The invention relates to nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), and more particularly to low noise NMR and MRI at ultralow magnetic fields using a high critical temperature (high-Tc) superconducting quantum interference device (SQUID) spectrometer coupled with a flux transformer.
Nuclear magnetic resonance (NMR) is the name given to a physical resonance phenomenon involving the observation of specific quantum mechanical magnetic properties of an atomic nucleus in the presence of an applied, external magnetic field. Many scientific techniques exploit NMR phenomena to study molecular physics, crystals and non-crystalline materials through NMR spectroscopy. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).
A superconducting quantum interference device (SQUID) is a sensitive detector which is used to measure extremely weak signals, such as subtle changes in the human body's electromagnetic energy field based on the quantum mechanical Josephon effect. A Josephson junction is made up of two superconductors, separated by an insulating layer so thin that electrons can tunnel through. A SQUID consists of tiny loops of superconductors employing Josephson junctions to achieve superposition: each electron moves simultaneously in both directions. Because the current is moving in two opposite directions, the electrons have the ability to perform as qubits (that theoretically could be used to enable quantum computing). SQUIDs have been used for a variety of testing purposes that demand extreme sensitivity, including engineering, medical, and geological equipment.
Both the low field NMR and MRI are based on SQUID, which can avoid the drawbacks of high-field NMR and MRI such as susceptibility artifacts, the cost issue, the size and complexity of the high-field system and so on. The demand of the field homogeneity is not as strict as that of high field NMR/MRI although the signal-to-noise ratio (SNR) is weak in low field NMR/MRI. A homogeneity of 1 part per 104 in the magnetic field can reach a line width of 0.426 Hz in the NMR spectrum. Therefore, the construction of a low field spectrometer of high spectral resolution is much easier than that of the high field NMR/MRI.
The detection sensitivity of NMR/MRI using SQUID designed to image small samples was reported in reference, e.g. K. Schlenga et al., “Low-field magnetic resonance imaging with a high-Tc dc superconducting quantum interference device,” Appl. Phys. Lett. 75, 3695 (1999). For most studies, un-tuned SQUID were used and the samples were mounted under the cryostat with the distance between the sample and detector kept as close as possible because the signal can decay quickly when the distance between sample and detector is increased. It has been demonstrated that the sensitivity decreases rapidly as the separation between the SQUID and the sample increases beyond a certain value. A simple calculation shows that the signal will be reduced by a factor of two as the distance from the SQUID is varied from 1 mm to 50 mm, see S. H. Liao et al., “Enhancement in low field nuclear magnetic resonance with a high-Tc superconducting quantum interference device and hyperpolarized 3He,” J. Appl. Phys. 104, 063918 (2008). However, there are many circumstances in which it is impratical to keep the samples close to the detector.
U.S. Pat. No. 7,218,104 disclosed a method and an apparatus for the detection of NMR signals and production of MRI by obtaining NMR spectra of liquids in microtesla field using prepolarization in millitesla fields and detection with an untuned dc low critical temperature (low-Tc) SQUID. Because the sensitivity of the SQUID is frequency independent, both SNR and spectra resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow for grossly inhomogeneous measurement fileds. The detector is a SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which is at room temperature. However, the SQUID magnetometer is so sensitive that when applying magnetization field or RF pulse to the sample, it may affect the SQUID.
The present invention provides a method for detecting nuclear magnetic resonance (NMR) of a sample, comprising: (a) pre-polarizing nuclear spins in the sample in a millitesla magnetic field or higher than 10 mT; (b) detecting nuclear magnetic resonance (NMR) signals from the sample in a microtesla magnetic field with a high critical temperature (high-Tc) superconducting quantum interference device (SQUID) magnetometer via a flux transformer consisting of a pickup coil and an input coil, wherein the SQUID and the input coil are installed inside a superconducting vessel.
The present invention further provides an apparatus for detecting nuclear magnetic resonance (NMR) of a sample, comprising: (a) a pre-polarization coil for providing a millitesla magnetic field for prepolarizing nuclear spins in the sample; (b) a flux transformer consisting a pickup coil and an input coil, wherein the pickup coil is fitted into the pre-polarization coil; and (c) an high critical temperature (Tc) superconducting quantum interference device (SQUID) magnetometer for detecting nuclear magnetic resonance (NMR) signals from the sample, wherein the SQUID and the input coil are installed inside a superconducting vessel.
The invention is directed to certain improvements in NMR/MRI as described herein, and other aspects of the NMR/MRI systems are conventional and not described since they are well known in the art.
The present invention provides a method for detecting nuclear magnetic resonance (NMR) of a sample, comprising: (a) pre-polarizing nuclear spins in the sample in a millitesla magnetic field or higher than 10 mT; (b) detecting nuclear magnetic resonance (NMR) signals from the sample in a microtesla magnetic field with a high critical temperature (high-Tc) superconducting quantum interference device (SQUID) magnetometer via a flux transformer consisting of a pickup coil and an input coil, wherein the SQUID and the input coil are installed inside a superconducting vessel.
The invention also provides an apparatus for detecting nuclear magnetic resonance (NMR) of a sample, comprising: (a) a pre-polarization coil for providing a millitesla magnetic field or higher than 10 mT for prepolarizing nuclear spins in the sample; (b) a flux transformer consisting a pickup coil and an input coil, wherein the pickup coil is fitted into the pre-polarization coil; and (c) an high critical temperature (Tc) superconducting quantum interference device (SQUID) magnetometer for detecting nuclear magnetic resonance (NMR) signals from the sample, wherein the SQUID and the input coil are installed inside a superconducting vessel.
In this invention, the spin procession of proton is inductively coupled to the SQUID spectrometer. Coupling is accomplished through a flux transformer with both the SQUID and input coupling set up in a superconducting vessel, which allows avoidance of environmental noises and sets the SQUID in a stable operation. The flux transformer, which consists of a pickup coil and an input coil connected to a capacitor and an inductance to form a NMR resonance circuit, is tuned to the nuclear resonance frequency of to-be-detected samples in a measuring magnetic field of microtesla. This design, which uses resonance flux coupling, offers the advantages of preserving the SNR when the sample is a bit far away from the SQUID detector. The advantage is especially useful for imaging large samples when the required distance from the sample to the detector deteriorates the NMR signal. In an embodiment, the measuring magnetic field is from 1 to 200 μT, and in a more preferable embodiment, the measuring magnetic field is 101 μT. The direct-coupled high-Tc SQUID magnetometer has a magnetic field resolution of 280 fT/Hz1/2 at 4.3 kHz.
The term “superconducting vessel” used herein refers to a container which is made of superconductor. Superconductors are materials that have no resistance to the flow of electricity. Also, the magnetic field inside a bulk sample is zero (which is called the Meissner effect). When a magnetic field is applied current flows in the outer skin of the material leading to an induced magnetic field that exactly opposes the applied field. In a preferable embodiment, the superconducting vessel is composed of Bi2Sr2Ca2Cu3Oy.
The present invention using high critical temperature (high-Tc) superconducting quantum interference device (SQUID) requiring cooling with liquid nitrogen, which is much less expensive and easier to work with than using low critical temperature (low-Tc) SQUID which required cooling with liquid helium.
In the present invention, the sample is placed in the pre-polarization coil which can prepolarize the nuclear spins in a strong transient field to generate enhanced, nonequilibrium nuclear magnetization and thereby boost the strength of the NMR signal. The pickup coil and the unit which the pickup coil is fitted into the pre-polarization coil of the NMR detecting system. The pre-polarization coil is 1016 turns of wound copper coil capable of generating a pre-magnetic field in the range of about 10 mT or higher than 10 mT. In a preferable embodiment, the pre-magnetic field is 45 mT. The high-Tc SQUID-based NMR spectrometer is set up in an electromagnetically shielded room. To produce a uniform magnetic field, a planar coil system consisting of three coil pairs is set up as Sasada I et al., “Planar coil system consisting of three coil pairs for producing a uniform magnetic field,” J. Appl. Phys. 99, 08D904 (2006) disclosed. These three coil pairs are connected in series to produce a homogeneity better than 1 in 104 over a sample column of 64 cm3 at 101 μT. The static field B0 of 101 μT is active along the z-axis, which is parallel to the plane of the high-Tc SQUID magnetometer. The pre-polarization field, Bp, of 45 mT is applied along the y-axis, which is also parallel to the plane of the SQUID magnetometer. Since the strength of the pre-polarization field is much higher than that of the measuring static field, the direction of nuclear spin magnetization of water is almost aligned along the y-axis of the pre-polarization field. After applying a prepolarization field for a duration time of TBp, the pre-polarization field is quenched after 3 ms. The precession of the nuclear magnetization is along the direction of Bo. The free induction decay (FID) signal of the proton spin is detected by a pick-up coil. The normal of the pick-up coil is along the z-axis direction and coupled to the high-Tc SQUID that is shielded within the superconducting vessel, and the output of the SQUID is amplified, integrated, and then fed back to a feedback coil positioned near the input coil of the SQUID in the superconucting vessel. NMR signals of the FID are filtered through band-pass filters. Then, one can obtain the NMR spectra through a fast Fourier transformation (FFT) and can also perform magnetic resonance imaging (MRI) of the sample by forming an image from the detected NMR signals.
The method of the present invention, wherein the sample can further introduce magnetic nanoparticles as a contrast agent into the sample to enhance NMR contrast. The magnetic fluids consisted of dextrane-coated magnetic nanoparticles dispersed uniformly in water, see Jiang W. et al., “Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible,” 283, 210 (2004). The magnetic susceptibility of the magnetic fluid causes a dephasing of the proton nuclear spin, and a domination of the spin-spin and spin-lattice relaxation. Therefore, a broadening of the proton NMR spectra and increasing relaxation rate is observed when the χ value of the magnetic fluid is increased, and also an effective relaxation rate ΓMF can be observed due to the magnetic susceptibility of the magnetic fluid.
The method of the present invention, further comprising obtaining J-coupling information from the NMR signals. While all chemical shift information is lost in low magnetic field, J-coupling, which is field independent, is preserved.
The term “J-coupling” used herein refers to interaction between adjacent nuclear spins within a molecule. The effect is transmitted via the electrons in orbit around the nuclei. The behaviour of an individual spin is influenced by other coupled nuclei, their effect being to split what would otherwise be a single resonance into two or more distinct frequencies depending on the state of the coupled spin. This effect is useful in aiding the identification of particular species and for determining the molecular structures.
Both magnetic field noise inside the electromagnetically shielded room and the Johnson noise in the flux transformer will couple the field noise to high-Tc SQUID via the flux transformer. In the present invention, the input coil is cooled to 77.4 K while the pickup coil is maintained at 300 K. The proposed cooled flux transformer couples Johnson noise, explained the relation: <V2>Johnson=4kBTRΔf to the SQUID NMR spectrometer, where T is the temperature, R is the total resistance, and Δf is the frequency of bandwidth. The resistance of the pickup coil Rpickup is 4.5Ω at 300 K and the resistance of the input coil Rinput is 1Ω at 77.4 K. Therefore, Johnson noise <V2>1/2Johnson=2.91×10−10V/Hz1/2 exited in the flux transformer. The Johnson noise will couple a field noise of 187 fT/Hz1/2 to SQUID. The noise is less compared to that in the high-Tc SQUID magnetometer operating at the proton resonance frequency of 101 μT. High-Tc supercondcting wires or cooled cryogenic flux transformer in gradiometer configuration can be used to further reduce the noise.
The examples below are non-limiting and are merely representative of various aspects and features of the present invention.
As
a),
a) further showed a schematic of a cubical container containing of water piled on top of a rectangular-shape container, and its side view as
Considering the NMR spectrum of trimethyl phosphate ((CH3O)3PO) that shows a J-coupling between phosphate (31P) nucleus and proton (1H) nucleus, the Hamiltonian for the spin of proton in a magnetic field B0 can be expressed as:
H
H
=−h
γH
S
H(B0−2πJΣimPi/γH) (1)
Where γH and SH are the gyromagnetic ratio and the nuclear spin of proton respectively, J is the scalar coupling constant and mp is the z-component of phosphate nuclear spin. This means that the action of 31P nucleus on 1H nucleus is like an additional magnetic field with a magnitude of 2πJmPi/γH at the position of proton nucleus. This field corresponds to the magnetic field that was induced by the electron cloud by the 31P nucleus.
The enhanced spectral resolution and NMR signals can be exploited to detect the scalar coupling in heteronuclear spin system. In
a) depicted the NMR intensity of water, and
a) showed the transverse spin-spin relaxation time, T*2, as a function of Ms in units of emu g−1. T*2 is determined from the equation
M(t)=M0 exp(−t/T*2), (2)
where M(t) is magnetization of samples at the instant of time t, M0=M (t=0), and T*2 is the total relaxation time. T*2 is related to theinhomogeneity parameter Γinhomogeneity of the magnetic fields by the following equation:
where Γinhomogeneity was the effective relaxation rate, which was caused by the inhomogeneity of the measuring magnetic field. T*2 decreased from 0.43 to 0.07 s when the Ms of the magnetic fluids increased from 0 (pure water) to 0.0015 emu g−1. The magnetic fluids affected the relaxation time T*2 through the equation
where ΓMF was the relaxation rate due to the magnetism caused by the magnetic fluid. Equation (3) represented the effects of the inhomogeneity of the magnetic field on the relaxation time T2. In addition to the effect of the field homogeneity, equation (4) showed that the magnetism of magnetic fluid will introduce additional effects to the relaxation time T2. In NMR measurements, the field Bo was kept at 101 μT; hence, Γrinhomogeneity remained the same value. From equations (2) to (4), we can derive ΓMF as a function of Ms from the measured T*2.
M(t)=So(1−c−tBp/T
where So was the NMR intensity at saturation and tBp was the pre-polarization time in NMR measurements. By using the same method, the NMR signal was measured as a function of TBp and derived T1=140 ms for magnetic fluids with Ms=0.0006 emu g−1. It was found that T1 decreased significantly as the value of Ms of the magnetic fluids was increased from 0 to 0.0006 emu g−1. The decreased T1 can be attributed to magnetic dipole-dipole interaction. A sufficient impact of the thermal noise due to random collisions between the ferromagnetic grains and the molecules of the carrier liquids induces fluctuations.
a) and (b) showed the top view and the side view of a cylinder containing 6.3 ml of water as well as a capillary filled with magnetic fluid (0.3 emu g−1) placed at the axis of the cylinder. The capillary had an inner diameter of 0.25 mm and an outer diameter of 0.36 mm.
a) and (b) were photographs showing a portion of cut celery and its corresponding MRI obtained after 50 averages, respectively.