Squib connector

Information

  • Patent Grant
  • 6641424
  • Patent Number
    6,641,424
  • Date Filed
    Thursday, August 24, 2000
    24 years ago
  • Date Issued
    Tuesday, November 4, 2003
    21 years ago
Abstract
A squib connector that has a slideable locking element with a locking protrusion for engaging a portion of the squib connector housing in the fully locked position where the locking protrusions are thus outwardly biased into locking engagement with the squib and any tension on the cable or connector housing tends to splay apart the locking arms into tighter engagement against the squib locking shoulders.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a connector for connection to a gas generator (often called “squib”).




2. Summary of the Prior Art




In automotive applications such as airbag and seat belt pretentioners, explosive devices are provided, such devices often called squibs. Squibs are typically provided with a pair of contacts projecting within a cavity for receiving and mating with a complementary connector, commonly called squib connector. A squib connector assembly typically comprises a short circuit element that bridges the pin contacts of the squib in the uncoupled state. During plugging, the shorting contacts are biased by the squib connector to break the short circuit. The short circuit contact is often provided within a housing fastened to the squib housing.




Conventional squib connectors have resilient latches that engage shoulders of the squib housing, the latches shaped as cantilever beams attached to the connector housing at one end, and extending to a free end. In some designs as disclosed in U.S. Pat. No. 5,275,575, and EP 736934, the squib connector latches are in form of resilient cantilever beams that automatically latch to shoulders of the squib housing, wherein a further safety peg is inserted between the latch and connector housing for preventing inadvertent release of the connector. The connector is released by removing the safety insertion element and pulling upwardly on the connector, whereby conical or tapered latching surfaces on the resilient latch arms assist inward biasing of the latches for disengagement. As the latches provide a certain resistance, extraction requires relatively high forces that may damage the latches or the connector, especially after a few plugging and unplugging cycles. In view of reducing insertion forces during plugging it is known to positively outwardly bias the latch members during plugging with the safety element, as disclosed in U.S. Pat. No. 5,525,512. Unplugging may however be unreliable, if the resiliency of the latches diminishes over the life of the connector such that the latches do not fully inwardly bias to the rest position during uncoupling. One of the problems with all of the above described designs, is that the need to insert a safety element between the locking or latch arm and the connector housing reduces available space for the housing and latches. The latches are thus relatively flimsy, or the housing portion receiving the terminals needs to be made more compact. It would be desirable to improve the robustness and/or provide more space for the connector housing. It may be noted that the squibs have cavities with standardised dimensions, typically in order of approximately 8-10 mm diameter.




Another problem of resilient latches is the resistance to uncoupling once the safety peg is removed, which is sometimes quite high when the connector is new, but that reduces after use due to wear and reduced elasticity of the plastic housing material subject to heat and vibration. It would be desirable to avoid high resistance and varying plugging/unplugging characteristics.




In many squib connectors, it is also common to provide latching arms that resiliently latch during coupling, but that require special tooling for uncoupling, for example as shown in U.S. Pat. No. 5,609,498. The use of special tooling is however often undesirable as it increases the costs of service and maintenance.




SUMMARY OF THE INVENTION




It is an object of this invention to provide a squib connector that can be rapidly and easily plugged and unplugged from a squib, but which is nevertheless particularly safe, reliable and robust. In particular, reliability of the connection should be maintained over the life of the connector, unaffected by the number of plugging and unplugging operations or environmental conditions such as heat and vibration.




Objects of this invention have been achieved by providing a squib connector according to claim


1


. Disclosed herein is a squib connector having a mating portion adapted to be received within a cavity of a squib for electrical connection thereto, the mating portion of the squib connector comprising a housing and a locking element mounted on the housing, the locking element comprising a locking portion engagable against a complementary shoulder of the squib for securing the connector in the squib, wherein the locking element is movably mounted on the housing and further comprises a camming portion adapted to cam against a complementary camming portion of the housing thereby biasing the locking portion into engagement with the squib complementary latching shoulders when the locking element is moved from an unlocked position to a locked position during coupling of the connector to the squib. Advantageously therefore, locking can be quickly and easily effected whilst ensuring a secure fully locked position, and without depending on resiliency of the latches. High temperature, vibration, or other factors that may affect the strength and resiliency of the connector housing material will therefore not affect the reliability and ease of plugging and unplugging of the squib connector. Furthermore a robust construction may be provided by avoiding insertion of a safety element.




The locking portion may be provided on cantilever beams attached at one end remote from a mating end of the connector mating portion to the locking element, and extending therefrom to a free end directed towards the connector mating face. In their natural or free standing position the locking portions may be provided in a substantially fully disengaged position, the latches being fully outwardly biased into engagement with the squib latching shoulders during mating. The latter enables a relatively low plugging, and unplugging force to be provided. The locking element may be provided slideable in the mating direction, against an outer surface of the mating portion. The housing camming portion may comprise an outwardly protruding tapered surface proximate the mating face, for engaging the locking element camming portions provided proximate free ends of locking arms. The locking portion may be provided with a second release camming surface that engages the squib during uncoupling for biasing the locking portions out of the locked position. The release camming surface may be tapered and may form part of a locking surface of the locking portion that engages the complementary squib locking shoulder. A particularly simple and robust latching is thus provided. The connector housing may further comprise a lock return element that engages the locking arms or portions in their unlocked position to ensure the locking arms are returned fully to their initial position prior to coupling. The lock return elements also help to protect the locking arms from damage. The locking element may further comprise latches that secure the locking element in the fully coupled position relative to the connector housing, whereby the latches have camming portions that push the housing in the plugging direction during unlatching. This ensures that the locking element is returned to the uncoupled position during unplugging of the connector and squib.




Further advantageous aspects of this invention will be described in the claims, or will be apparent from the following description and drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an isometric view of a squib connector according to this invention, with a locking element thereof in an unlocked position;





FIG. 2

is an isometric view similar to

FIG. 1

with the locking element in the locked position;





FIGS. 3

to


5


are cross sectional views through a squib connector being plugged to a squib, showing the stages of initial insertion, engagement of the locking element, and the fully locked position respectively;





FIG. 6

is a side plan view of the squib connector;





FIG. 7

is a cross sectional view through lines


7





7


of

FIG. 6

;





FIG. 8

is a view in the direction of arrow


8


of

FIG. 6

;





FIG. 9

is a view in the direction of arrow


9


of

FIG. 6

;





FIG. 10

is a view in the direction of arrow


10


of

FIG. 6

;





FIG. 11

is an isometric view of a locking element of the squib connector;





FIG. 12

is a side view of the locking element;





FIG. 13

is a cross sectional view through line


13





13


of

FIG. 12

;





FIG. 14

is a view in the direction of arrow


14


of

FIG. 12

;





FIG. 15

is a view in the direction of arrow


15


of

FIG. 14

;





FIG. 16

is a side view of a squib connector housing;





FIG. 17

is a view in the direction of arrow


17


of

FIG. 16

;





FIG. 18

is a cross sectional view through lines


18





18


of

FIG. 16

;





FIG. 19

is a cross sectional view through lines


19





19


of

FIG. 17

;





FIG. 20

is a view in the direction of arrow


20


of

FIG. 16

;





FIG. 21

is a view in the direction of arrow


21


of

FIG. 16

;





FIG. 22

is an isometric view of the connector housing;





FIG. 23

is a side view of a strain relief member of the squib connector;





FIG. 24

is a view in the direction of arrow


24


of

FIG. 23

;





FIG. 25

is a cross sectional view through lines


25





25


of

FIG. 23

;





FIG. 26

is a view in the direction of arrow


26


of

FIG. 23

;





FIG. 27

is a view in the direction of arrow


27


of

FIG. 23

;





FIG. 28

is an isometric view of the strain relief member;





FIG. 29

is a cross-sectional view through another squib connector embodiment according to this invention, plugged to a gas generator;





FIG. 30

is a cross-sectional view through lines


30





30


of

FIG. 29

;





FIG. 31

is a simplified cross-sectional view similar to

FIG. 30

showing the connector in the fully mated position;





FIG. 32

is view similar to

FIG. 31

showing initial unlatching of the squib connector from the gas generator;





FIG. 33

is a isometric view of a housing of the embodiment of

FIG. 29

;





FIG. 34

is a isometric view of a locking element of the embodiment of

FIG. 29

;





FIG. 35

is an isometric view of another embodiment in the uncoupled position;





FIG. 36

is a simplified cross-sectional view of the embodiment of

FIG. 35

;





FIG. 37

is a view similar to

FIG. 35

showing the locking element in the fully coupled position;





FIG. 38

is a simplified cross-sectional view of the embodiment of FIG.


37


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring mainly to the

FIGS. 1-8

a squib connector


2


is shown plugged to a connection portion of a gas generator (squib)


1


having a cavity


3


extending into the squib from a connector receiving face


4


, the squib


1


further provided with a pair of contact pins


6


extending in the cavity


3


. An annular locking recess


8


in the side of the cavity


3


forms a locking shoulder


10


for locking of the squib connector thereto. The assembly further comprises a shorting assembly


12


comprising an insulative housing and a shorting terminal (not shown) mounted in the housing for short circuiting the pair of contact pins


6


when the squib connector


2


is uncoupled from the squib


1


.




The squib connector


2


comprises an insulative housing


16


having terminal receiving cavities


18


extending therethrough from a conductor receiving end


20


to a mating end


22


for receiving terminals


24


for plugging to the pin contacts


6


. The housing


16


has a mating section


26


insertable within the squib cavity


3


.




The connector


2


further comprises a locking element


32


that is mounted slideably against an outer surface


34


of the housing


16


, the locking element slideably movable in the direction of plugging and unplugging (P) of the connector. The locking element comprises a latching member


36


coupleable with complementary latching members


38


of the housing for securing the locking element in a fully locked position as shown in

FIGS. 6

,


11


and


17


. The locking element latching members


36


,


38


comprise complementary recesses


38


and notches


36


, whereby resiliency is provided by the locking element side walls


39


that can bias outwards sufficient for engagement of the protrusions and recesses. The locking element further comprises locking arms


28


in the form of cantilever beams attached at an attachment end


29


to the locking element and extending therefrom to a free end directed towards the mating face


22


, the locking arm


28


comprising a locking portion


31


provided with a tapered locking shoulder


30


for engaging the locking shoulder


10


of the squib. The tapered locking shoulder


30


also acts as a release camming surface that assists inward biasing of the locking arms


28


during disengagement sliding of the locking element. The locking arm further comprises a lock camming portion


33


in the shape of a tapered camming surface at the free end of the locking arm


28


, for engaging a complementary tapered lock camming surface


43


of a complementary locking portion


42


that is integral with the housing


16


. The housing locking portion


42


protrudes outwardly from the housing and is arranged in the mating section


26


proximate the mating face


22


. The locking portion


42


engages and outwardly biases the locking arms


28


when the locking element is slid in the mating direction (P) into the fully locked position. Outward biasing of the locking arms


28


causes the locking shoulders


30


to engage the corresponding squib latching shoulders


10


, as shown in FIG.


3


.




In the natural or free standing position of the locking arms as shown in

FIGS. 3 and 4

, there is little or no engagement between the locking shoulder


30


and the squib cavity


3


and locking shoulder


10


, such that a low insertion force, and extraction force, is provided. Slight engagement of the locking shoulders


30


,


10


during initial insertion as shown in

FIG. 7

, may be provided to ease plugging of the connector into the squib. Initial slight engagement provides the operator with some feel for indicating that the connector is fully inserted, and that the locking element can be depressed.




The locking element further comprises a return portion


44


which is formed by beams


45


integrally moulded to the housing


16


and spaced therefrom (see FIGS.


5


and


8


), whereby the locking arms are arranged between the housing outer surface


34


and the beams


45


. The return portion


44


inwardly cams the locking arms


28


during disengagement, in particular when the locking element


32


is slideably raised (in the direction P) from the fully locked to the unlocked position as shown in FIG.


3


. Where the locking arms


28


are in a natural position out of engagement with the squib locking shoulders


10


, then the return portions


44


may not actively inwardly cam the latch arms. In the event where the connector material loses resiliency or where the free standing position of the latches is designed to slightly engage the locking shoulders, or where the locking arms have been outwardly plastically deformed (for example damaged due to excessive extraction forces on the connector), then the return portions


44


will actively inwardly bias the latch arms


28


, ensuring easy re-plugging of the connector. A reliable plugging and unplugging with low insertion and extraction forces is thus achieved, over the life time of the connector.




An important advantage of the present invention is the self-locking effect, as tension is exerted on the connector body


16


or cable


15


. As an extraction force is exerted on the connector cable, the tapered housing locking shoulders


43


tend to splay apart the pair of opposed locking arms


28


in a even tighter engagement with the squib locking shoulder


10


. A particularly robust and reliable locking is thus effected. In addition, as the connector does not rely on any particular resilient properties of the locking arms


28


, they can be designed for optimal retention strength, and with relatively large thickness because of the omission of a further safety element. Yet further, the locking element locking protrusion


31


acts mainly in compression of the material, rather than shearing of a locking protrusion as in conventional designs, thereby further increasing the retention strength of the connector. This can be best understood by viewing

FIG. 5

, where the engagement forces compress along a line C that traverses the locking portion from the locking shoulder


30


to the camming portion surface


33


in compression, rather than shear. In certain squib designs where the locking shoulders


10


are not provided at an oblique angle the latter effect is not as prominent.




Referring to

FIGS. 1

,


2


,


11


and


13


, the locking element is further provided with a shunt actuation member


46


in the form of a pair of probes that is inserted between a spring arm of the shorting terminal (not shown) and the squib pin contacts


6


, such that the shorting terminal is biased out of contact with the pins


6


. Short circuiting is thus only deactivated when the locking element is moved to the fully locked position.




As best seen in

FIGS. 7

,


9


and


24


-


28


, the connector further comprises a strain relief member


50


that comprises a pair of clamping portions


52


hinged together with a thin flexible hinge


54


, the strain relief member provided with arcuate (semi-circle) ribbed clamping surfaces


56


for clamping and digging into the outer insulation of the cable


15


. One rib is shown in FIG.


7


and denoted


58


. The strain relief member


50


is received at a wire receiving end


20


of the connector, and comprises tapered or conical camming portions


60


received in a corresponding tapered conical recess


62


of the housing. The strain relief member


50


further comprises a pair latching arms


64


that engage opposed complementary latching elements in the form of protrusions


66


integrally formed with the housing


16


. Assembly of the connector is thus effected by first terminating the assembly terminals


24


to conducting wires of the cable


15


, and fully inserting and lodging the terminals within the terminal receiving cavities


18


(when the terminal locking lance


25


engages a corresponding locking shoulder


23


of the housing). The strain relief member is then mounted around the cable at the wire receiving end of the housing whereby the clamping portions


52


are pivoted together about the cable, and subsequently depressed towards the connector wire receiving face


20


such that the tapered actuation portion


60


engages within the corresponding camming recess


62


of the housing thereby forcing the clamping halves


52


together such that the ribs


58


dig into the outer insulation of the cable


15


. The strain relief member


50


is depressed until the latching member


64


,


66


engage. A simple and effective strain relief member that can be easily assembled to the connector is thus provided.




A slightly different embodiment of the invention is shown in

FIGS. 29-34

. As many features of this embodiment are similar to the embodiment previously described, similar or identical features will be given the same numbering and features that are different or additional will be described. Referring to

FIGS. 29-34

, the squib connector


2


′ comprises a locking element


32


′ slideably movable in a plugging direction (P) on a housing


16


′ of the squib connector. The locking element


32


′ has locking arms


28


that co-operate with the gas generator


1


and the housing locking portion


26


in a similar manner to the embodiment of

FIGS. 1-28

. The housing


16


′ further comprises resilient coupling assist latches


70


having protrusions


71


mounted on resilient beams


72


attached to the housing at ends


73


,


74


. The latching protrusion


71


engages in the annular recess


8


of the gas generator for providing a partial retention of the squib connector to the gas generator during plugging and unplugging. The coupling assist latches


70


facilitate retraction of the slideable locking element


32


′ to the pre-assembly position as shown in

FIG. 29

during unplugging, or during plugging the audible click and tactile feel of engagement of the latches


70


facilitate the plugging operation.




As best seen in

FIG. 33

, each latch


70


comprises a pair of the beams


72


, each beam arranged either side of the housing locking portion


42


. The latches


70


are provided on opposing sides of the housing


16


′ proximate the opposed locking portions


42


.




The locking element


32


′ comprises a latching element


36


′ (see

FIGS. 30

,


34


) that is resiliently pivotally mounted at hinges


90


on the locking element and has a locking shoulder


37


′ for engaging the latching shoulders


38


′ extending from the housing


16


′. At an end remote from the locking shoulder


37


′, are finger grips


76


inwardly biasable for outwardly biasing the locking shoulders


37


′ as shown in FIG.


32


. Proximate the finger grips


76


, the latch arm


32


′ comprises camming shoulders


78


that co-operate with complementary camming shoulders


80


of the housing to generate a force component on the housing in the plugging direction (P) towards the gas generator


1


. This ensures that during unlatching the latch arm locking shoulders


37


′ from the latch protrusions


38


′, the connector housing


16


′ is biased towards the gas generator to enable complete unlatching and sliding of the locking element


32


′ to the uncoupled position as shown in FIG.


29


. Partial retention of the housing to the gas generator by the coupling assist latches


70


assist in ensuring complete return of the locking element


32


′. Simple plugging and unplugging in a single action is thus provided. Nevertheless, extraction forces on the squib connector cable


15


cannot release the squib connector without destruction. In particular, an extraction force on the cable


15


tends to further tighten locking of the connector housing in the gas generator by outwardly splaying the locking arms


28


.




Referring to

FIGS. 35-38

, another embodiment of a squib connector


2


″ is shown whereby the mating section


26


′ extends substantially orthogonally to the conductor receiving section


20


′ (i.e. in this embodiment the conductors terminated to the connector extend at 90 degrees to the plugging direction (P) of the connector to a squib). The mating section


26


′ however may have a similar construction to the mating section


26


of the aforementioned embodiments. One main difference between this embodiment and the previous embodiments, resides in the design of the locking element


32


″.




The locking element


32


″ comprises locking arms that engage the camming portions


42


of the mating section in a manner similar to the previously described embodiments. A main difference however is in the design of the latching element


36


″ that is resiliently integrally attached to the locking element


32


″ via thin hinges


90


′ proximate the locking shoulder


37


″ of the latching element


36


″. The latching element comprises a finger grip


76


′ at an upper end remote from the locking shoulder


37


″, and a pivot cam protrusion


91


on an inner surface of the latch for engagement with a side wall


92


of the squib connector housing


16


″. The side wall


92


has a tapered camming surface


80


′ which is positioned with respect to the locking slide intermediate a fully coupled position as shown in

FIG. 38

, and fully uncoupled position as shown in

FIG. 36

such that during uncoupling the pivot cam protrusion


91


of the locking element rides along the tapered camming surface


80


′ thereby biasing the connector mating section


26


′ towards the squib. The latter helps to ensure, as in the previous embodiment of

FIGS. 31-34

, that the locking element is retracted to the fully uncoupled position during unplugging. In the fully coupled position as showing

FIG. 38

, the pivot protrusion


91


rides onto an outward flat cam surface


94


that maintains the latches


36


″ in an outwardly biased condition, thereby enabling quick and easy unplugging by squeezing together the latches whilst the mating section


26


′ is biased towards the squib. The spring force of the latch


36


″ is also provided by the spring beams


95


that extend from the hinges


90


″ to a top wall


96


of the locking element


32


″. A compact yet flexible latch element is thus provided, which is particularly advantageous for the 90 degrees embodiment of

FIGS. 34-38

that preferably has a low height.



Claims
  • 1. A squib connector having a housing with a mating portion adapted to be received within a cavity of a squib for electrical connection thereto, the connector comprising: a locking element mounted on the housing having a locking portion engageable with a complementary locking shoulder of the squib for securing the connector to the squib, wherein the locking element is separate from and movably mounted to the housing, and has a lock camming portion that engages a complementary housing camming portion of the housing to cam the locking portions into engagement with the complementary locking shoulders of the squib when the locking element is moved from an unlocked position to a fully locked position during coupling of the connector to the squib.
  • 2. The connector of claim 1 wherein the locking element is mounted to be slideable in a direction parallel to a direction of plugging and unplugging of the connector.
  • 3. The connector of claim 2 wherein the locking portion is provided on a cantilever beam locking arm.
  • 4. The connector of claim 3 wherein the connector locking arms are attached at an attachment end to the housing remote from a mating face of the housing, and extending therefrom to the latching portion provided proximate the mating face.
  • 5. The connector of claim 3 wherein the locking arms are provided in a free standing or natural position that enables only slight or no engagement with the squib locking shoulders, whereby the housing camming portion outwardly biases the locking arms into engagement with the squib latching shoulders during movement of the locking element from the unlocked to the fully locked position.
  • 6. The connector of claim 1 wherein the connector housing comprises a return cam portion that engage locking arms of the locking element when the locking element is moved to the fully unlocked position, engagement of the return cam portion by the locking arm ensuring biasing of the locking portions into an unlocked position, inwardly biased away from the squib cavity latching shoulders.
  • 7. The connector of claim 6 wherein the return camming portion comprises a beam integrally attached to the connector housing and spaced therefrom for insertion of the locking arm between the beam and housing.
  • 8. The connector of claim 1 wherein the housing camming portion is in the form of a protrusion extending outwardly from the housing and comprising a tapered camming surface for engagement of the lock camming portion thereagainst in order to outwardly splay the locking portions.
  • 9. The connector of claim 1 wherein the locking portions of the locking element comprise tapered locking shoulders engageable against the squib latch shoulder whereby an extraction force on the connector housing or a cable attached to the housing compresses the locking portion along a compression direction that is at an angle with a direction of mating of the connector with the squib, thereby reducing shear forces on the locking portion.
  • 10. The connector of claim 1 wherein the locking element comprises resilient latches with camming portions engageable with complementary camming portions of the housing during unlatching, the camming surfaces adapted to generate a force component on the housing in a plugging direction towards a squib.
  • 11. A squib connector with a mating portion adapted to be received within a cavity of a squib for electrical connection thereto, the connector comprising:a housing having a lock camming surface; a locking element separate from and moveably mounted to the housing, the locking element having locking arms that extend proximate a locking shoulder of the squib that do not engage the locking shoulder in an unlocked position, the locking arms having a locking portion engageable with the locking shoulder for securing the connector to the squib and a camming portion that engages the camming surface of the housing to cam the locking portion into biased engagement with the locking shoulder of the squib when the locking element is moved from the unlocked position to a locked position.
  • 12. The squib connector of claim 11, wherein the locking portion is provided on a cantilever beam locking arm.
  • 13. The squib connector of claim 12, further comprising a return portion proximate the housing that cams the locking arm into an unbiased state when the locking element is moved from the locked position to the unlocked position.
  • 14. The squib connector of claim 13, wherein the return portion includes a beam integrally moulded to the housing and spaced therefrom for receiving the locking arm therebetween.
  • 15. The squib connector of claim 12, wherein the camming surface biases the locking arm into engagement with the locking shoulder when the locking element is in the locked position.
  • 16. The squib connector of claim 11, wherein the camming surface is a protrusion extending outwardly from the housing and the protrusion has a tapered surface that outwardly splays the locking portion.
  • 17. The squib connector of claim 11, further comprising a resilient coupling assist latch that locks the latching element in an unlocked position to ensure complete return of the locking element to the unlocked position.
  • 18. The squib connector of claim 11, wherein the housing has a protrusion that engages a recess of the squib for partial retention of the connector to the squib during mating and unmating.
  • 19. The squib connector of claim 11, wherein the mating portion of the squib connector extends substantially orthogonal to a conductor receiving section.
  • 20. The squib connector of claim 11, wherein the locking element has a resilient latch with a camming projection engageable with a complementary surface of the housing during unlatching, the camming projection and the complementary surface of the housing adapted to generate a force component on the housing in a plugging direction towards the squib.
Priority Claims (2)
Number Date Country Kind
9716258 Jul 1997 GB
9720661 Sep 1997 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/IB98/01125 WO 00
Publishing Document Publishing Date Country Kind
WO99/06243 2/11/1999 WO A
US Referenced Citations (5)
Number Name Date Kind
5275575 Cahaly et al. Jan 1994 A
5529512 Mlyniec Jun 1996 A
5595499 Zander et al. Jan 1997 A
5609498 Muzslay Mar 1997 A
5688141 Dullin Nov 1997 A
Foreign Referenced Citations (6)
Number Date Country
19544631 Mar 1997 DE
713 266 May 1996 EP
736 934 Oct 1996 EP
791 987 Aug 1997 EP
808 749 Nov 1997 EP
2 310 087 Aug 1997 GB