The invention relates generally to electrical connectors and more specifically to squib connectors for automotive air bag applications.
Vehicle airbag systems typically include one or more airbag units mounted within the passenger compartment of the vehicle to protect the occupants in the event of an accident. In order to deploy the airbag, an airbag inflation initiator or squib is activated in response to a signal from a deceleration sensor. The conventional squib unit typically contains an explosive material, such as gun powder, that is detonated upon receipt of an electrical signal to cause the rapid release of high pressure gas to inflate the airbag. The squib is therefore typically part of the airbag unit. A squib electrical connector is normally mated to the airbag inflation initiator or squib in order to connect lead wires or other conductors leading from the sensor unit. The electrical connector system permits independent assembly of the airbag unit and the sensor as well as the remainder of the airbag system, and also permits subsequent connection and disconnection for service or repair.
A common form of squib connector has two pins which extend within the socket. An associated connector has two terminals which are in electrical contact with the pins when the connector is plugged into the socket. When the connector is removed from the socket, typically for servicing, a shorting clip or shunt is biased into electrical contact with the two pins to form an electrical connection therebetween to reduce the risk of misfiring, for example, by static electricity. The connector urges the shorting clip out of electrical contact with the pins when the connector is plugged into the socket.
The integrity of the wire connection to the squib connector must be maintained to ensure that the squib connector will fire when the deceleration sensor senses a sufficiently great deceleration and sends a signal to the squib connector. The squib connector is particularly subject to failure due to handling during manufacture of the vehicle and during replacement of a spent air bag assembly.
A need exists for a squib connector that latches positively to provide a high retention force while having a low mating force. A further need exists for a squib connector wherein the electrical short circuit feature on the mating connector cannot be deactivated until the connector is fully mated.
In one embodiment of the invention, an electrical connector is provided including a housing having a plug portion configured to be received in a receptacle. The housing has a rear face aligned with and opposing the plug portion. The housing includes a latch beam that is deflectable between a latched state and an unlatched state. A CPA mounted to the housing is movable between open and closed positions and includes a beam that extends through the rear face of the housing to engage the latch beam of the housing to inhibit the latch beam from deflecting to its unlatched state when the CPA is in a closed position.
In another embodiment of the invention, an electrical plug connector is provided that includes a housing having a plug portion configured to be received in a receptacle connector and having a rear face aligned with and opposing the plug portion. A is CPA mounted to the housing and is movable between open and closed positions. The CPA includes a shorting disconnect arm extending though the rear face of the housing, that separates a shorting clip and receptacle terminal held in the receptacle connector.
In yet another embodiment of the invention, a squib connector to be mated with a receptacle in an inflator for an automotive air bag is provided. The connector includes a housing configured to be mated with the receptacle and a latch to secure the housing to the receptacle. A CPA mounted to the housing and movable between open and closed positions includes a beam extending through the housing and engaging the latch when the CPA is in the closed position to inhibit the latch from unlatching. The CPA also includes a shorting disconnect arm extending though the rear face of the housing that separates a shorting clip and receptacle terminal held in the receptacle connector.
In
As shown in
Right angle channels 220 include ferrite sleeves 222 for shielding. Ferrite material is used in a squib connector to suppress any unwanted Radio Frequency interference (RFI) signal that may inadvertently cause firing of the airbag. It is normally used in the airbag application in any of the following four methods. (1) A ferrite bead with two holes located inside the connector in such a way that the wires can pass through holes. In this case the ferrite bead may be made of a conductive, Manganese Zinc (MnZn), or a nonconductive, Nickel Zinc (NiZn) material. (2) A ferrite bead with two holes located inside the connector in such a way that the female contacts can reside inside the ferrite bead. In this case a nonconductive ferrite material should be used. (3) Two separate ferrite sleeves located inside the connector in such a way that the wires can pass through. In this case one or both of the ferrite sleeves material may be conductive. (4) Two separate ferrite sleeves located inside the connector in such a way that the female contacts can reside within the sleeves. In this case one of the ferrite sleeves material should be nonconductive.
In general conductive ferrite materials are more effective in suppressing interference (RFI) at low frequencies whereas the nonconductive ferrite material are more effective in suppressing interference (RFI) at high frequencies. The effectiveness of ferrite or ferrites in suppressing Radio frequency interference (RFI) also depends on the size of the ferrite bead or ferrite sleeves and its location. The closer the ferrite bead or ferrite sleeves are to the male and female electrical contact point or, in other words, the closer the ferrite to the electrical load (initiator of an airbag), the more effective it will be in suppressing the interference (RFI). A combination of ferrite material or materials, size, and location are selected in a particular squib connector design to achieve the most optimum effectiveness in suppressing RFI.
Ferrite sleeves 222 are received in right angle channels 220. Right angle terminal leads 230 are received in right angle channels 220 with contact beams 232 received in the ferrite sleeves 222. Terminal leads 230 are securable to cables 140. Terminal leads 230 are stamped at a ninety degree angle so that no additional bending after stamping is required. Each terminal lead 230 (see
With reference to
Connector 100 is mated with the socket 400 by aligning latch beams 160 with cutouts 460 in inner liner 450 and inserting plug portion 120 into socket 400. The remainder of the mating operation will be described with reference to FIG. 14.
When mating is completed, CPA 130 can then be depressed closing CPA 130 which causes beams 320 to expand latch beams 160 into groove 440. Plug portion 120 extends along a mating axis and CPA 130 moves along the same mating axis when moved between open and closed positions. Simultaneously, disconnect arms 330 engage shorting to break the short between terminal contacts 420. However, since the CPA 130 cannot fully engage until mating is completed between connector 100 and socket 400, it is assured that terminal leads 230 are in contact with terminal contacts 420 before the short is broken. This is the mate before break feature of the connector 100 which is illustrated in more detail in
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application claims the benefit of U.S. provisional application No. 60/450,379 filed Feb. 26, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5275575 | Cahaly et al. | Jan 1994 | A |
5314345 | Cahaly et al. | May 1994 | A |
5529512 | Mlyniec | Jun 1996 | A |
5746618 | Gauker | May 1998 | A |
6276957 | Seko et al. | Aug 2001 | B1 |
6287139 | Seko et al. | Sep 2001 | B1 |
6435894 | Little et al. | Aug 2002 | B2 |
6461184 | Nimura | Oct 2002 | B2 |
6488518 | Mlyniec | Dec 2002 | B2 |
6699059 | Nagamine et al. | Mar 2004 | B2 |
6743051 | Hayashi | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040166715 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60450379 | Feb 2003 | US |