The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
Before providing a detailed description of the invention, it may be helpful to review some terms used to describe the invention.
COR—Carrier Operated Relay, an industry term which is synonymous with squelch, or the signal which is active when the radio is receiving a signal.
COR Cadence Count—the number of times the COR signal has been seen to go from an inactive state to active and back to inactive again.
COR Cadence Time—the window of time during which the specified COR Cadence Count must be observed.
COR Cadence Number—the SIP resource (phone number or IP address) to which a SIP connection will be made when the specified number of COR Cadence Count events are observed within the COR Cadence Time.
One familiar with hand-held radios will appreciate that in normal operation the radio operates in what is known as half duplex mode where a receive signal is received through the receiver and an audio output is provided by the speaker to an user. When the user wishes to talk, a push-to-talk button is depressed which activates the transmitter and the user speaks into the microphone to transmit. For ease of operation, most hand-held radios provide an external microphone and speaker interface so that an external microphone and speaker headset can be used. A base station is similar to a hand-held radio except being configured for a more permanent location. In a typical operation, a plurality of hand-held radios will communicate among each other and with a base station.
Referring now to
The squelch break signaling device 10 is disposed between the local radio and the SIP adapter that provides an interface into the IP network that the Voice over IP communication application is operating.
It should be appreciated that a COR signal may be initiated in a receiver by pressing the push-to-talk (PTT) button on a distant transmitter. Pressing the PTT button a specified number of times (the COR Cadence Count) within a specified time (the COR Cadence Time) initiates a connection to the specified SIP telephony network resource. This allows a radio with no other signaling ability (DTMF or otherwise) to initiate a call without operator intervention. The use of this method in a Radio-to-SIP adapter is unique.
Referring now to
It should be appreciated that a flowchart represents computer software instructions or groups of instructions. Alternatively, the processing and decision blocks represent steps performed by functionally equivalent circuits such as a digital signal processor circuit or an application specific integrated circuit (ASIC). The flow diagrams do not depict the syntax of any particular programming language. Rather, the flow diagrams illustrate the functional information one of ordinary skill in the art requires to fabricate circuits or to generate computer software to perform the processing required of the particular apparatus. It should be noted that many routine program elements, such as initialization of loops and variables and the use of temporary variables are not shown. It will be appreciated by those of ordinary skill in the art that unless otherwise indicated herein, the particular sequence of steps described is illustrative only and can be varied without departing from the spirit of the invention. Thus, unless otherwise stated the steps described below are unordered meaning that, when possible, the steps can be performed in any convenient or desirable order.
It should now be appreciated, the squelch break signaling device 10 monitors the squelch signal from the radio and initiates a specified SIP action based on the cadence of the squelch signal. This allows a user to click their microphone push-to-talk (PTT) button a specified number of times in a specified timeframe and initiate a telephony connection through the network via SIP with no operator intervention required.
Referring now to
It should now be appreciated a squelch break signaling device according to the present invention includes a carrier operated relay input to provide a signal indicative that a receiver is receiving an RF signal; a carrier operated relay cadence count threshold signal input to provide a signal indicative of the number of times a carrier operated relay signal should transition from inactive to active and back to inactive before performing an action; a carrier operated relay cadence timer threshold signal input to provide a signal indicative of an amount of clock time within which the carrier operated relay signal should transition before performing an action; a carrier operated relay cadence URI signal input to provide a SIP URI; a carrier operated relay cadence timer to set a time limit; and a carrier operated relay counter to count the number of times a carrier operated relay transitions from inactive to active and back to inactive within the time limit to provide a session initiation protocol activate signal from the squelch break signaling device when the count of the carrier operated relay counter matches the number provided by the carrier operated relay cadence count threshold signal.
Having described the preferred embodiment of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may be used. It is felt therefore that these embodiments should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims.
This application claims priority under 35 U.S.C. § 119(e) from U.S. provisional application No. 60/835,567 filed on Aug. 4, 2006.
Number | Date | Country | |
---|---|---|---|
60835567 | Aug 2006 | US |