The present invention relates generally to the field of containers. The present invention relates specifically to a container with a rupturable inner membrane.
One embodiment of the invention relates to a heat-sealed squeezable dispensing pouch. The pouch includes an outer sheet having a front wall, a rear wall and a folded edge located between the front wall and the rear wall. The outer sheet is folded along the folded edge such that an inner surface of the front wall faces an inner surface of the rear wall. The pouch includes a first heat seal coupling the inner surface of a peripheral section of the front wall to a peripheral section of the inner surface of the rear wall such that the inner surfaces of the front and rear walls define an interior chamber. The pouch includes a rupturable inner membrane formed from a contiguous, single monolayer of thermoplastic material, and the rupturable inner membrane is located within the interior chamber. The rupturable inner membrane divides the interior chamber into a contents compartment and a dispensing channel. The first heat seal defines an edge of the contents compartment and the folded edge defines an edge of the dispensing channel. A second heat seal couples the rupturable inner membrane to the inner surface of the front wall, and a third heat seal couples the rupturable inner membrane to the inner surface of the rear wall. A score line formed in both the front and rear walls located between the folded edge and the rupturable inner membrane, and the score line is configured such that the portion of the outer sheet between the score line and the folded edge can be removed to create a dispensing opening in the dispensing channel. The rupturable inner membrane is configured to break when the pressure within the contents compartment is greater than a rupture threshold, and the first, second and third heat seals are configured to remain sealed when the inner membrane breaks.
Another embodiment of the invention relates to a fluid dispensing container. The container includes a container body formed from a first flexible material, and the container body includes an outer surface, an inner surface, a filling end and a dispensing end. The inner surface of the container body defines an interior cavity. The container includes a membrane formed from a second flexible material and a seal coupling the membrane to the inner surface of the container body at a position located between the filling end and the dispensing end. The membrane divides the interior cavity into a contents chamber and a dispensing chamber, and the membrane and the seal are configured to be fluid tight to maintain fluid within the contents chamber prior to rupture of the membrane. The rupture stress of the second flexible material is less than the rupture stress of the first flexible material such that, as fluid pressure within the contents chamber increases, the membrane is configured to rupture without the container body rupturing.
Another embodiment of the invention relates to a method of forming a container. The method includes the step of providing a first sheet of first flexible material and a second sheet of second flexible material. The method includes the step of folding the first sheet creating a folded edge that divides the first sheet into a front wall and a rear wall. The front wall and the rear wall each have an upper edge opposite the folded edge. The method includes the step of positioning the second sheet between the front wall and the rear wall of the folded first sheet. The method includes the step of creating a first heat seal attaching a front surface of the second sheet to an inner surface of the front wall of the first sheet. The method includes the step of creating a second heat seal attaching a rear surface of the second sheet to an inner surface of the rear wall of the first sheet and the step of creating a third heat seal attaching a left side of the front wall to a left side of the rear wall to seal the left side of the container. The method includes the step of creating a fourth heat seal attaching a right side of the front wall to a right side of the rear wall to seal the right side of the container. The method includes the step of filling the container through a filling opening defined by the upper edges of the front and rear walls of the first sheet. The method includes the step of creating a fifth heat seal attaching the upper edge of the front wall to the upper edge of the rear wall sealing the filling opening.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
This application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements in which:
Referring generally to the figures, various embodiments of a dispensing container are shown. Generally the various embodiments of the container include an outer container body or sidewall and an internal wall or membrane that is located within the container body. The membrane separates the interior cavity of the container into two portions or subsections, a contents compartment and a dispensing passage. Container contents, for example, fluid or liquid contents are stored within the contents compartment prior to use of the container. When the container is to be opened, the user creates an opening in the portion of the container body defining the dispensing passage. At this point, the fluid contents of the container are maintained within the contents chamber by the membrane. To dispense the fluid, pressure within the contents chamber is increased, for example by squeezing the portion of the outer container body over the contents chamber. When the pressure reaches the rupture stress of the membrane, the membrane ruptures allowing the contents of the container to flow from the contents chamber into the dispensing passage and out through the opening. The material of the membrane is selected to be weaker than the material of the outer container body and weaker than the attachment points of the membrane such that the membrane will rupture while the outer container body and attachment points (e.g., heat seals) remain intact, providing for controlled dispensing of fluids from the container.
Referring to
In the embodiment shown, body 12 is formed from a flexible material such that pouch 10 is a flexible or squeezable container. In this embodiment, front wall 14 is attached to rear wall 16 by one or more seals or attachments formed between the peripheral sections of front wall 14 and the opposing peripheral sections of rear wall 16. Specifically, pouch 10 includes a left lateral heat seal 22, a right lateral heat seal 24 and an upper heat seal 26. Left lateral heat seal 22 couples the left lateral edge of front wall 14 to the left lateral edge of rear wall 16. Right lateral heat seal 24 couples the right lateral edge of front wall 14 to the right lateral edge of rear wall 16. Upper heat seal 26 couples the upper edge of front wall 14 to the upper edge of rear wall 16. Thus, as shown, left lateral heat seal 22 defines the left lateral edge of pouch 10, right lateral heat seal 24 defines the right lateral edge of pouch 10, and upper heat seal 26 defines the upper edge of pouch 10. As shown in more detail below, upper heat seal 26 is formed following filling of the container through an open upper end.
In one embodiment, heat seals 22, 24 and 26 are seals formed by melting together an adhesive layer located on the inner surfaces of front wall 14 and/or rear wall 16. In one embodiment, heat seals 22, 24 and 26 are formed by melting together a thermoplastic material. In other embodiments, other types of seals may be used. In one embodiment, seals 22, 24 and 26 may be formed by ultrasonic welding, and in another embodiment, seals 22, 24 and 26 may be formed from a pressure sensitive adhesive.
In the embodiment shown, body 12 of pouch 10 is formed from a folded, single contiguous sheet of flexible material. In this embodiment, pouch 10 includes a folded edge 28, shown located at lower end 20. Front wall 14 and rear wall 16 are located on opposite sides of folded edge 28, and the material of body 12 is folded along folded edge 28 such that the inner surfaces front wall 14 and rear wall 16 face each other and may be coupled together. In another embodiment, front wall 14 and rear wall 16 are formed from separate sheets of material, and in this embodiment, lower end 20 includes a seal (e.g., a heat seal, weld, etc.) closing the bottom edge of the pouch in place of folded edge 28.
Pouch 10 includes a membrane 30 (the upper and lower edges of membrane 30 are depicted by the dotted lines in
Dispensing spout 34 is located below membrane 30 and extends generally from membrane 30 to folded edge 28. Dispensing spout 34 generally defines a dispensing passage that provides a pathway for fluid to flow out of pouch 10 following rupture of membrane 30 and creation of an opening or aperture in spout 34. In this embodiment, because folded edge 28 provides for a continuous portion of material, folded edge 28 acts as a seal along the distal end of spout 34. In one embodiment, spout 34 includes a frangible tear line 36 located adjacent to folded edge 28 (e.g., tear line is located closer to folded edge 28 than membrane 30). Tear line 36 provides a weakened area to facilitate the removal of the portion of spout 34 between tear line 36 and folded edge 28 to create the opening in spout 34.
Referring to
Referring to
Referring to
As shown in
Liquid contents 60 may be a wide variety of materials that are suitable to be contained within a dispensing pouch such as pouch 10. For example, in one embodiment, liquid contents 60 is a single use amount of a ready to use liquid. In one embodiment, liquid contents 60 may be a ready to use cleaning solution, stain remover, a personal care product (e.g., shampoo, hand lotion, antibacterial lotion, hand soap, etc.), automotive fluid (e.g., motor oil, coolant, gasoline additive, windshield washer fluid, etc.), etc. In another embodiment, liquid contents 60 is a single use amount of a concentrate solution. In various embodiments, the concentrate may be a cleaning concentrate or a drink concentrate. In other embodiments, liquid contents 60 may be any other suitable concentrate material, for example, pesticide concentrates, herbicide concentrates, fertilizer concentrates, automotive fluid concentrates, pharmaceutical concentrates, medical solution concentrates, nutritional supplement concentrates, etc. In these embodiments, the user will dispense the concentrate from pouch 10 into a suitable container, and will add a the proper amount of diluting agent (e.g., water, saline, etc.) to prepare a mixture at the desired concentration level. In one embodiment, pouch 10 is a small size for easy carrying in a bag or pocket.
Referring to
Referring to
Referring to
In one embodiment, the material of the outer container body 12 is formed from a multilayer supported film material. In one such embodiment, the inner adhesive layer 80 is a heat sensitive adhesive, for example a thermoplastic, and at least one of the other outer layers is a strengthened supporting material. In one embodiment, at least one of the outer layers is a foil material, and in another embodiment, at least one of the outer layers is a nylon material. In one such embodiment, membrane 30 is made from a sheet of polymer monolayer material that bonds with the heat sensitive adhesive. For example, in one embodiment, membrane 30 is made from a thermoplastic material that melts to form a fluid tight seal with the thermoplastic of inner adhesive layer. In one embodiment, inner adhesive layer 80 and membrane 30 are made from the same thermoplastic material. For example, inner adhesive layer 80 and membrane 30 may both be a polyethylene material. In other embodiments, inner adhesive layer 80 and membrane 30 are other suitable thermoplastic materials such as polypropylene, polyvinylchloride, etc.
Referring to
After dispensing opening 90 is formed, membrane 30 is ruptured to release contents 60 from contents chamber 56 into passage 58 to allow for contents 60 to be dispensed through opening 90. To rupture membrane 30, pressure within contents chamber 56 is increased such that the pressure is greater than a rupture threshold of membrane 30. As shown in
In various embodiments, the materials of body 12 and membrane 30 and the structure of the heat seals of pouch 10 are selected such that membrane 30 is the portion of pouch 10 that ruptures or fails upon the increase of pressure within contents chamber 56. In one such embodiment, the material of body 12 is stronger than the material of membrane 30 such that when the rupture threshold of membrane 30 is reached, membrane 30 ruptures but body 12 remains intact. Further, the heat seals 22, 24, 26, 66 and 68 are structured to remain sealed when the rupture threshold of membrane 30 is reached. These configurations help to provide for controlled dispensing by ensuring that membrane 30 breaks while the heat seals and the outer body of pouch 10 remain intact. In various embodiments, the melt temperature used to make a seal relates to the strength of seal. Accordingly, in various embodiments, the melt temperature used to form heat seals 66 and 68 is substantially the same as or similar to the melt temperature used to make heat seals 22, 24, and 26. Using as substantially similar melt temperature for all of the heat seals of pouch 10 helps to ensure that none of the heat seals are weaker than the other heat seals, and thus, helps to ensure that membrane 30 is the portion that ruptures upon increase in pressure. In one embodiment, the melt temperature used to make the heat seals is between 275 and 350 degrees Fahrenheit, is more specifically between 290 and 310 degrees Fahrenheit, and specifically is about 300 degrees Fahrenheit.
In various embodiments, body 12 and membrane 30 may be each formed such that membrane 30 has a rupture stress (i.e., the stress at which the material ruptures) that is less than the rupture stress of body 12. In one such embodiment, body 12 and membrane 30 may be each formed from different materials, such that the rupture stress of membrane 30 is less than the rupture stress of body 12, to provide for differential failure upon squeezing discussed above. For example, in one embodiment, membrane 30 is made from a first type of material and body 12 is made from a second type of material, and the rupture stress of the first type of material is less than the rupture stress of the second type of material. In addition, the rupture stress of membrane 30 is also less than the rupture stress of the heat seals of pouch 10. In another embodiment, membrane 30 and body 12 may be formed from the same type of material (e.g., both are monolayers of the same type of thermoplastic) but with different thicknesses such that membrane 30 has a rupture stress less than the rupture stress of body 12. Further, in various embodiments, the squeeze to dispense operation of pouch 10 may facilitate dispensing without spilling as compared to pouring from standard rigid wall containers or to dispensing from a package without internal membrane 30.
In various embodiments, the rupture stress of membrane 30 is selected to be rupturable by application of manual force. In such embodiments, the rupture stress of membrane 30 is between 0.5 psi and 80, specifically is between 2 psi and 30 psi, and more specifically is between 5 psi and 15 psi. In one specific embodiment, the rupture stress of membrane 30 is about 8 psi. In various embodiments, membrane 30 having rupture stresses discussed in this paragraph is formed from a polymeric material, as discussed above, and in one embodiment, is polyethylene. In such embodiments, the rupture stress of body 12 may be greater than 100 psi, may be greater than 150 psi and may be greater than 200 psi.
In other embodiments, pouch 10 is designed such that membrane 30 is ruptured by application of force by a device, machine or vice, and in such embodiments, the rupture stress of membrane 30 may be greater than a rupture stress that can be ruptured by application of manual force. In such embodiments, pouch 10 may be configured to hold various contents (e.g., chemicals, cleaning agents, lubricants, motor oil, etc.) that are typically used in conjunction with a machine or device such that rupture of membrane 30 within the machine or device is desirable to dispense the contents into the device for use. For example, in one embodiment, pouch 10 is configured to be ruptured within the mop wringer of a mop bucket. In such embodiments, the rupture stress of membrane 30 is greater than 80 psi, and specifically is greater than 120 psi.
In various embodiments, membrane 30 is formed from a material having a thickness between 0.5 mil and 2.5 mil, specifically between 0.5 mil and 1.5 mil, and more specifically between 0.5 mil and 1.0 mil. In one specific embodiment, membrane 30 is formed from a material having a thickness of about 0.75 mil. In one specific embodiment, membrane 30 is formed from a material having a thickness of about 0.75 mil having a rupture stress of about 8 psi. In various embodiments, membrane 30 having thickness discussed in this paragraph is formed from a polymeric material, as discussed above, and in one embodiment, is polyethylene.
Referring to
Sheet 102 is also folded into a substantially U-shaped configuration such that sheet 102 has a front portion 110, a rear portion 112 and a folded edge 114 that provides the folded transition from front portion 110 to rear portion 112. As shown in
Referring to
As shown in
Referring to
The Figures illustrate the exemplary embodiments in detail, and it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only. The construction and arrangements, shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings of the subject matter described herein. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention. While the current application recites particular combinations of features in the claims appended hereto, various embodiments of the invention relate to any combination of any of the features described herein whether or not such combination is currently claimed, and any such combination of features may be claimed in this or future applications. Any of the features, elements, or components of any of the exemplary embodiments discussed above may be used alone or in combination with any of the features, elements, or components of any of the other embodiments discussed above.
Number | Name | Date | Kind |
---|---|---|---|
2916197 | Lingenfelter et al. | Dec 1959 | A |
3294227 | Schneider et al. | Dec 1966 | A |
3913789 | Miller | Oct 1975 | A |
4458811 | Wilkinson | Jul 1984 | A |
4519499 | Stone et al. | May 1985 | A |
4526823 | Farrell et al. | Jul 1985 | A |
4557377 | Maloney | Dec 1985 | A |
4641362 | Muller | Feb 1987 | A |
4759472 | Strenger | Jul 1988 | A |
4830205 | Hammond et al. | May 1989 | A |
4872556 | Farmer | Oct 1989 | A |
4890744 | Lane, Jr. et al. | Jan 1990 | A |
4898477 | Cox et al. | Feb 1990 | A |
4921137 | Heijenga | May 1990 | A |
5131760 | Farmer | Jul 1992 | A |
5195658 | Hoshino | Mar 1993 | A |
5373966 | O'Reilly et al. | Dec 1994 | A |
5560403 | Balteau et al. | Oct 1996 | A |
5632416 | Lane, Jr. et al. | May 1997 | A |
5832698 | Huguenin | Nov 1998 | A |
6193058 | Yacko et al. | Feb 2001 | B1 |
6620436 | Rolf | Sep 2003 | B1 |
6935783 | Carter | Aug 2005 | B2 |
7004354 | Harper | Feb 2006 | B2 |
7055683 | Bourque et al. | Jun 2006 | B2 |
7458741 | Detwiler et al. | Dec 2008 | B2 |
7866886 | Kurosawa | Jan 2011 | B2 |
20040155059 | Harper | Aug 2004 | A1 |
20040223801 | Detwiler | Nov 2004 | A1 |
20060196784 | Murray | Sep 2006 | A1 |
20070119862 | Backes et al. | May 2007 | A1 |
20080083348 | Kuo et al. | Apr 2008 | A1 |
20080276645 | Murray | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
2001122360 | May 2001 | JP |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2013/041078, mail date Sep. 4, 2013, 9 pages. |
European Search Report for EP Application No. 13 86 6198, dated May 23, 2016, 6 pages. |
Australian Examination Report for AU Application No. 2013364349, dated Oct. 27, 2016, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140175124 A1 | Jun 2014 | US |