


After the pressure gauge 10 is secured to the vacuum chamber 30, the method may proceed to step 42, dampening vibration in the pressure gauge 10 with the vibration dampening assembly 24. As noted above, during operation of the sputter chamber, vibrations may be produced that may propagate into the pressure gauge. Thus, the dampening assembly 24 dampens these vibrations to prevent the vibrations from interfering with reading of the pressure sensor 3. The vibration may be dampened at least in part by the bellows 26 surrounding the tube 22. The vibration may further be dampened by the ring member being secured around the circumferences of the pressure sensor 13.


The method may then proceed to step 44 of obtaining a pressure measurement from the pressure sensor. Because the vibration has been dampened by the dampening assembly, the pressure sensor is more likely to provide an accurate pressure reading.


The method may further include repeating the steps of dampening the vibration and obtaining the pressure reading periodically. The obtained pressure measurement may be monitored by a computer controller. The computer controller may be configured to report an alert if an obtained pressure measurement is higher or lower than a predetermined acceptable range. The pressure measurement may be obtained on a constant basis by the computer controller so that a “real time” measurement is always available and so that an alert can be generated immediately if the measured pressure falls outside of the predetermined range.


The various aspects of this disclosure are provided to enable one of ordinary skill in the art to practice the present invention. Various modifications to exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be extended to other devices. Thus, the claims are not intended to be limited to the various aspects of this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the various components of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112(f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A pressure gauge for measuring pressure in a vacuum chamber, the pressure gauge comprising: a flange couplable with the vacuum chamber;a pressure sensor configured to measure pressure;an air valve between the flange and the pressure sensor; anda vibration dampening assembly disposed between the air valve and the pressure sensor configured to dampen vibration in the pressure gauge.
  • 2. The pressure gauge of claim 1, wherein the vibration dampening assembly further comprises an air conduit between the air valve and the pressure sensor, and wherein the air conduit is configured to dampen vibration from the vacuum chamber.
  • 3. The pressure gauge of claim 2, wherein a portion of the air conduit is flexible along a longitudinal axis of the air conduit.
  • 4. The pressure gauge of claim 3, wherein the flexible portion comprises a bellows.
  • 5. The pressure gauge of claim 1, wherein the vibration dampening assembly further comprises a ring member circumferentially coupled to the pressure sensor, and wherein the ring member is configured to dampen vibration at the pressure sensor.
  • 6. The pressure gauge of claim 5, wherein the vibration dampening assembly further comprises a clamp member configured to secure the ring member to the pressure sensor.
  • 7. The pressure gauge of claim 6, wherein the clamp member comprises a first portion and a second portion coupled with the first portion, wherein the vibration dampening assembly further comprises a base member, and wherein the base member comprises the first portion of the of the clamp member.
  • 8. The pressure gauge of claim 1, wherein the pressure sensor comprises a capacitance manometer.
  • 9. The pressure gauge of claim 1, wherein the vibration dampening assembly further comprises a base member having a valve seat, and wherein the air valve is coupled to the valve seat.
  • 10. The pressure gauge of claim 1, wherein the flange comprises a least one through hole, wherein the vibration dampening assembly further comprises a base member having at least one through hole, and wherein the at least one through hole of the flange is aligned with the at least one through hole of the base member.
  • 11. A sputtering system for sputter deposition, comprising: a sputter chamber; anda pressure gauge comprising: a flange coupled with the sputter chamber;a pressure sensor configured to measure pressure;an air valve between the flange and the pressure sensor; anda vibration dampening assembly disposed between the air valve and the pressure sensor configured to dampen vibration in the pressure gauge.
  • 12. The sputtering system of claim 11, wherein the vibration dampening assembly further comprises an air conduit between the air valve and the pressure sensor, and wherein the air conduit is configured to dampen vibration from the sputter chamber.
  • 13. The sputtering system of claim 12, wherein a portion of the air conduit is flexible along a longitudinal axis of the air conduit.
  • 14. The sputtering system of claim 13, wherein the flexible portion comprises a bellows.
  • 15. The sputtering system of claim 11, wherein the vibration dampening assembly further comprises a ring member circumferentially coupled to the pressure sensor, and wherein the ring member is configured to dampen vibration from the pressure sensor.
  • 16. The sputtering system of claim 15, wherein the vibration dampening assembly further comprises a clamp member configured to secure the ring member to the pressure sensor.
  • 17. The sputtering system of claim 16, wherein the clamp member comprises a first portion and a second portion coupled with the first portion, wherein the vibration dampening assembly further comprises a base member, and wherein the base member comprises the first portion of the of the clamp member.
  • 18. The sputtering system of claim 11, wherein the pressure sensor comprises a capacitance manometer.
  • 19. The sputtering system of claim 11, wherein the vibration dampening assembly further comprises a base member having a valve seat, and wherein the air valve is coupled to the valve seat.
  • 20. The sputtering system of claim 11, wherein the flange comprises a least one through hole, wherein the vibration dampening assembly further comprises a base member having at least one through hole, and wherein the at least one through hole of the flange is aligned with the at least one through hole of the base member.
  • 21. A method of measuring pressure in a vacuum chamber with a pressure gauge, the pressure gauge having a flange, a pressure sensor, an air valve between the flange and the pressure sensor, and a vibration dampening assembly, the method comprising: coupling the flange with the vacuum chamber;dampening vibration in the pressure gauge with the vibration dampening assembly disposed between the air valve and the pressure sensor; andobtaining a pressure measurement from the pressure sensor.
  • 22. The method of claim 21, wherein the vibration dampening assembly further comprises an air conduit between the air valve and the pressure sensor, and wherein the dampening the vibration in the pressure gauge further comprises dampening vibration from the vacuum chamber with the air conduit.
  • 23. The method of claim 22, wherein a portion of the air conduit is flexible along a longitudinal axis of the air conduit.
  • 24. The method of claim 23, wherein the flexible portion comprises a bellows.
  • 25. The method of claim 21, wherein the vibration dampening assembly further comprises a ring member circumferentially coupled to the pressure sensor, and wherein the dampening the vibration in the pressure gauge further comprises dampening vibration from the pressure sensor with the ring member.
  • 26. The method of claim 25, wherein the vibration dampening assembly further comprises a clamp member, the method further comprising securing the ring member to the pressure sensor.
  • 27. The method of claim 26, wherein the clamp member comprises a first portion and a second portion coupled with the first portion, wherein the vibration dampening assembly further comprises a base member, and wherein the base member comprises the first portion of the of the clamp member.
  • 28. The method of claim 21, wherein the pressure sensor comprises a capacitance manometer.
  • 29. The method of claim 21, wherein the vibration dampening assembly further comprises a base member having a valve seat, and wherein the air valve is coupled to the valve seat.
  • 30. The method of claim 21, wherein the flange comprises a least one through hole, wherein the vibration dampening assembly further comprises a base member having at least one through hole, and wherein the at least one through hole of the flange is aligned with the at least one through hole of the base member.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Ser. No. 61/916,704, filed on Dec. 16, 2013, which is expressly incorporated by reference herein in its entirety.

US Referenced Citations (349)
Number Name Date Kind
1943954 Durner Jan 1934 A
1957894 Longenecker May 1934 A
2715339 Honig Aug 1955 A
2841984 Green Jul 1958 A
3158001 Bauer Nov 1964 A
3402608 Nishigori Sep 1968 A
3608436 Ostroot et al. Sep 1971 A
3898404 Martincic Aug 1975 A
3915008 Silverman Oct 1975 A
4352643 Iijima Oct 1982 A
4355937 Mack et al. Oct 1982 A
4357859 Preston Nov 1982 A
5154582 Danielson Oct 1992 A
5224658 Smith Jul 1993 A
5452613 Bills Sep 1995 A
5508518 Kendall Apr 1996 A
5538373 Kirkham Jul 1996 A
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6357280 Hu Mar 2002 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565066 Osawa et al. May 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6681636 Ewers Jan 2004 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6897939 Hara May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7043991 Peng May 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'Im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8696404 Sun et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan et al. Jul 2014 B1
8791391 Bourez Jul 2014 B2
8795765 Koike et al. Aug 2014 B2
8795790 Sonobe et al. Aug 2014 B2
8795857 Ayama et al. Aug 2014 B2
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20030131666 Ewers Jul 2003 A1
20040022387 Weikle Feb 2004 A1
20040079136 Pillion Apr 2004 A1
20040131478 O'Neil Jul 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050022604 Peng Feb 2005 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100071438 Davis Mar 2010 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100243440 Miller et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
20140151360 Gregory et al. Jun 2014 A1
Provisional Applications (1)
Number Date Country
61916704 Dec 2013 US