Currently, HD (hemodialysis) and vascular access for chemotherapy and plasmapheresis is achieved in one of several ways. Applicant's invention involves a new method and instrumentation for HD and vascular access designed to eliminate the problems of the prior methods and create a new, more durable, easier to use, vascular access system.
One prior art method involves a primary arteriovenous fistula. In this method, a native artery is sewn to a native vein creating a high flow system of blood in a vein which over time can be accessed with two hemodialysis needles attached to a dialysis machine. The problem with this method is that few patients are candidates secondary to anatomy and in others the veins or shunt fail to enlarge and mature properly even if the primary fistula remains patent. These arteriovenous fistulas also become aneursymbol over time requiring revision.
Another method involves a subcutaneous prosthetic conduit (PTFE) in the shape of a tube which is sewn at either end to openings made in an artery and vein. This method causes recurrent stenosis at the venous outflow leading to thrombosis (i.e., graft closure) secondary to intimal hyperplasia at venous anastomosis. Thrombosis also occurs at needle puncture sites along the PTFE.
Another method involves a “tunneled” percutaneous dual lumen catheter which is inserted into a central vein. This causes recurrent thrombosis secondary to stasis of blood in the lumen (i.e., not a continuous flow system like an A-V fistula) and build up of fibrinous debris at the venous end. Further, the access end of the catheter protrudes through the skin making it cosmetically unappealing, cumbersome to live with, as well as more likely to become infected.
A further method involves the use of the Sorenson Catheter. This is a percutaneous (not tunneled) dual lumen catheter, placed into the central venous system, which is used to provide temporary access for the purposes of hemodialysis. These catheters are prone to kinking, clotting, infection, and poor flow rates.
A still further method of vascular access involves the “Porta-a-cath”. This system of venous access, which utilizes a subcutaneous reservoir attached to a central venous catheter, is used for long term intervenous access for chemotherapy etc. (It is not intended for HD.) The ports are prone to clotting and must be continually flushed since they are a stagnant system.
Applicant's invention involves a vascular access system, known as the Squitieri Hemodialysis and Vascular Access System, which creates a continuous blood flow and which is easily accessed and resistant to clotting. These advantages provide ideal access for long term HD, chemo or blood draws. An example, would be patients who are on coumadin which require weekly blood draws. This new system becomes less painful over time as the skin over the “needle access” site become less sensitive. The veins are spared repeated blood draws which results in vein thrombosis to such a degree that some patients “have no veins left” making routine blood draws impossible.
Among the more relevant prior art patents are U.S. Pat. Nos. 4,898,669; 4,822,341; 5,041,098; and, 4,790,826. None of the foregoing patents disclose a system having the features of this inventions
A hemodialysis and vascular access system comprises a PTFE end which is sutured to an opening in an artery at one end and the other end is placed into a vein using any technique which avoids the need for an anastomosis between the silicone “venous” end of the catheter and the vein wall. The system comprises any material, synthetic or natural (i.e. vein) which can be sutured to the artery (i.e. preferably PTFE) at one end while the other end is composed of a material which is suitable for placement into a vein in such a way that the openings in the “venous” end of the system are away from the site where the graft enters the vein. The system may also be constructed of multiple layers of materials i.e. PTFE on the inside with silastic on the outside. The “Needle Receiving Site” may also be covered with PTFE to encourage self sealing and tissue ingrowth.
A preferred embodiment comprises a combination of PTFE conduit sewn to an artery on one end of the system with the other end connected to a silastic-plastic catheter which can be percutaneously inserted into a vein via an introducer. The venous end may also be placed via open cut down. The seal around the system where it enters the vein may be “self sealing” when placed in percutaneous technique; it may be achieved with a purse string when done by open technique “cut down”; or, it may be sewn to the vein to create a seal with a “cuff” while the system continues downstream within the venous system to return the arterial blood away from the site of entry into the vein. The entire system can be positioned subcutaneously at the completion of insertion. This design is a significant improvement over existing methods because it avoids the most frequent complication of current HD access methods. By utilizing an indwelling venous end, one avoids creating a sewn anastomosis on a vein which is prone to stenosis secondary to neointimal hyperplasia. By having continuous flow through the silastic end of the catheter, thrombosis of these catheters can be avoided. Dialysis is made more efficient by decreasing recirculation of blood which accompanies the use of side by side dual lumen catheters inserted into a central vein. This invention not only benefits the patient but it also speeds dialysis thus saving time and money.
To summarize, the Squitieri Access System comprises a tube composed of PTFE and a silastic catheter. This tube is used to create an arteriovenous fistulu. The PTFE end (arterial end) of the tube is sewn to an artery while the silastic catheter end is placed into the venous system by the Seldinger technique much like a standard central line. The entire system is subcutaneous at the completion of insertion. This system is a composite of the arterial end of a “gortex graft” joined to the venous end of a “permacath”. This system enjoys strengths of each type of access and at the same time avoids their weaknesses.
Accordingly, an object of this invention is to provide a new and improved vascular access system.
Another object of this invention is to provide a new and improved hemodialysis and vascular access system including an easily replaceable needle receiving site which has superior longevity and performance, is more easily implanted, more easily replaced, and is “user friendly” i.e. easily and safely accessed by a nurse or patient which is ideal for home hemodialysis.
A more specific object of this invention is to provide a new and improved Squitieri hemodialysis and vascular access system including a subcutaneous composite PTFE/Silastic arteriovenous fistula.
A further object of this invention is to provide a new and improved hemodialysis and vascular access system including a fistula utilizing an indwelling silastic end which is inserted percutaneously into the venous system and a PTFE arterial end which is anastomosed to an artery and including a unique needle receiving sites which are positioned anywhere between the ends and which have superior longevity and performance.
A further object of this invention is to provide a system constructed to preserve laminar flow within the system and at the venous outflow end to reduce turbulence and shear force in the vascular system to the degree possible.
A still further object of this invention is to provide a system wherein the arterial end (PTFE) may also be placed by percutaneous technique including one where blood entry holes are distant from the site where blood enters the veins.
The above and other objects of this invention may be more clearly seen when viewed in conjunction with the accompanying drawings wherein:
Referring to the drawings the Squitieri hemodialysis and vascular system, as shown in
The access site 20 includes an in line aperture 16, see
Along the length of the catheter specially constructed access segments 20 are located to receive specially designed needles 15 into the system to gain access to the blood stream which flows through aperture 16. This method avoids perigraft bleeding which leads to thrombosis either by compression of the graft by hematoma or by manual pressure applied to the graft in an attempt to control the bleeding.
The needle access areas 20 which are designed to receive needles 15 etc. to allow access to the system are in line conduits with self-sealing material 17 such as silicone located beneath the skin surface. The silicone member 25 comprises an oval configuration exposed within the frame 26 for ease of puncture. The system may be accessed immediately after insertion without having to wait for the graft to incorporate into the tissues as is the case with the current methods of subcutaneous fistulas. These access areas 20 will protect the graft since they are uniformly and easily utilized requiring little training or experience. The “needle receiving” sites 20 are designed in such a way to preserve laminar flow as far as possible (i.e. not a reservoir arrangement). Needle receiver sites 20 may be connected to a system via “quick couple” 45 for easy exchangability, see FIG. 11.
The free end 19 of the PTFE tube 10 is sewn to an opening in an artery 30, see
In this invention, the materials used may vary as specified herein. The system may be constructed of one or more specific materials. The arteries and veins used may also vary. Material may also be covered with thrombus resistant coatings (heparin, etc.) or biologic tissue. The system may in specific cases be “ringed” for support.
The same concept of using an arterialized venous access catheter may be applied to the use of long term indwelling catheters used to give chemotherapy etc., making the current ports obsolete as these new access systems will have a decreased thrombosis and they will no longer need to be flushed as continuous blood flow through the system makes thrombus formation unlikely. This will definitely cut down on costs since it will decrease nursing requirements in out patient settings, etc.
In alternate embodiments shown in
The upper member 86 includes an oval silicone access site 90 with an outer housing 91 which includes an aperture 92 surrounds the silicone oval 90. This embodiment provides a quick assembly for a needle access site 71.
The Squitieri Hemodialysis/Vascular Access System avoids creation of a venous anastomosis, a revolutionary advancement, i.e. there is no site for neointimal hyperplasia at a venous anastomosis which accounts for the vast majority of PTFE arteriovenous graft failures (60-80%). This is accomplished by returning the blood into a larger vein via an indwelling venous catheter 42. The site of blood return to the venous system is not fixed to the vein wall where neointimal hyperplasia occurs with the standard PTFE bridge graft. This feature represents a tremendous advantage over the present grafts.
As a further advantage, the system is not stagnant and prone to thrombosis, i.e. constant flow through the new system avoids the problem of clotting inherent in indwelling dual lumen venous catheters which remain stagnant when not in use. It also avoids need to flush catheters with heplock thereby reducing nursing costs to maintain the catheter.
The Squitieri system avoids externalization of components which are prone to infection. Since dual lumen catheters exit the skin 14, they frequently lead to sepsis requiring catheter removal despite subcutaneous tunneling. This new access is entirely subcutaneous.
Very importantly the system proposed herein, avoids problems with the aspiration of blood from the venous system and “positional” placement through continuous flow. A frequent problem with dual lumen catheters is their inability to draw blood from the venous system due to clot and fibrinous debris ball-valving at the tip of a catheter. This new system receives blood directly from arterial inflow which ensures high flow rates needed for shorter, more efficient dialysis runs. It also avoids the frequent problem of the catheter tip “sucking” on the vein wall inhibiting flow to the dialysis machine and rendering the access ineffective.
The system avoids recirculation seen with dual lumen catheters resulting in more efficient and more cost effective dialysis.
The system avoids the need for temporary access with incorporation of “Needle Access Sites” 20. A-V fistulas and gortex grafts must “mature” for several weeks before use. This creates a huge strain on the patient as well as the doctor to achieve temporary access while waiting to use the permanent access. Temporary access is very prone to infection, malfunction and vein destruction. By placing sites 20 designed to receive needles 15 along the new access, the system may be used the day it is inserted.
The system avoids PTFE needle site damage with the incorporation of “Needle Access Sites” 20. Needle access directly into PTFE is presently uncontrolled and user dependent. Often, PTFE is lacerated by access needles. While this system may be accessed via the PTFE segment, the needle receiving sites are the preferred method. This leads to excessive bleeding which requires excessive pressure to halt the bleeding causing thrombosis of the graft. “Needle Access Sites” 20 on the Squitieri access system allow safe, quick, and easy entry into the system and avoid the complications inherent in placing needles directly into PTFE. It also avoids perigraft bleeding which will compress and thrombose the graft. By elminating the long time needed to compress bleeding at the needle site, the system shortens dialysis runs.
The Squitieri system permits an easier, faster insertion technique. Only one anastomosis at the arterial end and a percutaneous placement of the venous end is required. A modification allows the system to be sutured to the vein wall while the system tubing is floated down stream from this site where the system enters the vein 40. This saves operating room time at thousands of dollars per hour. The technique is easier with faster replacement. It avoids difficult and time consuming revision of venous anastomosis required to repair venous outflow occluded by neointimal hyperplasia. If the system malfunctions, the silastic catheter end 65 slips out easily and the arterial PTFE end 53 is thrombectomized. New access sewn to the thrombectomized PTFE at the arterial end and the silastic venous end is replaced percutaneously via Seldinger technique or “open technique”.
The end result of the above advantages translates into superior patency rates and a decreased complication rate with this new system. Patients are spared the repeated painful hospitalizations for failed access as well as the emotional trauma associated with this difficult condition. The physicians are spared the dilemma of how to best treat these patients. This system will have a large impact on the current practice of vascular access in areas such as hemodialysis; plasmapheresis; chemotherapy; hyperalimentation; and chronic blood draws.
While the invention has been explained by a detailed description of certain specific embodiments, it is understood that various modifications and substitutions can be made in any of them within the scope of the appended claims which are intended also to include equivalents of such embodiments.
This is a reissue application of U.S. Pat. No. 6,102,884, which issued on Aug. 15, 2000, and which claims benefit under 35 U.S.C. Section 119(e) to U.S. Provisional Patent Application Ser. No. 60/037,094, filed Feb. 3, 1997. Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,102,884. The reissue applications are U.S. application Ser. No. 10/219,998(the present application) and U.S. application Ser. No. 11/417,658, which is a continuation reissue of U.S. Pat. No. 6,102,884.
Number | Name | Date | Kind |
---|---|---|---|
3683926 | Suzuki | Aug 1972 | A |
3818511 | Goldberg et al. | Jun 1974 | A |
3882862 | Berend | May 1975 | A |
4318401 | Zimmerman | Mar 1982 | A |
4447237 | Frisch et al. | May 1984 | A |
4496349 | Cosentino | Jan 1985 | A |
4619641 | Schanzer | Oct 1986 | A |
4822341 | Colone | Apr 1989 | A |
4877661 | House et al. | Oct 1989 | A |
4898669 | Tesio | Feb 1990 | A |
4929236 | Sampson | May 1990 | A |
4955899 | Della Corna et al. | Sep 1990 | A |
5041098 | Loiterman et al. | Aug 1991 | A |
5192310 | Herweck et al. | Mar 1993 | A |
5197976 | Herweck et al. | Mar 1993 | A |
5399168 | Wadsworth et al. | Mar 1995 | A |
5476451 | Ensminger et al. | Dec 1995 | A |
5558641 | Glantz et al. | Sep 1996 | A |
5562618 | Cai et al. | Oct 1996 | A |
5591226 | Trerotola et al. | Jan 1997 | A |
5607463 | Schwartz et al. | Mar 1997 | A |
5637088 | Wenner et al. | Jun 1997 | A |
5637102 | Tolkoff et al. | Jun 1997 | A |
5676346 | Leinsing | Oct 1997 | A |
5743894 | Swisher | Apr 1998 | A |
5755775 | Trerotola et al. | May 1998 | A |
5792104 | Speckman et al. | Aug 1998 | A |
5797879 | DeCampli | Aug 1998 | A |
5800512 | Lentz et al. | Sep 1998 | A |
5830224 | Cohn et al. | Nov 1998 | A |
5840240 | Stenoien et al. | Nov 1998 | A |
5866217 | Stenoien et al. | Feb 1999 | A |
5904967 | Ezaki et al. | May 1999 | A |
5931865 | Silverman et al. | Aug 1999 | A |
6001125 | Golds et al. | Dec 1999 | A |
6019788 | Butters et al. | Feb 2000 | A |
6036724 | Lentz et al. | Mar 2000 | A |
6102884 | Squitieri | Aug 2000 | A |
6156016 | Maginot | Dec 2000 | A |
6261255 | Mullis et al. | Jul 2001 | B1 |
6338724 | Dossa | Jan 2002 | B1 |
6398764 | Finch et al. | Jun 2002 | B1 |
6402767 | Nash et al. | Jun 2002 | B1 |
6428571 | Lentz et al. | Aug 2002 | B1 |
6582409 | Squitieri | Jun 2003 | B1 |
6719783 | Lentz et al. | Apr 2004 | B2 |
20020049403 | Alanis | Apr 2002 | A1 |
20030004559 | Lentz et al. | Jan 2003 | A1 |
20040193242 | Lentz et al. | Sep 2004 | A1 |
20040215337 | Hain et al. | Oct 2004 | A1 |
20050137614 | Porter et al. | Jun 2005 | A1 |
20050203457 | Smego | Sep 2005 | A1 |
20050215938 | Khan et al. | Sep 2005 | A1 |
20060064159 | Porter et al. | Mar 2006 | A1 |
20070123811 | Squiteri | May 2007 | A1 |
20070167901 | Herrig et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
4418910 | Jul 1995 | DE |
44 18 910 | Dec 1995 | DE |
295 15 546 | Mar 1997 | DE |
57-14358 | Jan 1982 | JP |
58-168333 | Nov 1983 | JP |
04-507050 | Dec 1992 | JP |
05-212107 | Aug 1993 | JP |
06-105798 | Apr 1994 | JP |
09-84871 | Mar 1997 | JP |
WO 8403036 | Aug 1984 | WO |
WO 9519200 | Jul 1995 | WO |
WO 9624399 | Aug 1996 | WO |
Number | Date | Country | |
---|---|---|---|
60037094 | Feb 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08835316 | Apr 1997 | US |
Child | 10219998 | US |