The inventions disclosed herein will be understood with regard to the following description, appended claims and accompanying drawings, where:
A generic arrangement that represents these applications as a driver in an ear canal is shown schematically in
Driver design. Analysis of an earphone driver can be carried out using a circuit model as shown schematically in
These diagrams show how the cavity 203 behind the diaphragm 202 is represented by acoustic impedance Zb, and the diaphragm 202 is represented by Zdiaphragm. The cavity 204 in front of the diaphragm 202 is represented by impedance Zf and the port 205 is represented by Zport. The ear cavity 206 and the eardrum 207 are represented in combination by Zear. Diagrams like those shown in
Advantages of a squeeze-stretch design. Drivers for this use should preferably have exterior dimensions small enough to fit within the ear canal and therefore the sizes of the diaphragm 202 and other internal components are restricted. For instance, an enclosure surrounding the diaphragms may be relatively elongated, but it should have at least two orthogonal minor dimensions of less than six mm. On the other hand, the pressure produced at the eardrum depends on how much air is pumped into the ear cavity. More air can be pumped if the diaphragm is larger. The diaphragm can be larger and more effective in a fixed space by making it a pair of diaphragms that work together in a squeeze-stretch manner, as illustrated in
The squeeze-stretch electret driver sketched in
It has been found beneficial to incorporate these transducers in a pair, within a single, pneumatically undivided, septum-free chamber or can, driving a pair of diaphragms in a squeeze-stretch, which may also be called a push-pull, manner. Diaphragms are pneumatically undivided, as used herein, if, when the two diaphragms move together toward and away from each other simultaneously, they squeeze out the air in the volume between them at one moment and draw in air the next as shown in
The performance of the electret driver shown in
Construction and operation of miniature drivers. The electret assemblies 402 shown in
According to an alternative embodiment, rather than each assembly 402 having a diaphragm 423 sandwiched between two electrodes 401, each assembly can be a diaphragm 423, each with only one electrode grid, adjacent its outside surface that faces away from the other diaphragm. A third electrode grid 401 resides between the two diaphragms and is shared by both of them. These electrode grids are also composed of a screen, and are thus porous. Thus, even when an electrode grid physically divides the space between the two diaphragms, the diaphragms 423 are able to work together to draw air into the space between them, and to expel air there-from. Thus, the space between the diaphragms is pneumatically undivided, as that phrase is used herein.
The process described in the preceding paragraph is what happens in a quasi-static or low frequency process. Since sound involves frequencies over a range from low to high, the actual dynamics of the interactions just described are included in the various impedance elements shown in
Another implementation of a squeeze-stretch transducer is a balanced armature design. Balanced armature products of this type that involve two drivers in separate cans or enclosures, working cooperatively, have been known, built and marketed. The prior, known balanced armature units as manufactured could not readily be placed in the same, undivided enclosure, without modification, for several reasons, including the manufacturing method used. When known balanced armature drivers are built, the armature ends up being magnetically stuck to one pole or the other of the magnet. The system is then adjusted (called tweaked by some in the industry), with an intruding magnetic field, to free the armature from the pole.
If two units are in the same, undivided enclosure, without any more hardware, it is not likely that both armatures would be freed by the same magnetic field adjustment. Thus, prior to an invention hereof, there had not been any notion to place two balanced armature units in one pneumatically undivided, septum-free can, in a squeeze-stretch cooperation.
A squeeze-stretch assembly of an invention hereof is shown schematically in
The calculated sensitivity for such a balanced armature squeeze-stretch driver is shown in
One form of sub-unit to facilitate magnetic field adjustment is to secure each armature individually into its own half-cylindrical enclosure 609a, 609b, with a relatively open rectangular face that is covered by the respective diaphragm, which is supported at its edges by a hinge 640a, 640b. The armatures are adjusted, or tweaked individually in their half cylindrical enclosures, which act as adjustment frames. The half-cylindrical enclosures are then brought together and welded or glued or otherwise sealed along their open edges 641 adjacent the hinges 640a, 640b. Other forms of securing may be used, and then the two secured armatures may be placed inside a unitary enclosure that does not need to be joined.
Another example of a squeeze-stretch arrangement that is a part of an invention hereof is a squeeze-stretch bimorph piezoelectric driver 850 sketched schematically in
The sensitivity of a squeeze-stretch bimorph driver 850 has been calculated and is shown graphically in
As an example of the performance of a squeeze-stretch design, its application to ANR earplugs is described here. The transducer discussed is a squeeze-stretch electret design, but any other squeeze-stretch designs of a suitably small size, could be applied to this earplug and analyzed in a similar manner.
A general arrangement for an ANR earplug is shown in
The microphone 110 is very small, typically on the order of one to two mm in diameter. It would typically be embedded within the earpiece 104 so that it senses the pressure in the ear cavity 106. The duct 105, which acoustically couples the volume between the diaphragms to the air within the ear cavity 106 adjacent the ear drum 107, can be any suitable shape in cross-section, including rectangular or circular.
The system diagram for this device is shown in
The microphone M, also in the ear cavity, senses the total pressure pt=ps+pn with sensitivity M to produce an electrical signal Mpt. This signal is passed through the high gain feedback amplifier K which has an output KMpt. This signal is combined as shown in
p
t
=p
n
+p
s
=p
n+(KMpt+Vs)L. (1)
If we first consider the case where there is no signal voltage (Vs=0), then
p
t(1−KLM)=pn; pt/pn=(1−KLM)−1. (2)
ANR systems are typically designed so that the loop gain KLM is large so that the pressure pt at the ear due to noise is much smaller than pn, the noise pressure that would be present if the feedback did not cancel it. When the loop gain is large, usually because K is large, then the noise reduction NR produced by the feedback (in dB) is
NR=20 log(pt/pn)≈−20 log|KLM|. (3)
This noise reduction is graphed in
The pressure ps must be the same order of magnitude as pn in order to cancel pn. In some applications the driver might be required to produce diaphragm motions that would lead to a pressure as much as 130 dB at the eardrum (if the intruding noise were not present also). Of course, such a pressure does not actually occur because it is canceling the external noise so as to reduce the pressure at the eardrum. A pressure level of 130 dB corresponds to a pressure fluctuation of 63 Pa. Using the loudspeaker sensitivity shown in
If the signal voltage is introduced at the input to the feedback amplifier K, then the required voltage is reduced by the gain K of that component. The graph of
The system also has applications for use in low noise environments. In such a case, it may also be useful to include an additional microphone 140 (
The discussion in the preceding section shows how a squeeze-stretch electret loudspeaker or driver can operate in an ANR earplug application. The other embodiments of a squeeze-stretch loudspeaker will operate in a similar way, although they will differ in detail. Conversely, other applications such as earphones for communication and entertainment will benefit from the compact arrangement of components in a squeeze-stretch design. The advantages of this invention are a greater sound output from a smaller package, a smooth frequency response, and because of the diaphragm arrangement, less sensitivity to vibration.
According to a preferred embodiment, an invention hereof is an acoustic driver, comprising: a pair of diaphragms, each having at least one surface, the surfaces facing and spaced apart from each other and defining a volume there-between, arranged so that the diaphragms are free to move with respect to each other to squeeze and stretch air within the defined volume; an enclosure that surrounds the pair of diaphragms, all three orthogonal dimensions of the enclosure being, at most, six mm; a duct that pneumatically couples the defined volume with an environment that is external to the enclosure; and an electronic couple, that couples to the pair of diaphragms, arranged to couple also to a signal generator.
The pair of diaphragms may be electrostatic, or electromagnetic. Examples of electrostatic diaphragms include electret and piezoelectric bi-morph diaphragms. An example of an electromagnetic diaphragm is a balanced armature assembly.
According to a related embodiment, an invention hereof also includes a signal generator, operative to drive the diaphragms to squeeze and stretch air within the defined volume. Such an embodiment may also include a microphone adjacent the enclosure, electronically coupled to the signal generator. In an active noise reduction embodiment, the signal generator may be operative to drive the diaphragms to cancel at least some of any sound sensed by the microphone, and preferably, reducing the noise by at least ten db as compared to the situation without the microphone and feedback.
With still another related embodiment, the driver comprises an elongated earplug having an internal and an external end, shaped and sized to fit within a human ear canal, with the internal end adjacent a second bend in the ear canal, the pair of diaphragms being located within the earplug, between the external and the internal ends, with the duct opening at the internal end into an ear cavity. This embodiment may further comprise a microphone, adjacent the internal end of the earplug, electronically coupled to the signal generator.
Yet another embodiment of an apparatus of an invention hereof is an acoustic driver, comprising: a pair of diaphragms, each having at least one surface, the surfaces facing and spaced apart from each other and defining an undivided volume there-between, arranged so that the diaphragms are free to move with respect to each other to squeeze and stretch air within the defined volume; an enclosure that surrounds the pair of diaphragms; a duct that pneumatically couples the defined volume with an environment that is external to the enclosure; and an electronic couple that couples to the pair of diaphragms, arranged to couple also to a signal generator.
With variations related to this undivided volume embodiment, the pair of diaphragms may comprise a pair of electrostatic or electromagnetic diaphragms.
An embodiment related to this further comprises a signal generator, operative to drive the diaphragms to squeeze and stretch air within the defined volume.
According to still another related embodiment, as with the embodiment specified to be smaller than 6 mm along any orthogonal dimension, an acoustic driver may further comprises an elongated earplug having an internal and an external end, shaped and sized to fit within a human ear canal, with the internal end adjacent a second bend in the ear canal, the pair of diaphragms being located within the earplug, between the external and the internal ends, with the duct opening at the internal end.
With or without the earplug, these related embodiments may include a microphone, adjacent the enclosure, (near the internal end in the case of the earplug) that is electronically coupled to the signal generator
The signal generator may be beneficially operative to drive the diaphragms to cancel at least some of the sound sensed by the microphone, and in particular so that the signal sensed by the microphone is reduced by at least 10 db as compared to what would be present without the microphone and feedback.
Still another embodiment of an invention hereof is a method of assembling an acoustic driver comprising: a pair of balanced armature assemblies, each of which drive a diaphragm, each diaphragm having at least one surface, the surfaces facing and spaced apart from each other and defining a volume there-between, arranged so that the diaphragms are free to move with respect to each other to squeeze and stretch air within the defined volume; a single enclosure that surrounds the pair of diaphragms, and an electronic couple, that couples to the pair of diaphragms, arranged to couple also to a signal generator, each armature assembly also including a frame arranged so that the armature can be freed from magnetic attachment to the pole before assembly into the enclosure. The method of assembling comprises: providing a pair of armature assemblies, with each armature being magnetically adhering to a pole of its respective assembly, each armature including an independent adjustment frame; applying a magnetic field to each individual armature, to free it from magnetic adherence to its respective pole, before placing the respective armature into an enclosed container; and then, enclosing each adjusted, freed, armature assembly, with its frame, within a single, pneumatically undivided container, arranging the diaphragms of each armature assembly facing and spaced apart from each other and defining a volume there-between, arranged so that the diaphragms are free to move with respect to each other to squeeze and stretch air within the defined volume.
Many techniques and aspects of the inventions have been described herein. The person skilled in the art will understand that many of these techniques can be used with other disclosed techniques, even if they have not been specifically described in use together. For instance, any of the transducers can be arranged to squeeze and stretch the air between them to produce the sound level required to reduce the amount of external noise to an acceptable level. Any can be used with any active noise reduction arrangements, whether known or yet to be developed. They can also be used in applications other than active noise reduction, for instance without a microphone. Similarly, if, in the future, a transducer that is not a dual membrane squeeze-stretch type transducer, but which can be made small enough to fit within a human ear canal, yet has enough power to generate adequate acoustic energy to reduce the noise level, then such a transducer can be used as configured herein with a microphone and circuitry, and is considered an invention hereof.
This disclosure describes and discloses more than one invention. The inventions are set forth in the claims of this and related documents, not only as filed, but also as developed during prosecution of any patent application based on this disclosure. The inventor intends to claim all of the various inventions to the limits permitted by the prior art, as it is subsequently determined to be. No feature described herein is essential to each invention disclosed herein. Thus, the inventor intends that no features described herein, but not claimed in any particular claim of any patent based on this disclosure, should be incorporated into any such claim.
Some assemblies of hardware, or groups of steps, are referred to herein as an invention. However, this is not an admission that any such assemblies or groups are necessarily patentably distinct inventions, particularly as contemplated by laws and regulations regarding the number of inventions that will be examined in one patent application, or unity of invention. It is intended to be a short way of saying an embodiment of an invention.
An abstract is submitted herewith. It is emphasized that this abstract is being provided to comply with the rule requiring an abstract that will allow examiners and other searchers to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, as promised by the Patent Office's rule.
The foregoing discussion should be understood as illustrative and should not be considered to be limiting in any sense. While the inventions have been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the inventions as defined by the claims.
The corresponding structures, materials, acts and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.
The benefit of U.S. Provisional application No. 60/802,587, filed on May 23, 2006, entitled PUSH-PULL EARPHONE DRIVER (LOUDSPEAKER), which is hereby incorporated fully herein by reference, is hereby claimed.
Number | Date | Country | |
---|---|---|---|
60802587 | May 2006 | US |